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Abstract: Benzo-α-pyrone structured coumarin derivatives are secondary 

metabolites first obtained from Coumarouna odorata in 1822. Coumarin and its 

structural isomer dihydroisocoumarin derivatives are found in many different 

sources in nature. Several different bioactivities of these compounds have been 

reported. In this study, preliminary activity screening and comparison of four 

purchased coumarin derivatives (esculetin, esculin monohydrate, umbelliferon, 

scoparone) and four previously isolated 3-phenyl-3,4-dihydroisocoumarin 

derivatives (thunberginol C, scorzocreticoside I, scorzocreticoside II, 

scorzopygmaecoside) from a medicinal plant were carried out by in-vitro methods. 

α-Glucosidase, acetylcholinesterase, butyrylcholinesterase, tyrosinase inhibitor 

activities and antioxidant potentials of the compounds were evaluated. 

Consequently, thunberginol C (free – not glycosylated form of 3,4-

dihydroisocoumarin structure) showed better potential in all enzyme inhibitory 

activities compared to coumarin structure. Particularly, α-glucosidase inhibitory 

activity of this compound with a very low IC50 value (94.76±2.98 µM) compared 

to standard acarbose (1036.2±2.70 µM) should be noted. Glycosylation and/or 

methoxy substitution of 3,4-dihydroisocoumarin structure resulted a significant 

decrease in all tested enzyme inhibitory activities. The structures of esculin MH, 

umbelliferone, scoparone, scorzocreticoside I, and scorzopygmaeceoside might be 

considered in further synthetic studies as selective acetylcholinesterase inhibitors. 

Thunberginol C has a promising potential in tyrosinase inhibitory activity. 

Esculetin and thunberginol C showed the best results with high potentials in 

antioxidant activity via 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical 

scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radical 

decolorization, and cupric ion reducing antioxidant capacity assays compared to 

the standards. 
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1. INTRODUCTION 

The use of medicinal plants is thought to be as old as first humans. The isolation of pure active 

compounds from these plants and turning them into drugs dates back to the 19th century. To 

date, many different secondary metabolites have been identified and presented to the usage and 

research in the pharmaceutical industry. The first of the coumarin derivatives, one of the 

important secondary metabolite groups, was isolated from tonka beans (Dipteryx odorata 

(Aubl.) Willd.) in 1822. Coumarin compounds, which are essentially in the benzo-α-pyrone 
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structure, are found both in glycoside and free form in many different plants. Coumarin 

derivatives are compounds with different characteristic odors as in freshly mown grass. The 

reported pharmacological activities of coumarin derivatives have a broad spectrum. Examples 

of these are anti-microbial, anti-HIV, anticancer, MAO inhibitory, anti-diabetic, anti-

inflammatory, anti-parasitic, antihypertensive, anti-Alzheimer, anti-convulsant, and 

antioxidant activities (Bruneton, 1995; Evans & Evans, 2009; Anand et al., 2012; Venkata 

Sairam et al., 2016; Srikrishna et al., 2018). 

The new compounds that are formed as a result of the interchange of the oxygen atom and 

the keto group in the α-pyrone ring of the coumarin compounds are called isocoumarins. 

Isocoumarins and their 3,4-dihydro derivatives are natural compounds like coumarins and have 

been isolated from different sources such as plants, microbial strains, venoms, insects, and 

marine organisms. The biological activities of isocoumarins, which is a smaller group than 

coumarins, may show more diversity. The presence of both sweetening (phyllodulcin) and bitter 

(mellein) isocoumarins with the same main structure may be proof of this. Some of the reported 

pharmacological properties of isocoumarins are anti-microbial (anti-biotic, anti-malarial, anti-

fungal), hepatoprotective, gastroprotective, neuroprotective, anti-inflammatory, anti-diabetic, 

sweetening, anti-allergic, and immunomodulatory activities. Among the 3,4-

dihydroisocoumarins, 3-phenyl substituted derivatives have drawn attention with their 

prevalence in nature and similar pharmacological properties including above-mentioned 

activities (Braca et al., 2012; Saeed, 2016; Saddiqa et al., 2017; Çiçek et al., 2018). 

There are many molecules from these groups that have become natural, semi-synthetic, 

synthetic drugs or drug candidates (Kontogiorgis et al., 2012). However, more studies are 

needed for these derivatives to be used more in the pharmaceutical industry. It is particularly 

important to screen new natural derivatives for related activities and to compare these 

pharmacologically important scaffolds. This study aims to investigate the inhibitory potential 

against several enzymes (α-glucosidase, AChE, BChE, tyrosinase) and antioxidant activity of 

selected four coumarin derivatives (esculetin, esculin monohydrate, umbelliferon, and 

scoparone) and four previously isolated 3-phenyl-3,4-dihydroisocoumarin derivatives 

(thunberginol C, scorzocreticoside I, scorzocreticoside II, and scorzopygmaecoside) from a 

medicinal plant considering the reported pharmacological properties of the involved structures.  

