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Abstract 

As an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa) can cause both acute and 

chronic infections. Variable virulence components and antibiotic resistance markers in the 

bacterium's genome constitute the bacterium's pathogenic profile and provide the bacterium with 

outstanding metabolic adaptability to many conditions. The interactions of P. aeruginosa with the 

host are poorly understood, complicating the treatment of its infections and the development of 

vaccines against them. Despite decades of scientific research focusing specifically on this 

challenge, vaccines to prevent these dangerous infections still do not exist. The major virulence 

factors of P. aeruginosa and host immune responses against the bacteria are discussed in this 

review.  
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Introduction 

Pseudomonas aeruginosa is a Gram-negative non-fermentative bacteria that causes hospital 

infections and it is resistant to many molecules1. In addition to being naturally resistant to many 

antibiotics, it is a serious problem with an increasing incidence in recent decades, gaining multiple 

antibiotic resistance owing to its ability to acquire resistance rapidly even during antibiotic use2–4.  

P. aeruginosa is on the World Health Organization (WHO) list of “critical” bacterial pathogens 

demanding new antibiotic development and research5,6. 

There are many incomprehensible parts of P. aeruginosa-host interactions. Therefore, the treatment 

difficulties of infections continue, and preventive vaccines have not yet been developed despite 

several decades of research7. Many extracellular components are concerned with the pathogenesis 

of P. aeruginosa. These systems can increase the movement of bacteria (twitch motility) and enable 

them to reach nutrients more easily. In addition, they allow bacteria to penetrate tissues more easily 

or  cause more damage to the tissue they colonize through enzymes ( elastase, protease, and DNase) 

that can break down various substances. However, the most important virulence factor for bacteria 

is biofilm production8. The virulence factors of P. aeruginosa act on molecules and enzymes in the 

host cell cytoplasm and activate multimolecular signaling stages in immune cells known as 

inflammatory cells9. 

Virulence factors of P. aeruginosa 

P. aeruginosa carries a wide range of virulence factors that contribute to its pathogenicity.  Several 

virulence factors may induce pathogenicity while targeting the extracellular matrix, facilitating 

adhesion, and/or busting host cell signaling pathways. P.aeruginosa can cause a variety of diseases 

that occupy the host and its immune system, causing infections that are almost impossible to heal10-

12. 

The lipopolysaccharide (LPS) is the major component of the outer membrane of P. aeruginosa; it 

involves a distal polysaccharide (O-antigen), a hydrophobic endotoxic element (lipid A), and a 

single-core oligosaccharide13. The LPS activates the host’s both innate and adaptive immune 

responses and ultimately dysregulates inflammation responses that result in increased morbidity and 

mortality14. 

Flagel, which has a strong immunogenic structure, plays a critical role in the pathogenesis by 

binding to membrane components of epithelial cells such as AsiolaGM1 and providing adherence15. 

P. aeruginosa easily reaches nutrients through flagella, evades the harmful effects of immune 

system elements and antibacterial agents, translocates into the host cell, and can move freely in the 
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biofilm16. The flagellum stimulates the NFχB-dependent inflammatory response by interacting with 

TLR5 and TLR2, so leads to the initiation of IL-8 synthesis by activation of the calcium-dependent 

kinase pathway. It is found in most of the strains isolated from the environment and hospital 

infections, whereas the 10 strains isolated from patients with cystic fibrosis and chronic infections 

do not have flagella to evade the host immune system response17.   

Type-IV pili have the ability to adhere to cells, thereby providing tissue tropism and attachment to 

certain tissues. These adhesions mediate non-opsonic phagocytosis and biofilm formation18-20.                

