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Introduction 

The idea of defining the sequence space with the first-
order difference operator was introduced in [1] and 
further generalized in [2]. Then, various sequence spaces 
have been studied by many authors by means of 
difference operators of different order (see for details [3-
6]. Baliarsingh et al. in [7], also combined most of the 
difference operators previously described and found their 
fine spectra in a more general way. 

Spectral theory has applications in many parts of 
mathematics and physics, including function theory, 
complex analysis, differential and integral equations, 
control theory, and quantum physics. In the literature, 
there are many important studies on the calculation of 
spectra of difference operators and generalized difference 
operators over various sequence spaces. For example, the 
fine spectrum of the difference operator on the sequence 
spaces 𝑐0, 𝑐 and ℓ𝑝 (0 ≤ 𝑝 < 1) was examined by Altay 

and Başar, [8-9]. The fine spectra of the operator 𝐵(𝑟, 𝑠) 
on 𝑐0 and 𝑐 were investigated by Altay and Başar in [10] 
and the fine spectra of the difference operator on the 
sequence spaces ℓ𝑝 and 𝑏𝑣𝑝 (1 < 𝑝 < ∞) were 

calculated by Akhmedov and Başar in [11-12]. Srivastava 
and Kumar in [12-14] examined the fine spectra of the 
generalized difference operator Δ𝑣 on sequence spaces 𝑐0 
and ℓ1, where 𝑎 = (𝑎𝑘) and 𝑏 = (𝑏𝑘) are convergent 
sequences with certain properties, 𝑣 = (𝑣𝑘) is a fixed or 
strictly decreasing sequence, and 𝑟 ∈ ℕ. Recently, 
Akhmedov and El-Shabrawy [15], Dutta and Baliarsingh 
[16-17] examined the fine spectra of the generalized 
difference operators Δ𝑎,𝑏, Δ2 and Δ𝑣

𝑟  on the sequence 

spaces 𝑐, 𝑐0 and ℓ1, respectively, where 𝑎 = (𝑎𝑘) ve 𝑏 =
(𝑏𝑘) are convergent sequences with specific features, 𝑣 =
(𝑣𝑘) is a fixed or strictly decreasing sequence and 𝑟 ∈ ℕ. 
In most of the studies mentioned above, the spectrum is 

discrete; point spectrum, continuous spectrum and 
residual spectrum. On the other hand, in [18] Durna and 
Yıldırım obtained spectral decomposition of factorable 
matrices on 𝑐0 and in [19] Başar et al. studied the 
decomposition of the spectrum (approximate point 
spectrum, defect spectrum, compressed spectrum) of the 
generalized difference operator on some sequence 
spaces. In addition, in [20], Durna calculated the spectral 
decomposition of the Δ𝑢𝑣 generalized upper triangular 
double-band matrix over the sequence spaces 𝑐0 and 𝑐. In 
[21] Das studied the spectrum and fine spectrum of the 
upper triangular matrix 𝑈(𝑟1 , 𝑟2; 𝑠1, 𝑠2) on the 𝑐0 
sequence space. In [22], they studied the spectral 
decompositions of the generalized difference operator 
𝐵(𝑟, 𝑠) on 𝑏𝑣0 and ℎ sequence spaces. In [23], Tripathy 
and Das studied the spectrum and fine spectrum of the 
upper triangular matrix 𝑈(𝑟, 0,0, 𝑠) on 𝑐0 sequence space. 

As mentioned above, there are many applications of 
spectra of bounded operators on Banach spaces. For this 
reason, the spectra of bounded linear operators have 
been studied by many people in recent years. So far, the 
problem on the 𝑐𝑠 sequence space has been solved up to 
a maximum of 2 orders. In this study, we will give the 
spectrum, point spectrum, continuous spectrum, residual 
spectrum and fine spectrum of the generalized difference 
operator Δ𝑚 with 𝑚+ 1 band on the sequence space 𝑐𝑠 
and calculate their spectral decomposition. Thus, the 
results obtained for the difference operator Δ studied in 
[8] and the results obtained for the generalized difference 
operator 𝐵(1,−1) studied in [10] and [24] for 𝑚 = 1 and 
the results obtained for the generalized difference 
operator 𝐵(1,−2,1) studied in [25] for 𝑚 = 2 will be 
included and generalized in this study. 
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Main Results 

The generalized difference operator Δ𝑚 (𝑚 ∈ ℕ) on 
the 𝑐𝑠 sequence space is defined by 