2. MATERIAL and METHODS 

2.1. Chemicals and Compounds 

PNPG (p-nitrophenol, α-D-glycopyranoside), enzyme α-glucosidase type I (E.C. 3.2.20), 

disodium hydrogen phosphate, sodium azide, sodium dihydrogen phosphate, acarbose, DMSO, 

AChE (acetylcholinesterase), BChE (butyrylcholinesterase), and tyrosinase from mushroom 

(E.C. 1.14.18.1) were obtained from Sigma–Aldrich/Merck. Acetylthiocholine iodide was 

purchased from Applichem and butyrylthiocholine iodide was Fluka branded. All other 

chemicals were of analytical grade.  

Esculetin, esculin monohydrate, umbelliferone, and scoparone were purchased from Sigma-

Aldrich. Thunberginol C, scorzocreticoside I, scorzocreticoside II, and scorzopygmaecoside 

were isolated and identified previously (Şahin et al. 2020a; Şahin et al. 2020b). 

2.2. Anti-Diabetic Activity 

α-Glucosidase inhibitory activity was employed for determination of anti-diabetic potential of 

the compounds (Trinh et al., 2016). Na2HPO4, NaH2PO4 and ultra-pure water were used to 

prepare a buffer with pH 7.5 containing NaN3 (0.02 %). In brief, 100 μL of the compounds 

dissolved in buffer with 10 % DMSO (8 concentrations between 800 – 6.25 µM), and 80 μL of 

enzyme solution were added to all wells. After incubation (28 °C, 10 min) 20 μL of PNPG 
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(substrate) was added. The blank wells contained enzyme, substrate, and buffer with 10 % 

DMSO. No background well was used since using slopes instead of absorbance eliminates the 

potential absorbances due to the color of the compounds. Absorbance measurement at 405 nm 

every 40 s for 35 min and incubations were performed with a microplate photometer BioTek 

Power Wave XS branded. An oral inhibitor, acarbose, was employed as control. α-Glucosidase 

inhibition % was calculated using the following formula: 

Inhibition % = (Slopeblank– Slopesample) / Slopeblank x 100 

2.3. Anti-Alzheimer Activity 

A colorimetric method developed by Ellman et al. was used with minor changes to evaluate 

AChE and BChE inhibitory activities of the compounds (Ellman et al., 1961; Yıldız et al., 

2022). Each well finally contained 150 µL of buffer, 10 µL of compound solutions, 20 µL of 

enzyme solution (BChE or AChE), 10 µL of DTNB [5,5-dithiobis (2-nitro benzoic acid)], and 

10 µL of the either acetylthiocholine iodide or butyrylthiocholine iodide. The incubation times 

at 25 °C were 15 minutes before DTNB was added and 10 minutes after iodides were added. 

Above-mentioned plate reader was used for incubations and measuring the absorbances at 412 

nm. Galantamine was used as positive control and sample solvent was used as blank. % 

inhibitions were calculated according to following equation. 

Inhibition % = (Ablank– Asample) / Ablank x 100 (A: Absorbance) 

2.4. Anti-Tyrosinase Activity 

Another colorimetric method was used to determine the anti-tyrosinase potentials of the 

compounds (Hearing & Jiménez, 1987). L-DOPA (0.5 mM) was the substrate for tyrosinase 

enzyme. A phosphate buffer with pH 6.8 was used. Compounds were prepared in a series of 

concentration and a pre-incubated with enzyme solution for 10 minutes at room temperature. 

The substrate was added to start the enzymatic reaction. 20 minutes incubation was carried out 

and the absorbance was measured at 475 nm at 37 °C. Kojic acid was employed as control. 

Same equation given in anti-Alzheimer activity section was used to calculate the percentage of 

the inhibitory activity of the samples. 

2.5. Antioxidant Activity 

2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, 2,2′-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid (ABTS+) cation radical decolorization, and cupric ion 

reducing antioxidant capacity (CUPRAC) assays were preferred to evaluate the antioxidant 

potentials of the compounds. All assays were carried out according to previously published 

literature (Blois, 1958; Re et al., 1999; Apak et al., 2004; Yıldız et al., 2022). 

All assays were performed in triplicates (Student’s t-test p<0.05) and the results were 

reported as mean ± SD. IC50 calculations were performed with GraphPad Prism 8.0.1. 

3. RESULTS and DISCUSSION 

Enzyme inhibitory and antioxidant activities of selected coumarins and 3-phenyl-3,4-

dihydroisocoumarins are presented in Table 1 and Table 2 respectively. 