P. aeruginosa has six secretory systems (Type I to VI) that release hydrolytic enzymes and various 

toxins to invade the host21,22. Type I (T1SS) and Type V (T5SS) secretion systems are simple 

secretory mechanisms that secrete substances into the extracellular environment. T1SS is a one-step 

secretory system without the need for a periplasmic intermediate.  It consists of an outer membrane 

protein (OMP), an ATP-binding cassette (ABC) transporter, and an adapter protein binding the two 

together. Alkaline protease (AprA)  and heme acquisition protein (HasAp) are  known substrates of 

T1SS; they are directed into the T1SS secretion tool by a C-terminal secretory signal. The type II 

secretion system (T2SS)  is the most multipurpose secretion system of P. aeruginosa21. The type III 

secretion system (T3SS) is the most important secretory system used to disable and destroy the 

host's immune system23. The type VI secretion system (T6SS) is one of the most recently described 

bacterial secretion systems. T6SS consists of a hemolysin-coregulated protein (Hcp-TssD) tube 

containing double-spike proteins. It is important for bacterial competition as it produces bacterial 

toxins (Tse) that destroy the host's microbial flora but also play a minor role in host 

defense24. Unlike the other three systems with a one-step mechanism, T2SS and T5SS use a two-

step secretion mechanism that involves the passage of secreted proteins into the periplasm. On the 

other hand, T3SS and T6SS inject proteins directly into the cytoplasm of the host cell21,22.  

    The exotoxin A is secreted through T2SS, which uses a pilus-like tool to secrete proteins into the 

extracellular environment, including lipase, phospholipase, alkaline phosphatase, and protease. The 

contribution of these factors to the virulence of bacteria has been demonstrated in animal 

experiments25. Besides, exotoxin A has been demonstrated to be involved in regional tissue 

invasion and injury 26.  Elastase LasB type metalloproteases also cause tissue damage in the host, 

especially in burned wound infections and pulmonary infections27.  

      Alginate, another substance secreted by P. aeruginosa, is an anionic mucoid 

exopolysaccharide. It consists of repetitive polymers of D-mannuronic acid and L-glucuronic acid 

and protects bacteria against adverse environmental conditions such as oxidative stress, host 

defense systems and especially the harmful effects of aminoglycoside antibiotics28,29. 
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            Quorum Sensing (QS) is a "cell-to-cell" bacterial communication mechanism via diffusible 

chemical compounds. The quorum is required to produce a sufficient amount of a secreted signal 

molecule (auto-inducer) to prompt the expression of a large regulon30. The most common class of 

autoinducers are the acyl-homoserine lactones (AHL) used by Gram-negative bacteria. The 

autoinducer diffuses freely throughout the bacterial membranes. Butanoyl-homoserine lactone and 

oxohexanoyl-homoserine lactone are the AHL signals of the bacteriae31. These signals generated by 

AHL synthase (LasI/RhlI) are emitted into the microenvironment. The increase in bacterial density 

during infection also increases the autoinducer concentration. When a certain bacterial population 

density is reached, AHL molecules accumulated in the medium activate genes that induce biofilm 

formation and encode virulence factors32. 

  A recently discovered QS System (IQS) uses “2-(2-hydroxyphenyl)-thiazole-4-

carbaldehyde” as a new signaling molecule. The cognate receptor is not yet known33. IQS inhibits 

host cell growth, impairs host DNA damage repair, and induces apoptosis dose-dependently34. 

Biofilms play an important role in the development of resistant to chronic infections caused 

by P. aeruginosa. Biofilms are microbial communities adhering to a surface and surrounded by an 

exopolysaccharide (EPS) matrix. The function of the biofilm is to ensure that the microorganisms 

contained in them are protected from attack by the internal and external environment. Thus, it gains 

resistance to antibiotics, disinfectants, and host defenses and impairs bacterial clearance35,36. 

Compared to the planktonic form, biofilm formation of P. aeruginosa is generally associated with 

higher drug resistance and leads to evading the host immune response. Microorganisms in the 

biofilm also exhibit altered phenotypes concerning growth rate and gene transcription37–42. 

 

 

 

 

 

 

 

 

 

 

 



N. ÖZCAN et. al. / International Archives of Medical Research  

52 
 

Table 1. Virulence factors and pathogenicity mechanisms of P. aeruginosa 

Virulence factors Mechanism 

Lipopolysaccharide (LPS) Activates the host’s innate and adaptive immune system by Toll-like receptor 4 (TLR4), NOD-like receptor pyrin domain containing 1 (NLRP1), NLRP2, and NLRP3), and 
dysregulates inflammation responses. 