 
 (Δ𝑥)𝑘  = 𝑥𝑘 − 𝑥𝑘−1 

 (Δ2𝑥)𝑘 = Δ(Δ𝑥)𝑘 = Δ(𝑥𝑘 − 𝑥𝑘−1)    

         = 𝑥𝑘 − 2𝑥𝑘−1 + 𝑥𝑘−2  

 (Δ3𝑥)𝑘 = 𝑥𝑘 − 3𝑥𝑘−1 + 3𝑥𝑘−2 − 𝑥𝑘−3 

 ⋮ 

 (Δ𝑚𝑥)𝑘 = 𝑥𝑘 − (
𝑚
1
)𝑥𝑘−1 + (

𝑚
2
)𝑥𝑘−2 +⋯+ (−1)

𝑚𝑥𝑘−𝑚  

        = ∑𝑚𝑖=0 (−1)
𝑖 (
𝑚
𝑖
)𝑥𝑘−𝑖 

      = 𝑥𝑘 −𝑚𝑥𝑘−1 +
𝑚(𝑚−1)

2!
𝑥𝑘−2 +⋯+ (−1)

𝑚𝑥𝑘−𝑚 , 

 
for 𝑘 ∈ ℕ0,   ℕ0 = {0,1,2,⋯} and 𝑥𝑘 = 0 for 𝑘 < 0 ([7]). 

It can be proven that the Δ𝑚 operator can be 
represented by an (𝑎𝑛𝑘) matrix with 𝑚+ 1 bands. Here is 

 
 𝑎𝑛𝑘 =

{
(−1)𝑛−𝑘 (

𝑚
𝑘
) , max{0, 𝑛 − 𝑚} ≤ 𝑘 ≤ 𝑛

0 , 0 ≤ 𝑘 < max{0, 𝑛 − 𝑚}or𝑘 > 𝑛
 

 
 
for every 𝑛, 𝑘 ∈ ℕ0. Equivalently, it can be written as 

 
 Δ𝑚 = (𝑎𝑛𝑘) =

(

 
 
 
 
 

1 0 0 0 0 0 ⋯
−𝑚 1 0 0 0 0 ⋯
𝑚(𝑚−1)

2
−𝑚 1 0 0 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
(−1)𝑚 (−1)𝑚−1𝑚 ⋯ −𝑚 1 0 ⋯

0 (−1)𝑚 (−1)𝑚−1𝑚 ⋯ −𝑚 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ )

 
 
 
 
 

.

      (1) 
In this study, the fine spectrum and spectral 

decompositions of the Δ𝑚 operator on the 𝑐𝑠 sequence 
space will be calculated, where 𝑐𝑠 is the sequence space 
of the form  

  

𝑐𝑠: {𝑥 = (𝑥𝑛) ∈ 𝑤: lim
𝑛→∞

∑

𝑛

𝑖=0

𝑥𝑖exist}. 

 
If 𝑇: 𝑐𝑠 → 𝑐𝑠 is a bounded linear operator with matrix 

representation 𝐴, then the matrix representation of the 
𝑇∗: 𝑐𝑠∗ → 𝑐𝑠∗ ≅ 𝑏𝑣 adjoint operator is the transpose of 
matrix 𝐴 (see [26]). 

 

Spectral Decompositions of the Difference 
Operator 𝜟𝒎 on the Sequence Space 𝒄𝒔 

 
In fact, the Δ𝑚 operator is represented by a (𝑚 + 1)-

th band matrix that generalizes the difference operators 
of the form Δ, Δ2, 𝐵(𝑟, 𝑠) and 𝐵(𝑟, 𝑠, 𝑡) under different 

conditions. First, a few basic information will be given 
about the linearity and boundedness of the difference 
operator Δ𝑚. Then, spectrum and fine spectrum sets such 
as point spectrum, continuous spectrum and residual 
spectrum of the Δ𝑚 operator will be determined in the 
sequence space 𝑐𝑠. Let us now give two lemmas that will 
be very useful in determining the subdivision of the 
spectrum. 

 
Lemma 1 Necessary and sufficient condition for the 

linear operator 𝑇 to have a dense range is that the adjoint 
operator 𝑇∗ is one-to-one ([27], Theorem II 3.7). 

 
Lemma 2 A necessary and sufficient condition for the 

linear operator 𝑇 to have a bounded inverse is that the 
adjoint operator 𝑇∗ is onto ([27], Theorem II 3.7). 