Enzyme inhibition is one of the most studied modes of action in the discovery of new drug 

molecules. It is therefore not surprising that many inhibitors of different enzymes are found in 

clinical use. Glucosidase inhibitors prevent α-glucosidase from hydrolyzing oligosaccharides 

to monosaccharides in human intestine. Thus, they contribute to the treatment/care of Diabetes 

mellitus (DM) patients by preventing postprandial hyperglycemia. Keeping the blood glucose 

level under control in these patients is very crucial, particularly for preventing/delaying of 

chronic complications of DM such as retinopathy and neuropathy (Maurya et al., 2020). 
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Selected coumarins; esculetin, esculin MH, umbelliferone, scoparone and 

dihydroisocoumarins; thunberginol C, scorzocreticoside I, scorzocreticoside II, 

scorzopygmaeacoside (Figure 1) were tested against this enzyme in-vitro. IC50 values of all 

tested compounds were above 800 µM except esculetin and thunberginol C (Table 1). These 

compounds showed higher potency than the standard acarbose which is a clinically used oral 

inhibitor of the enzyme. It should be noted that IC50 value of thunberginol C is approximately 

ten times lower than that of acarbose. Furthermore, the results suggest that glycosylation and/or 

methoxy substitution instead of free hydroxyl in both coumarins and dihydroisocoumarins 

decrease the activity significantly. Considering the potencies of esculetin, umbelliferon, and 

scoparone together, it can be deduced that at least two free hydroxyl substitution is crucial for 

higher activity. In addition to that, the same pattern in dihydroisocoumarins suggests that meta 

positioning of phenolic hydroxyl groups may result higher activity than that of ortho 

positioning. This is the first report on α-glucosidase inhibitory effect of the tested compounds 

except esculetin, umbelliferone and scoparone. Other data about these three compounds are in 

accordance with the previous literature (Nurul Islam et al., 2013; Karakaya et al., 2018). 

Table 1. Enzyme inhibitory activity results of the compounds. 

 IC50 (µM) 

 α-glucosidase AChE BChE Tyrosinase 

Esculetin 374.00 ± 0.70 135.53 ± 1.59 196.99 ± 0.36 NT 

Esculin MH >800 118.82 ± 2.20 >1000 >1000 

Umbelliferone >800 209.61 ± 0.74 >1000 NT 

Scoparone >800 236.96 ± 1.41 >1000 >1000 

Thunberginol C 94.76 ± 2.98 82.41 ± 1.30 137.25 ± 1.01 90.25 ± 1.67 

Scorzocreticoside I >800 133.90 ± 0.43 >1000 531.16 ± 3.27 

Scorzocreticoside II >800 265.78 ± 0.42 340.20 ± 0.36 >1000 

Scorzopygmaeacoside >800 261.03 ± 1.38 >1000 240.91 ± 1.65 

Acarbosea 1036.2 ± 2.70 NT NT NT 

Galanthamineb NT 5.78 ± 0.02 16.58 ± 0.18 NT 

Kojic acidc NT NT NT 15.72 ± 0.14 

Values are means of three parallel measurements ± Standard deviation. 

a Standard compound for α-glucosidase 

b Standard compound for AChE and BChE 

c Standard compound for Tyrosinase 

NT: Not tested. 

 

One of the approaches in the treatment of neurodegenerative Alzheimer's disease 

characterized by cholinergic abnormalities is the inhibition of AChE and BChE enzymes 

(Francis et al., 2010). All tested compounds showed low-moderate inhibitory activities on these 

enzymes (Table 1). Esculin MH, umbelliferone, scoparone, scorzocreticoside I and 

scorzopygmaeacoside were more selective towards AChE, while esculetin, thunberginol C and 

scorzocreticoside II acted as dual inhibitors. The most potent AChE inhibitor was thunberginol 

C. The glycosylation and/or methoxy substitution instead of free hydroxyl of this compound 

led to lower potentials just as in case of α-glucosidase inhibition. However, glycosylation 

resulted in higher selectivity towards AChE enzyme considering potentials of scorzocreticoside 

I and scorzopygmaeacoside. Similarly, glycosylation, methoxy substitution instead of free 

hydroxyl, and loss of a free hydroxyl group led to the same selectivity in coumarin derivatives. 

Current literature provides studies conducted on AChE/BChE inhibitory activities of 

umbelliferone, esculetin, scoparone and thunberginol C with different results. However, most 

of the studies report moderate-high potencies (Adhami et al., 2014; Ali et al., 2016; Hwang et 
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al., 2021). Although, none of the compounds showed comparable potential with positive 

standard galantamine, results may contribute to the field by being new models for selective 

synthetic inhibitors. Despite the decrease in AChE activity in advanced stages of Alzheimer's 

disease, the increase in BChE activity shows that selective inhibitors may be more useful in the 

treatment (Lane et al., 2006). 