Flagellum Strongly immunogenic; interacts with TLR2 and TLR5; binds to membrane components of epithelial cells (Asialo GM1). Gives motility to access nutrients, escape from immune 
system elements and antibacterial agents, migrate in the host cell, and move freely within the biofilm. 

Type-IV Pili Type-IV pili have the ability to adhere to cells, thereby providing tissue tropism and attachment to certain tissues. 

T1SS (Type 1 Secretory System) One-step secretory machinery consists of an outer membrane protein (OMP), an ABC transporter, and an adapter protein. The substrates are alkaline protease (AprA) and Heme 
acquisition protein (HasAp). 

T2SS (Type 2 Secretory System) This molecular nano-machine consists of three parts: General secretory pathway (Gsp) proteins, a large channel embedded in the OM, and the pseudo-pilus functioning as a piston 
that secretes exotoxin A. 

T3SS (Type 3 Secretory System) The most important secretory system used to disable and destroy the host's immune system.  Supports the transfer of virulence proteins called effectors from the bacterial cytoplasm to 
the eukaryotic cell in a single step. 

T4SS (Type 4 Secretory System) The most cosmopolitan secretory system. It differs from other secretion systems by having the ability to transfer DNA in addition to proteins. 

T5SS (Type 5 Secretory System) Consists of a two-stage secretory mechanism involving the passage of secreted proteins into the periplasm. 

T6SS (Type 6 Secretory System) An integrated secretory system within the cell membrane. Transfers toxic substrates to eukaryotic and prokaryotic cells. It plays a crucial role in pathogenesis and competition among 
bacteria. 

Exotoxin A It is secreted via T2SS. It plays a role in local tissue damage and invasion. 

Proteases Several proteases are “elastase LasB-type” metalloproteases. They destroy the host tissue and play a crucial role in both acute lung and burn wound infections. 

Alginate A mucoid anionic exopolysaccharide. Protects the bacteria against adverse environmental conditions, oxidative stress, the host defense system, and especially the harmful effects of 
aminoglycoside antibiotics. 

Quorum Sensing A bacterial "cell-to-cell" communication mechanism via diffusible chemical compounds. Quorum must produce a sufficient amount of a secreted signaling molecule (auto-inducer) to 
activate the expression of a large regulon. Acyl-homoserine lactones (AHL) are the most common class  of autoinducers used by Gram-negative bacteria. 

Biofilm Formation Biofilms are communities of microorganisms that adhere to a biotic or abiotic surface surrounded by an exopolysaccharide (EPS) matrix. They protect the microorganisms in their 
contents from the microbial attack of the external or internal environment. 
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Host immune response against P. Aeruginosa 

P. aeruginosa is an opportunistic pathogen and causes secondary infections in 

immunocompromised humans,  so the main factor determining the occurrence of infections is the 

immune status of the host43,44. The immune system is suppressed in cases where barrier integrity is 

impaired as a result of the use of broad-spectrum antibiotics, catheter applications, trauma, wound, 

ulcer, or burn infections, etc. Bacteria, which find the opportunity for colonization, produce alginate 

from extracellular virulence factors in such cases, causing tissue damage and spreading in the 

bloodstream45.  

           During P. aeruginosa infections, potent agonists of Toll-like receptors (TLR) -TLR2, TLR4, 

TLR5, and TLR9 - which recognize bacterial lipopolysaccharide (LPS), lipopeptides, unmethylated 

bacterial CpG DNA, and flagellin, are expressed in the host46–48. Of these, the most crucial for 

infection clearance is the TLR4-dependent inflammatory response to LPS47. TLR4 sensing of LPS 

leads to activation of important inflammatory cytokines such as TNF-α, IL-6, and IL-849. The 

absence of TLR4 increases sensitivity to two distinct signaling pathways: the primary response 

pathway of myeloid differentiation 88 (MyD88) and the adaptive pathway involving the beta 

interferon-inducing Toll/IL-1R domain (TRIF pathway). The MyD88 pathway activates the nuclear 

factor kappa light chain enhancer of activated B cells (NF-κB), thereby releasing numerous 

proinflammatory cytokines and chemokines – TNF-α, IL-6, and macrophage inflammatory protein 