Since the definitions given above are related to the 
spectrum of the bounded linear operator, we first need to 
show the boundedness of the operator Δ𝑚 on the 
sequence space 𝑐𝑠. For this, the following lemmas will be 
used. 

Lemma 3 Necessary and sufficient condition for the 
matrix 𝐴 = (𝑎𝑛𝑘) to represent a 𝑇 ∈ 𝐵(𝑐𝑠) operator 

i) For every 𝑘, the series ∑𝑛 𝑎𝑛𝑘  is convergent, 

ii) sup𝑁 ∑𝑘 |∑
𝑁
𝑛=1 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)| < ∞ ([26], 8.4.6B).  

 
Lemma 4 ∑∞𝑛=0 ∑

𝑚
𝑘=0 𝑏𝑛𝑘 = ∑

∞
𝑘=0 ∑

𝑚
𝑛=0 𝑏𝑛𝑘 is valid.  

Proof. 
 

∑∞𝑛=0 ∑
𝑚
𝑘=0 𝑏𝑛𝑘 = ∑

𝑚
𝑘=0 𝑏0𝑘 +∑

𝑚
𝑘=0 𝑏1𝑘 +∑

𝑚
𝑘=0 𝑏2𝑘 +⋯  

 = 𝑏00 + 𝑏01 + 𝑏02 +⋯+ 𝑏0𝑚 

 +𝑏10 + 𝑏11 + 𝑏12 +⋯+ 𝑏1𝑚 

 +𝑏20 + 𝑏21 + 𝑏22 +⋯+ 𝑏2𝑚 +⋯ 

 = ∑∞𝑛=0 𝑏𝑛0 +∑
∞
𝑛=0 𝑏𝑛1 +⋯+ ∑

∞
𝑛=0 𝑏𝑛𝑚 

 = ∑∞𝑘=0 ∑
𝑚
𝑛=0 𝑏𝑛𝑘. 

 
Theorem 1 𝛥𝑚 ∈ 𝐵(𝑐𝑠) is valid.  
Proof. If we consider the matrix representation of the 

difference operator Δ𝑚 in (1), Δ𝑚 is a band matrix with 
𝑚+ 1 bands. Therefore, it is clear that condition (i) of 
Lemma 3 is satisfied. 

ii) We get 
 

∑𝑁𝑛=1 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1) = ∑
𝑁
𝑛=1 (−1)

𝑛−𝑘 [(
𝑚
𝑘
) − (

𝑚
𝑘 − 1

)]  

 = (−1)𝑘 [(
𝑚
𝑘
) − (

𝑚
𝑘 − 1

)]∑𝑁𝑛=1 (−1)
𝑛 

 = (−1)𝑘 [(
𝑚
𝑘
) − (

𝑚
𝑘 − 1

)]𝐴 

 

where 𝐴 = {
0 , 𝑁 is even
1 , 𝑁 is odd

. Then we have 

 

∑𝑘 |∑
𝑁
𝑛=1 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)| ≤ ∑𝑘 [(

𝑚
𝑘
) + (

𝑚
𝑘 − 1

)]  

 = ∑𝑚𝑘=0 [(
𝑚
𝑘
) + (

𝑚
𝑘 − 1

)] 

 ≤ 2𝑚+1. 
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So we get Δ𝑚 ∈ 𝐵(𝑐𝑠). 
Spectrum and fine spectrum of the difference operator 𝜟𝒎 on the 𝒄𝒔 sequence space 
 
Theorem 2 The point spectrum of 𝛥𝑚 on 𝑐𝑠 is 𝜎𝑝(𝛥

𝑚 , 𝑐𝑠) = ∅.  

Proof. Think of the system of linear equations Δ𝑚𝑥 = 𝛼𝑥, with 𝑥 ≠ 𝜃 = {0,0,0,⋯ } in 𝑐𝑠. From (1) we have 
 

(

 
 
 
 
 

1 0 0 0 0 0 ⋯
−𝑚 1 0 0 0 0 ⋯
𝑚(𝑚− 1)

2
−𝑚 1 0 0 0 ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
(−1)𝑚 (−1)𝑚−1𝑚 ⋯ −𝑚 1 0 ⋯

0 (−1)𝑚 (−1)𝑚−1𝑚 ⋯ −𝑚 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ )

 
 
 
 
 

