Description of 2^+_3, 0^+_3 Intruder States in 130Xe Nucleus by Mixing of Transitional Hamiltonian and O(6) Casimir Operator

Zahra Jahangiri Tazekand 1,a, Hadi Sabri 1,b

1 Department of Physics, University of Tabriz, 51664-16471, Tabriz, Iran.
*Corresponding author

ABSTRACT

In this paper, we tried to describe the 2^+_3, 0^+_3 intruder states in 130Xe nucleus in a configuration mixing framework. To this aim, we have used a transitional Hamiltonian based in the affine SU(1,1) lie algebra in the framework of interacting boson model. Also, we perturbed this Hamiltonian in the version 2 with adding a new term, the O(6) Casimir operator, due to the nature of these intruder states. The results confirm the accuracy of this mixing configuration in the description of all considered energy levels and especially, the intruder states. Also, these results suggest same approach with adding other Casimir operators of different symmetry chains to extend the ability of this transitional Hamiltonian.

Keywords: Affine algebra, Casimir operator, Intruder state, Transitional Hamiltonian.

Introduction

The existence of states belong to excited energy bands between the levels of ground band of energy refered to the mixing of symmetries. As have been shown in various spectroscopic selective experiments, e.g. transfer reactions in particular, very near to closed shells (the In and Sb nuclei at Z=50 but also in other mass regions, e.g. the Ti and Bi nuclei at Z=82) some low-lying extra states, so-called intruder states have been observed with a conspicuous energy dependence on the number of free valence neutrons, hinting for 2p-2h excitations as their origin [1-9]. If these excitations are proton excitations combined with the neutron degree of freedom appearing on both sides of the Z=50 closed shell, such as condition which are available for 130Xe isotope, it is a natural step to suggest that low-lying extra 0^+ excitations will also show up in the even-even nuclei in between. Because the 130 Xe isotope with a large number of valence neutrons are situated near to the γ-stability line, they could be studied and must describe by such formalism which perturbed by some excitation [1-2]. The interacting boson model (IBM) Hamiltonian is regards as the most successful formalism in description of such concepts. IBM was written from the beginning in second quantization form in terms of the generators of the U(6) unitary lie algebra. The model assumes that low-lying collective excitations of the nucleus can be described in terms of the number N bosons. The bosons correspond to pairs of nucleons in valence shell, coupled to angular momentum $j=0$ and $j=2$ which correspond respectively to s and d boson and N is constant for a given nucleus and equal to half its number of valance nucleons [3-15]. The phenomenological IBM in terms of U(5), SU(3) and O(6) dynamical symmetries has been employed in describing the collective properties of several medium and heavy mass nuclei. These dynamical symmetries correspond to harmonic vibrator, axial rotor and γ — unstable rotor as the geometrical analogues, respectively. These symmetries are fairly successful in the investigation of low-lying nuclear states of nuclei located in three dynamical limits of IBM. On the other hand, the analytic description of structure at the critical point of phase transition is considered as issue, recently great analyses has been performed to describe them. Iachello in Refs [16-22] have established a new set of dynamical symmetries, i.e. $E(5)$ and $X(5)$, for nuclei which are located at the critical point of transitional regions. The $E(5)$ symmetry describes a second order phase transition which corresponds to the transitional states in the region from $U(5)$ to O(6) symmetries in the IBM [22-24].

Different studies on the 130 Xe nucleus report the excitation of as intruder states. The low-lying 2^+_1 and 0^+_3 levels arises either from the intruder 2p-2h or from the normal 0p-0h configuration ,low-lying of these isotope are formed from the mixing of two intrinsic states of different deformations These levels are classified as two phonon states where must describe by 2p-2h excitation [26-37]. A method to describe the intruder excitations in the IBM framework proposed to associate the different shell-model spaces of 0p-0h, 2p-2h,etc excitations. In this approach, two or four protons in the $z=50-82$ major shell can be excited to next major shell. These excitations make the corresponding boson spaces including $N,N+2,...$ bosons which $N= N_e + N_v$. The Hamiltonians of formalisms
in description of such levels have the $\hat{H} = \hat{H}_{\text{reg}} + \hat{H}_{\text{2p-2h}}$ form where mixes the regular (0p-0h) and (2p-2h) configurations. The correlation between valence protons and neutrons is enhanced [8-22] due to this cross-shell excitation of protons resulting in the lowering of excited 2^+_1 and 0^+_3 states and therefore, classified them as intruder states.

In this paper we used i) the U(5)-SO(6) transitional Hamiltonian which is defined in the affine SU(1,1) algebra and ii) Due to the nature of the considered intruder levels, we added the O(6) Casimir operator as the perturbation to the both regular Hamiltonians. The efficiency of these both approaches are analyzed with comparison of their predictions for different energy levels and the experimental counterparts.