(MIP). The TRIF pathway regulates the transcription of chemokines such as IFN-α and IFN-β, IP-

10 (Interferon γ-inducible protein 10) and RANTES (regulated in the activation of normally 

expressed and secreted T cell)50. UT12 - the TLR4/MD2 agonistic monoclonal antibody - was 

shown to support host defense against chronic P. aeruginosa lung infection, increase neutrophil 

levels and inflammatory MIP-2 concentrations in the lungs, and improve bacterial clearance in 

mice51. Animal experiments have shown that TLR4 and TLR5 are required for the appropriate host 

immune response52-55. It has been shown that lung cells infected with P. aeruginosa in mice were 

unable to induce invasive lung infection when TLR5 was blocked with anti-TLR5 

antibodies56.  Inflammatory responses dependent on TLR2 and TLR9 are shown to be important in 

bacterial clearance. The deficiencies of TLR-2 and TLR-9 increased bacterial clearance and 

protected mice against P. aeruginosa pulmonary infection57, 58.  

            Studies have shown that the MyD88 pathway is essential for the rapid migration of 

neutrophils to the infection site59. Substances released by P. aeruginosa target the host cell 

cytoplasm and activate the assembly of multimolecular signaling stages in inflammatory cells. 

NOD-like receptors (NLRs) are a group of patern recognition receptors (PRRs) that can recognize 
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various endogenous and exogenous ligands and thus play a critical role in innate immunity. NLR 

inflammatories - NLRC4 and NLRP3- are involved in the detection and reaction of P. aeruginosa 

infections60. NLRP3 is involved in the recognition of P. aeruginosa infection, followed by 

macrophage secretion of caspase-1 and IL-1β. As a secondary signal, the human cathelicidin LL-

37/h-CAP18 promotes the death of epithelial cells infected with P. aeruginosa and acts as a "fire 

alarm" to stimulate inflammatory responses that will counteract uncontrolled infection. Then IL-1β 

and IL-18 are released from infected epithelial cells in order to promote neutrophil efflux61. 

            P. aeruginosa also activates NLRs by the release of outer membrane vesicles (OMV). Thus, 

TLR-dependent reactions occur in epithelial cells via proteins and LPS. These membrane vesicles 

also activate NF-κB signaling and mitogen-activated protein kinase (MAPK) within epithelial 

cells48,62. This may suggest the use of NLRs as therapeutic adjuvant targets during P. aeruginosa 

infection, thereby reducing inflammatory responses in bacteria-infected cells48. 

P.aeruginosa and innate immunity 

Recognition of P. aeruginosa pathogen-associated molecular patterns (PAMPs) is the first step of a 

robust inflammatory response that facilitates bacterial clearance and the migration of macrophages 

and neutrophils to the site. A weak immune response results in a poor response of phagocytic cells 

and failure of bacteria-killing and clearance, while an excessive immune response causes host tissue 

damage. Therefore, the host response should be optimal48,63–67. The chemokine receptors - CXCR1 

and CXCR2- are the chemokine receptors on the neutrophils that regulate host defense and 

neutrophil migration, especially in pulmonary infections caused by P. aeruginosa. CXCR1 

regulates anti-Pseudomonas neutrophil responses by modulating reactive oxygen species and 

interacting with TLR548,67–69.  CXCR1, also binds to IL-8 and to GCP-2 specifically leading to a 

proinflammatory effect48,68. Both CXCR1 and CXCR2 are essential in the response to P. 

aeruginosa because they recruit neutrophils that provide bacterial clearance and have other 

functions in the immune system70,71. While killing P. aeruginosa, neutrophils may also contribute to 

host lung injury due to the synthesis of reactive oxygen compounds (ROS) and proteins released 

from their acidophilic granules72. Therefore, a neutrophil recruitment level that will provide 

bacterial clearance but not cause excessive tissue damage is crucial during infection control. 