(

𝑥0
𝑥1
𝑥2
⋮

) = 𝛼(

𝑥0
𝑥1
𝑥2
⋮

) 

 
and so we get 
 
𝑥0 = 𝛼𝑥0 

−𝑚𝑥0 + 𝑥1 = 𝛼𝑥1 

𝑚(𝑚 − 1)

2!
𝑥0 −𝑚𝑥1 + 𝑥2 = 𝛼𝑥2 

−𝑚(𝑚−1)(𝑚−2)

3!
𝑥0 +

𝑚(𝑚−1)

2!
𝑥1 −𝑚𝑥2 + 𝑥3 = 𝛼𝑥3.        (2) 

     ⋮ 
 
If 𝑥0 ≠ 0 from the first equation of the (2) system of equations, then 𝛼 = 1. So from equation 2, −𝑚𝑥0 + 𝑥1 = 𝑥1 and 
𝑥0 = 0, which is a contradiction. Let’s assume that 𝑥0 = 0, then from equation 2, if 𝑥1 = 𝛼𝑥1 and 𝑥1 ≠ 0 then 𝛼 = 1. 
So from equation 3, −𝑚𝑥1 + 𝑥2 = 𝑥2 and 𝑥1 = 0, which is a contradiction. If we continue like this, we get 𝑥1 = 𝑥2 =
𝑥3 = ⋯ = 0. From here, there is no 𝑥 ≠ 0 with Δ𝑚𝑥 = 𝛼𝑥. Hence 𝜎𝑝(Δ

𝑚 , 𝑐𝑠) = ∅.  

Corollary 1 𝐼3𝜎(𝛥
𝑚 , 𝑐𝑠) = 𝐼𝐼3𝜎(𝛥

𝑚 , 𝑐𝑠) = 𝐼𝐼𝐼3𝜎(𝛥
𝑚 , 𝑐𝑠) = ∅.  

Proof. Since 𝜎𝑝(Δ
𝑚 , 𝑐𝑠) = 𝐼3𝜎(Δ

𝑚 , 𝑐𝑠) ∪ 𝐼𝐼3𝜎(Δ
𝑚 , 𝑐𝑠) ∪ 𝐼𝐼𝐼3𝜎(Δ

𝑚 , 𝑐𝑠) from [19] Table 1.2, the desired result is 

obtained from Theorem 2. 
Theorem 3 The point spectrum of the (𝛥𝑚)∗ adjoint operator on 𝑐𝑠∗ ≅ 𝑏𝑣 is the set 
 𝜎𝑝((Δ

𝑚)∗, 𝑏𝑣) = {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1} ∪ {0}. 

Proof. Let’s assume that (Δ𝑚)∗𝑥 = 𝛼𝑥 and 0 ≠ 𝑥 ∈ 𝑏𝑣. In this case, 
 

 (
𝑚
0
)𝑥0 − (

𝑚
1
)𝑥1 + (

𝑚
2
)𝑥2 − (

𝑚
3
)𝑥3 +⋯+ (−1)

𝑚 (
𝑚
𝑚
)𝑥𝑚 = 𝛼𝑥0 

 (
𝑚
0
)𝑥1 − (

𝑚
1
)𝑥2 + (

𝑚
2
)𝑥3 +⋯+ (−1)

𝑚 (
𝑚
𝑚 − 1

)𝑥𝑚 + (−1)
𝑚 (
𝑚
𝑚
)𝑥𝑚+1 = 𝛼𝑥1 

 (
𝑚
0
)𝑥2 − (

𝑚
1
)𝑥3 +⋯+ (−1)

𝑚 (
𝑚
𝑚
)𝑥𝑚+2 = 𝛼𝑥2 

                     ⋮        (3) 

 (
𝑚
0
)𝑥𝑘 − (

𝑚
1
)𝑥𝑘+1 + (

𝑚
2
)𝑥𝑘+2 +⋯+ (−1)

𝑚𝑥𝑘+𝑚 = 𝛼𝑥𝑘 

           ⋮ 

system of equations is obtained from the transpose of the matrix given in (1). If we write 𝑘 = 𝑛 and 𝑘 = 𝑛 + 1 in the 
equation (3) and subtract the sides, 

 