Theoretical Framework

The nature of 0^+_1, 2^+_1 in 130Xe is reported in Ref [9] which correspond with SO (6) symmetry of IBM. In the first part of this study we used a transitional Hamiltonian which describe both U(5) and O(6) limits as regular part to cover the spherical properties of the considered nucleus. The analytic description of nuclear structure at the critical point of phase transitions has attracted extensive interest in the recent decades. One has to employ some complicated numerical methods to diagonalize the transitional Hamiltonian in these situations but Pan et al. [23-24] have proposed a new solution based on algebraic technique and explores the properties of nuclei classified in the U(5)←SO(6) transitional region of IBM. Hamiltonian with two control parameters was used in which the results for the control parameter of transitional Hamiltonian offer a combination of spherical and deformed shapes in different isotopic Also, this Hamiltonian extended by adding a corresponding O(6) operator to increase the effect of O(6) symmetry and increase the accuracy of this formalism in description of intruder levels as:

$$\hat{H}_{\text{extended}} = \hat{H}_{\text{SU(1,1)}} + \eta \hat{C}_{2(\text{SO(6)})^*}$$ (1)

η is a constant which which extract in comparison with experimental data. By employing the generators of SU(1,1) algebra, a Hamiltonian construct which is suitable for the investigation of such nuclei which located between U(5) and SO(6) limits The SU(1,1) algebra has been described in Refs[23-24]. Here, we briefly outline the basic ansatz and summarize the results. The lie algebra corresponds to the SU(1,1)lie algebra is generated by $S^\pm, \nu = 0 \pm \frac{\pi}{2}$, which satisfies the following commutation relations:

$$[S^0, S^\pm] = \pm S^\pm, \quad [S^+, S^-] = -2S^0$$ (2)

The Casimir operator of SU(1,1) group can be written as:

$$\hat{C}_2 = S^0(\nu^2 - 1) - S^+S^- \equiv \hat{C}_{2(\text{SO(6)})^*}$$ (3)

We would use this operator to describe some intruder states which have SO(6) nature which detailed are present in the following. Representations of SU(1,1) are determined by a single number κ, thus the representation of Hilbert space is spanned by orthonormal basis $|\kappa \mu\rangle$ where κ can be any positive number and $\mu = \kappa, \kappa + 1, \ldots$. Therefore,

$$\hat{C}_2(SU(1,1))|\kappa \mu\rangle = \kappa(\kappa - 1)|\kappa \mu\rangle, \quad S^0|\kappa \mu\rangle = \mu|\kappa \mu\rangle$$ (4)

In IBM, the generators of s and d – bosons pairing algebra is created by:

$$S^+(d) = \frac{1}{2}(d^+ d^+) , \quad S^-(d) = \frac{1}{2}(\bar{d} \cdot \bar{d}) , \quad S^0(d) = \frac{1}{4} \sum_{\nu}(d^\dagger d^\dagger + d \cdot d^\dagger)$$

(5)

$$S^+(s) = \frac{1}{2}s^2 , \quad S^-(s) = -s^2 , \quad S^0(s) = \frac{1}{4}(s^2 s + ss^+)$$ (6)

On the other hand, the infinite dimensional SU(1,1) algebra is generated by using of [23-24]:

$$S^\pm_n = \sum_{t} c_{s,t} S^+(s,t) + c_{d,t} S^+(d,t) , \quad S^0_n = \sum_{t} c_{s,t} S^0(s,t) + c_{d,t} S^0(d,t)$$ (7)

And the sum is over proton, s, and neutron, d, indices Where c_s and c_d are real parameters and n can be $0, \pm 1, \pm 2, \ldots$. These generators satisfy the commutation relations,

$$[S^0_m, S^\pm_n] = \pm S^\pm_{m+n}, \quad [S^\pm_m, S^\mp_n] = -2S^0_{m+n+1}$$ (8)
Then, \(S_{\mu}^{\nu}|_{\mu=0,...,\pm 1,\pm 2,...} \) generates an affine lie algebra \(SU(1,1) \) without central extension. By employing the generators of \(SU(1,1) \) algebra, the following Hamiltonian is constructed for the transitional region between \(U(5) \leftrightarrow SO(6) \) limits [23-24]:

\[
\hat{H} = g \; S_0^+ S_0^- + \varepsilon \; S_0^0 + \gamma_1 \; \hat{C}_2(SO_x(5)) + \gamma_2 \; \hat{C}_2(SO_y(5)) + \delta_1 \; \hat{C}_2(SO_z(3)) + \delta_2 \; \hat{C}_2(SO_z(3)) + \delta \; \hat{C}_2(SO(3))
\]