Figure 1. Structures of selected coumarin and dihydroisocoumarin derivatives. 

 
 

Tyrosinase is a multifunctional oxidase which mediates producing melanin from tyrosine. 

Thus, its inhibition has different potentials in skin-whitening, skin cancer, neurodegeneration, 

and undesired browning of foods (Bonesi et al., 2019). Selected coumarin derivatives revealed 

no activity against tyrosinase enzyme at tested concentrations (Table 1). Esculetin and 

umbelliferone were not tested against this enzyme since several studies reported these 

compounds as substrates for the enzyme (Munoz-Munoz et al., 2007; Garcia-Molina et al., 

2013). No previous study has been found on the anti-tyrosinase activity of scoparone. However, 

low inhibitory activity result of esculin MH is in accordance with the previous literature 

(Masamoto et al., 2003). The most potent inhibitor against tyrosinase enzyme among the tested 

compounds was thunberginol C with a potential approximately 6 times weaker than the positive 

control kojic acid. The negative impact of the glycosylation and/or methoxy substitution of 

tested dihydroisocoumarins on the inhibitory activity was valid for this enzyme too. 

Oxidative stress in humans caused by several reasons such as stress, unhealthy diet, 

chemicals etc., is associated with many diseases. Thus, antioxidants which can keep the 

oxidative stress in desired limits are suggested to decrease the risk of them. Main antioxidant 

sources of humans are natural phytochemicals provided by traditional medicinal and edible 

plants (Sen & Chakraborty, 2011). In this context, antioxidant activities of the selected 

compounds were evaluated and esculetin appeared to be the most potent antioxidant in every 

tested method with better potencies than used standards (Table 2). Furthermore, a significant 

decrease was determined in case of glycosylation, methoxy substitution instead of free 

hydroxyl, and loss of a free hydroxyl group in coumarin derivatives. This structure-activity 

relationship is valid for dihydroisocoumarin derivatives except scorzocreticoside II in DPPH 

method. Thunberginol C was determined as a promising antioxidant among the tested 

dihydroisocoumarins with high potencies comparable to that of the standards. Results are in 

accordance with previous studies reporting moderate to high antioxidant potentials of coumarin 
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and dihydroisocoumarin derivatives (Zidorn et al., 2005; Wu et al., 2007; Witaicenis et al., 

2014; Mazimba, 2017). 

Table 2. Antioxidant activity results of the compounds. 

 EC50 (µM) A0.5 (M) 

 DPPH Free Radical ABTS Cation Radical CUPRAC 

Esculetin 8.37 ± 0.22 6.29 ± 0.04 10.26 ± 0.19 

Esculin MH 255.39 ± 1.21 201.62 ± 1.56 90.06 ± 1.84 

Umbelliferone 539.16 ± 1.08 293.58 ± 2.71 556.33 ± 4.42 

Scoparone 182.39 ± 2.72 >1000 >1000 

Thunberginol C 126.38 ± 0.07 17.69 ± 1.16 62.22 ± 2.66 

Scorzocreticoside I 641.03 ± 5.54 520.34 ± 6.18 >1000 

Scorzocreticoside II 65.83 ± 1.22 455.31 ± 2.40 >1000 

Scorzopygmaeacoside 536.27 ± 4.16 239.25 ± 2.83 298.69 ± 2.43 

BHAa 45.31 ± 1.32 8.53 ± 0.24 25.91 ± 0.50 

α-TOCa 49.88 ± 0.79 14.31 ± 0.32 38.89 ± 0.87 

BHTa 270.42 ± 1.52 6.42 ± 0.38 32.74 ± 1.52 

Values are means of three parallel measurements ± Standard deviation. 

a Standard compounds 

4. CONCLUSION 

Consequently, thunberginol C (free form of 3,4-dihydroisocoumarin structure) showed better 

potential in all enzymes inhibitory activities compared to coumarin structure. Particularly, α-

glucosidase inhibitory activity of this compound with a very low IC50 value compared to 

standard acarbose should be noted. Further toxicological and in-vivo activity studies might be 

considered on this compound to develop a more potent hypoglycemic agent. Glycosylation 

and/or methoxy substitution instead of free hydroxyl of 3,4-dihydroisocoumarin structure 

resulted in a significant decrease in all tested enzyme inhibitory activities. Esculin MH, 

umbelliferone, scoparone, scorzocreticoside I, and scorzopygmaeceoside might be considered 

in further studies as selective AChE inhibitors. Thunberginol C has a promising potential in 

tyrosinase inhibitory activity. Esculetin and thunberginol C showed the best results with high 

potentials in antioxidant activity via DPPH free radical, ABTS cation radical scavenging and 

CUPRAC assays compared to the standards. 
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