∑

𝑚

𝑘=0

(−1)𝑘 (
𝑚
𝑘
) (𝑥𝑘+𝑛 − 𝑥𝑘+𝑛+1) = 𝛼(𝑥𝑛 − 𝑥𝑛+1) 

 
is obtained. Then 
 

|𝑥𝑛 − 𝑥𝑛+1| ≤
1

|𝛼|
∑𝑚𝑘=0 (

𝑚
𝑘
) |𝑥𝑘+𝑛 − 𝑥𝑘+𝑛+1|        (4) 

 
from the triangle inequality. If we write the inequality (4) for 𝑛 = 0,1,2,⋯ and add them side by side, we get 
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∑∞𝑛=0 |𝑥𝑛 − 𝑥𝑛+1| ≤
1

|𝛼|
∑∞𝑛=0 ∑

𝑚
𝑘=0 (

𝑚
𝑘
) |𝑥𝑘+𝑛 − 𝑥𝑘+𝑛+1|.       (5) 

 
If we apply Lemma 4 to the right side of the inequality (5), we get 
 

∑

∞

𝑛=0

|𝑥𝑛 − 𝑥𝑛+1| ≤
1

|𝛼|
∑

∞

𝑘=0

(
𝑚
𝑘
)∑

𝑚

𝑛=0

|𝑥𝑘+𝑛 − 𝑥𝑘+𝑛+1|. 

 

Since ∑𝑚𝑛=0 |𝑥𝑘+𝑛 − 𝑥𝑘+𝑛+1| ≤ ∑
∞
𝑛=0 |𝑥𝑘+𝑛 − 𝑥𝑘+𝑛+1| ≤ ‖𝑥‖𝑏𝑣 and for 𝑚 < 𝑘, (

𝑚
𝑘
) = 0, 

 

‖𝑥‖𝑏𝑣 ≤
‖𝑥‖𝑏𝑣
|𝛼|

∑

𝑚

𝑘=0

(
𝑚
𝑘
) =

2𝑚

|𝛼|
‖𝑥‖𝑏𝑣  

 
is obtained. Thus, |𝛼| ≤ 2𝑚  is found. Then {𝛼 ∈ ℂ: |1 − 𝛼| < 2𝑚 − 1} ⊆ 𝜎𝑝((Δ

𝑚)∗, 𝑏𝑣) is obtained. Conversely, if the 
|1 − 𝛼| < 2𝑚 − 1 case is considered, the (Δ𝑚)∗ − 𝛼𝐼 adjoint operator is not 1 − 1, so from Lemma 1, Δ𝑚 − 𝛼𝐼 operator 
is not dense range in 𝑐𝑠. So (Δ𝑚)∗ − 𝛼𝐼 is not invertible and 
 
𝜎𝑝((Δ

𝑚)∗, 𝑏𝑣) ⊆ {𝛼 ∈ ℂ: |1 − 𝛼| < 2𝑚 − 1}. 

 
Also, in case of 𝑚 = 1, 𝛼 = 0 for 𝑥0 ≠ 0 is an eigenvector corresponding to the eigenvalue 𝑥 = (𝑥0, 0,0, ⋯ ). Hence 0 ∈
𝜎𝑝((Δ

𝑚)∗, 𝑏𝑣) is obtained. If 𝑚 > 1 anyway, 0 is contained by the set {𝛼 ∈ ℂ: |1 − 𝛼| < 2𝑚 − 1}.  

Theorem 4 The residue spectrum of the 𝛥𝑚 operator on 𝑐𝑠 is the set 𝜎𝑟(Δ
𝑚 , 𝑐𝑠) = {𝛼 ∈ ℂ: |1 − 𝛼| < 2𝑚 − 1} ∪ {0}. 

Proof. Since 𝜎𝑟(Δ
𝑚 , 𝑐𝑠) = 𝜎𝑝((Δ

𝑚)∗, 𝑏𝑣)\𝜎𝑝(Δ
𝑚, 𝑐𝑠), the desired result is obtained from Theorem 2 and 3.  

We will now calculate the spectrum of the Δ𝑚 operator over the sequence space 𝑐𝑠. For this we will need the (Δ𝑚 −
𝛼𝐼)−1 operator. In the proof of [7, Theorem 5], under the condition |1 − 𝛼| > 2𝑚 − 1, the operator Δ𝑚 − 𝛼𝐼 has an 
inverse, and its inverse is (Δ𝑚 − 𝛼𝐼)−1 = (𝑏𝑛𝑘), where 

 

 (𝑏𝑛𝑘) =

(

 
 
 
 
 

1

1−𝛼
0 0 0 0 ⋯

𝑚

(1−𝛼)2

1

1−𝛼
0 0 0 ⋯

𝑚2

(1−𝛼)3
−
𝑚(𝑚−1)

2!(1−𝛼)2

𝑚

(1−𝛼)2

1

1−𝛼
0 0 ⋯

𝑚3

(1−𝛼)4
−
𝑚2(𝑚−1)

(1−𝛼)3
+
𝑚(𝑚−1)(𝑚−2)

3!(1−𝛼)2

𝑚2

(1−𝛼)3
−

𝑚(𝑚−1)

2!(1−𝛼)2

𝑚

(1−𝛼)2

1

1−𝛼
0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ )

 
 
 
 
 

.    (6) 

So we can prove the following theorem. 
 