              There is increasing evidence that P. aeruginosa can survive inside mammalian cells. In the 

study of Garai et al., it was shown that P. aeruginosa can be detected first in phagosomal vacuoles 

and then in the cytoplasm of macrophages. This indicates phagosomal escape of the bacteria. 
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Among the P. aeruginosa virulence factors, T3SS and ExoS play an important role in the 

intramacrophage survival of bacteria and can induce host macrophage lysis73. 

             Complement activation also plays a role in the host response to P. aeruginosa. The OprF 

porin located in the outer membrane of the bacterium acts as a binding acceptor molecule for C3b, 

enabling the formation of the membrane attack complex (MAC). A study by Mishra et al. showed 

that C3b binding was significantly reduced in an OprF-deficient P. aeruginosa strain74. The innate 

immune system is important in the control of P. aeruginosa infections, but further studies are 

needed on the details of these pathways and how they are integrated in vivo. 

 P. aeruginosa and adaptive immunity 

If proinflammatory pathways are weakened during the acute phase of P. aeruginosa infections, the 

inflammatory response may resolve. T helper cells (Regulatory T cells; Treg) secrete anti-

inflammatory cytokines, inhibit the secretion of pro-inflammatory cytokines, and dendritic cells 

initiate adaptive responses. P. aeruginosa infection, which cannot be eradicated during the acute 

phase, progresses to a chronic infection characterized by mucoid biofilm formation75. As neutrophil 

inflammation prolongs, high expression of IFN-γ, IL-6, IL-1β and IL-17 and a decrease in IL-10 

and Treg are observed, followed by an effector T cell response48. This response inhibits bacterial 

antigen presentation and an effective host immune response against P. aeruginosa75. A Th1-like 

response may improve lung function by releasing IFN-γ76-78. With the induction of IFN-γ by 

alveolar macrophages, apoptotic neutrophils are removed, progression to necrosis occurs and thus 

further inflammation is prevented75. Increasing the Th1 response reduces IL-8 - a chemoattractant 

for neutrophils-  thus reducing inflammation in the lung due to decreased neutrophil recruitment. A 

low Th2 response reduces both tissue damage and the formation of immune complexes.  

Furthermore, decreased IL-13 levels may result in decreased mucus production79. 

           Another acquired immune response in P. aeruginosa infections is antibody production and 

subsequent immune complex (IC) formation. Although IgG antibody production in chronic 

Pseudomonas infections is associated with high NF-KB expression, particularly in cystic fibrosis 

(CF) patients,  it should be kept in mind that the response to specific antigens may vary depending 

on the stage of infection. While some antigens are more expressed in the acute phase, causing an 

intense immune response, some antigens are recognized in the chronic phase. The presence of 

specific antibodies against antigenic structures of the mucoid phenotype of P. aeruginosa has been 

associated with a poor prognosis75. 



N. ÖZCAN et. al. / International Archives of Medical Research  

56 
 

             Immunoglobulin A (IgA), the dominant antibody isotype of the mucosal immune system, is 

also of great importance in the humoral immune response against respiratory tract infections caused 

by P. aeruginosa80. Based on the concentration of secretory IgA against P. aeruginosa in nasal 

secretions and saliva, it can be predicted whether patients are colonized, infected, or chronically 

infected with P. aeruginosa81,82. 

Conclusion 

The numerous virulence factors of P aeruginosa and their expression at different levels according to 

the environment and conditions cause infections and treatment approaches to be quite complex. 

Despite more than 50 years of research to develop a vaccine against Pseudomonas, no marketable 

product has yet been produced. P. aeruginosa remains one of the most resistant organisms to 

antibiotics in the pharmaceutical industry. Researchers are still looking for new drugs or new 

treatment options that could stop infections caused by this multi-drug-resistant, problematic 

bacterium. 
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