Theorem 5 The spectrum of 𝛥𝑚 on 𝑐𝑠 is the set 𝜎(Δ𝑚 , 𝑐𝑠) = {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1}. 
Proof. Since (Δ𝑚 − 𝛼𝐼) is a triangular matrix, its inverse exists. The matrix (Δ𝑚 − 𝛼𝐼)−1 = (𝑏𝑛𝑘) is given in (6) and 

𝑏𝑛𝑛 =
1

1 − 𝛼
, 

𝑏𝑛,𝑛−1 =
𝑚

(1 − 𝛼)2
, 

𝑏𝑛,𝑛−2 =
𝑚2

(1 − 𝛼)3
−
𝑚(𝑚− 1)

2! (1 − 𝛼)2
, 

𝑏𝑛,𝑛−3 =
𝑚3

(1 − 𝛼)4
−
𝑚2(𝑚 − 1)

(1 − 𝛼)3
+
𝑚(𝑚 − 1)(𝑚 − 2)

3! (1 − 𝛼)2
 

𝑏𝑛,𝑛−4 =
𝑚4

(1 − 𝛼)5
−
𝑚3(𝑚 − 1)

(1 − 𝛼)4
+
𝑚2(𝑚 − 1)(𝑚 − 2)

3! (1 − 𝛼)3
−
𝑚3(𝑚 − 1)

2! (1 − 𝛼)4
 

             +
𝑚2(𝑚−1)2

2!2!(1−𝛼)3
+
𝑚2(𝑚−1)(𝑚−2)

3!(1−𝛼)3
−
𝑚(𝑚−1)(𝑚−2)(𝑚−3)

4!(1−𝛼)2
 

 ⋮ 

𝑏𝑛,𝑛−𝑚 =
1

1 − 𝛼
[𝑚𝑏𝑛,𝑛−𝑚+1 −

𝑚(𝑚 − 1)

2
𝑏𝑛,𝑛−𝑚+2 +

𝑚(𝑚 − 1)(𝑚 − 2)

3!
𝑏𝑛,𝑛−𝑚+3 

 +⋯+ (−1)𝑚−1𝑏𝑛,𝑛] 

 ⋮ 
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is obtained with 𝑛 ∈ ℕ0. Let us now show that (Δ𝑚 − 𝛼𝐼)−1 ∈ 𝐵(𝑐𝑠). Lemma 3 will be used for this. In the proof of [7, 
Theorem 5], it was shown that the ∑∞𝑛=0 |𝑏𝑛𝑘| series converges for each 𝑘. Since every absolute convergent series 
converges, the ∑𝑛 𝑏𝑛𝑘 series converges and the (i) condition of Lemma 3 is obtained. 

Let us now show that the condition (ii) of Lemma 3 is sup𝑁 ∑𝑘 |∑
𝑁
𝑛=1 (𝑏𝑛𝑘 − 𝑏𝑛,𝑘−1)| < ∞. Since 𝑏𝑛𝑘 = 𝑏𝑛−1,𝑘−1 for all 

𝑛, 𝑘, 

sup
𝑁
∑

𝑘=1

|(𝑏1𝑘 − 𝑏1,𝑘−1) + (𝑏2𝑘 − 𝑏2,𝑘−1) + (𝑏3𝑘 − 𝑏3,𝑘−1)+. . . +(𝑏𝑁𝑘 − 𝑏𝑁,𝑘−1)| 

= sup
𝑁
∑

𝑘

|𝑏𝑁,𝑘| = sup
𝑁
∑

𝑁

𝑘=1

|𝑏𝑁,𝑘| 

= |𝑏𝑁1| + |𝑏𝑁2| + |𝑏𝑁3|+. . . +|𝑏𝑁,𝑁−1| + |𝑏𝑁𝑁| 

= |𝑏𝑁1| + |𝑏𝑁−1,1| + |𝑏𝑁−2,1|+. . . +|𝑏21| + |𝑏11| = ∑

𝑁

𝑛=1

|𝑏𝑛𝑘| 

is obtained. If we take 𝑆𝑁 = ∑
𝑁
𝑛=1 |𝑏𝑛𝑘| then the sequence (𝑆𝑁) is converget for |

2𝑚−1

1−𝛼
| < 1 from [7, Theorem 5. So 

when |1 − 𝛼| > 2𝑚 − 1, (Δ𝑚 − 𝛼𝐼)−1 ∈ 𝐵(𝑐𝑠) is valid. Hence  
 
𝜎(Δ𝑚 , 𝑐𝑠) ⊆ {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1}         (7) 
 
is obtained. So (Δ𝑚 − 𝛼𝐼)−1 ∈ 𝐵(𝑐𝑠). 

Conversely, given that 𝛼 ≠ 1 and |1 − 𝛼| ≤ 2𝑚 − 1, it is clear that Δ𝑚 − 𝛼𝐼 is a triangle and therefore (Δ𝑚 − 𝛼𝐼)−1 
exists. As a result of Theorem 2, the image of the unit sequence 𝑦 = (1,0,0,⋯ ) under the (Δ𝑚 − 𝛼𝐼)−1 transformation, 
that is, the sequence 𝑥 = (Δ𝑚 − 𝛼𝐼)−1𝑦 is in 𝑐𝑠. This suggests that under the condition |1 − 𝛼| ≤ 2𝑚 − 1 and from 
Theorem 3 the operator (Δ𝑚 − 𝛼𝐼)−1 should not have an eigenvalue. From this it follows that (Δ𝑚)∗ − 𝛼𝐼 is not 1 − 1. 
Therefore, under the condition |1 − 𝛼| ≤ 2𝑚 − 1, the Δ𝑚 − 𝛼𝐼 operator is not dense in 𝑐𝑠. Finally, let’s prove the result 
for the case 𝛼 = 1. If 𝛼 = 1 then 

 

Δ𝑚 − 𝐼 =

(

 
 
 
 

0 0 0 0 ⋯
−𝑚 0 0 0 ⋯
𝑚(𝑚 − 1)

2!
−𝑚 0 0 ⋯

−
𝑚(𝑚− 1)(1 − 2)

3!

𝑚(𝑚 − 1)

2!
−𝑚 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ )

 
 
 
 

 

 
is not reversible. Thus 
 
{𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1} ⊆ 𝜎(Δ𝑚 , 𝑐)         (8) 
 
is obtained. The proof is completed using (7) and (8).  

Theorem 6 The continuous spectrum of the operator 𝛥𝑚 on 𝑐𝑠 is the set 
 𝜎𝑐(Δ

𝑚 , 𝑐𝑠) = {𝛼 ∈ ℂ: |1 − 𝛼| = 2𝑚 − 1}\{0}. 
Proof. The proof is obtained directly from the definition of the spectrum of the bounded linear operator and 

Theorems 2, 4 and 5.  
Theorem 7 If 𝛼 ∈ ({𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1} ∪ {0}\{1}) then 𝛼 ∈ 𝐼𝐼𝐼2𝜎(𝛥

𝑚 , 𝑐𝑠) is valid.  
Proof. Let’s assume that 𝛼 ∈ ({𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1} ∪ {0}\{1}). In this case, from Theorem 3, the operator 

(Δ𝑚)∗ − 𝛼𝐼 is not 1 − 1, and hence 𝛼 ∈ 𝐼𝐼𝐼𝜎(Δ𝑚 , 𝑐𝑠) is obtained from Lemma 1. Moreover, it is obtained that for 𝛼 ≠
1 the operator Δ𝑚 − 𝛼𝐼 has an inverse, but for 𝛼 = 0 the operator (Δ𝑚)∗ − 𝑎𝐼 is not surjective. Thus, the operator 
Δ𝑚 − 𝛼𝐼 from Lemma 2 has no bounded inverse. This indicates that Δ𝑚 − 𝛼𝐼 is not continuous.  

Corollary 2 𝐼𝐼𝐼1𝜎(𝛥
𝑚 , 𝑐𝑠) = {1}.  

Proof. From [19] Table 1.2, since 𝜎𝑟(Δ
𝑚 , 𝑐𝑠) = 𝐼𝐼𝐼1𝜎(Δ

𝑚 , 𝑐𝑠) ∪ 𝐼𝐼𝐼2𝜎(Δ
𝑚 , 𝑐𝑠) and 𝐼𝐼𝐼1𝜎(Δ

𝑚 , 𝑐𝑠) ∩ 𝐼𝐼𝐼2𝜎(Δ
𝑚 , 𝑐𝑠) =

∅, the desired result is obtained from Theorems 4 and 7.  
 
Theorem 8 If 𝛼 ∈ ({𝛼 ∈ ℂ: |1 − 𝛼| > 2𝑚 − 1}\{1}) then 𝛼 ∈ 𝐼1𝜎(𝛥

𝑚 , 𝑐𝑠) is valid.  
Proof. Let’s assume that 𝛼 ∈ ({𝛼 ∈ ℂ: |1 − 𝛼| > 2𝑚 − 1}\{1}). It is clear that 𝑎 ≠ 1. Therefore, the Δ𝑚 − 𝛼𝐼 

operator has an inverse. This indicates that the operator Δ𝑚 − 𝛼𝐼 is surjective, so the inverse operator (Δ𝑚 − 𝛼𝐼)−1 in 
𝑐𝑠 has a dense range. Therefore, from Lemma 1, the (Δ𝑚 − 𝛼𝐼) operator is dense in 𝑐𝑠. Hence 𝛼 ∈ 𝐼𝜎(Δ𝑚 , 𝑐𝑠). 
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Moreover, since |1 − 𝛼| > 2𝑚 − 1, the operator Δ𝑚 − 𝛼𝐼 has a bounded inverse from Theorem 5. So 𝛼 ∈ 1𝜎(Δ𝑚 , 𝑐𝑠). 
Thus, 𝛼 ∈ 𝐼1𝜎(Δ

𝑚 , 𝑐𝑠) is obtained for 𝛼’s satisfying the |1 − 𝛼| > 2𝑚 − 1 inequality. 
 
Spectral decompositions of the difference operator 𝜟𝒎 on the sequence space 𝒄𝒔 that do not need to be disjoint 
 
Theorem 9 For the spectral decomposition of the 𝛥𝑚 operator on 𝑐𝑠, the following are vald: 
a) 𝜎𝑎𝑝(Δ

𝑚 , 𝑐𝑠) = {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1}\{1}, 

b) 𝜎𝛿(Δ
𝑚 , 𝑐𝑠) = {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1}, 

c) 𝜎𝑐𝑜(Δ
𝑚 , 𝑐𝑠) = {𝛼 ∈ ℂ: |1 − 𝛼| < 2𝑚 − 1} ∪ {0}.  

Proof. a) Since 𝜎𝑎𝑝(Δ
𝑚, 𝑐𝑠) = 𝜎(Δ𝑚 , 𝑐𝑠)\𝐼𝐼𝐼1𝜎(Δ

𝑚 , 𝑐𝑠) from [19] Table 1.2, the desired result is obtained from 

Theorem 5 and Corollary 2. 
b) Since 𝜎𝛿(Δ

𝑚, 𝑐𝑠) = 𝜎(Δ𝑚 , 𝑐𝑠)\𝐼3𝜎(Δ
𝑚 , 𝑐𝑠) from [19] Table 1.2, the desired result is obtained from Theorem 5 

and Corollary 1. 
c) Since 
 

𝜎𝑐𝑜(Δ
𝑚 , 𝑐𝑠) = 𝐼𝐼𝐼1𝜎(Δ

𝑚 , 𝑐𝑠) ∪ 𝐼𝐼𝐼2𝜎(Δ
𝑚 , 𝑐𝑠) ∪ 𝐼𝐼𝐼3𝜎(Δ

𝑚 , 𝑐𝑠) 

        = 𝜎𝑟(Δ
𝑚 , 𝑐𝑠) ∪ 𝐼𝐼𝐼3𝜎(Δ

𝑚 , 𝑐𝑠) 

 
from [10] Table 1.2, the desired result is obtained from Theorem 4 and Corollary 1.  

Corollary 3 𝜎𝑎𝑝((𝛥
𝑚)∗, 𝑏𝑣) = {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1} and 

 
𝜎𝛿((Δ

𝑚)∗, 𝑏𝑣) = {𝛼 ∈ ℂ: |1 − 𝛼| ≤ 2𝑚 − 1}\{1} is valid.  
 
Proof. It is obtained from [28] Proposition 1.3 and Theorem 9. 
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