(9)

\(g, \varepsilon, \gamma \) and \(\delta \) are real parameters and \(\hat{C}_2(SO(3)) \) denote the Casimir operators of these groups. It can be seen that Hamiltonian (9) would be equivalent with \(SO(6) \) Hamiltonian if \(c_\gamma = c_d \) and with \(U(5) \) Hamiltonian when \(c_\gamma = 0 \) and \(c_d \neq 0 \). Therefore, the \(c_\gamma \neq c_d \neq 0 \) requirement just corresponds to the \(U(5) \leftrightarrow SO(6) \) transitional region. To control this transitional Hamiltonian via single parameter and also due to the \(O(5) \) sub algebras which joint symmetry for both \(U(5) \) and \(O(6) \) dynamical limits, we take \(c_d = 1 \) constant value and \(c_\gamma \) vary between 0 and \(c_d \).

Eigenstates of Hamiltonian(9) can obtain with using the Fourier-Laurent expansion of eigenstates and \(SU(1,1) \) generators in terms of unknown \(c \)-number parameters \(x_i \) with \(i = 1, 2, ..., k \). It means, one can consider the eigenstates as [23-24]:

\[
|k; \beta, v_x, v_y, v_z; n_x^L, n_y^L, n_z^L; LM\rangle = \sum_{n_x, n_y, n_z} a_{n_x, n_y, n_z} x_i^{n_x} y_i^{n_y} z_i^{n_z} |H\rangle
\]

(10)

Due to the analytical behavior of wave functions, it suffices to consider \(x_i \) near zero. With using the commutation relations between the generators of \(SU(1,1) \) algebra, i.e. Eq(10), wave functions can be considered as:

\[
|k; \beta, v_x, v_y, v_z; n_x^L, n_y^L, n_z^L; LM\rangle = N S_{n_x}^+ S_{n_y}^+ S_{n_z}^+ |H\rangle
\]

(11)

\(N \) is the normalization factor and

\[
S_{n_i}^+ = \sum_{\tau} \frac{c_{\tau, \tau} x_i^{\tau}}{1-c_{\tau, \tau} x_i^{\tau}} S^+ (s; t) + \frac{c_{d, \tau} x_i^{\tau}}{1-c_{d, \tau} x_i^{\tau}} S^+ (d; t)
\]

(12)

The \(c \)-numbers \(x_i^{\tau} \) are determined through the following set of equations as:

\[
\varepsilon \; x_i^{\tau} = \sum_{\tau} g(\frac{c_{\tau, \tau} x_i^{\tau} + \frac{1}{2}}{1-c_{\tau, \tau} x_i^{\tau}} + \frac{c_{d, \tau} x_i^{\tau} + \frac{5}{2}}{1-c_{d, \tau} x_i^{\tau}}) \sum_{\tau j} \frac{2 x_i x_j}{x_i - x_j} \quad \text{for } i = 1, 2, ..., k.
\]

(13)

Eigenvalues of Hamiltonian (9), i.e. \(E^{(k)} \), can be expressed as

\[
E^{(k)} = \sum_{i=1}^{k} \frac{\varepsilon}{x_i^{\tau}} + \gamma_1 v_x^{\tau} (v_x^{\tau} + 3) + \gamma_2 v_y^{\tau} (v_y^{\tau} + 3) + \delta_1 L_x (L_x + 1) + \delta_2 L_y (L_y + 1) + \delta L (L + 1) + \varepsilon \Lambda_1^{\tau}
\]

(14)

Similarly, the eigenvalues of Hamiltonian (1), i.e. \(E^{(\text{extended } k)} \), can be expressed as:

\[
\hat{C}_2(SO(6)) = h^{(k)} , \quad h^{(k)} = \frac{\sum_{i=1}^{k} \frac{\varepsilon}{x_i^{\tau}}}{i}.
\]

(15)

\[
E^{(\text{extended } k)} = E(k) + \sum_{i=1}^{k} \frac{\varepsilon}{x_i^{\tau}} + \gamma_1 v_x^{\tau} (v_x^{\tau} + 3) + \gamma_2 v_y^{\tau} (v_y^{\tau} + 3) + \delta_1 L_x (L_x + 1) + \delta_2 L_y (L_y + 1) + \delta L (L + 1) + \varepsilon \Lambda_1^{\tau}
\]

(16)

The quantum number \(k \), is related to total boson number \(N \), by

\[
2k = N_x + N_y - v_x^{\tau} - v_y^{\tau} - v_x^{\tau} - v_y^{\tau}
\]

220
To obtain the numerical results for $E(k)$, we have followed the prescriptions have introduced in Refs.[38-39], namely a set of non-linear Bethe-Ansatz equations (BAE) with k^- unknowns for k^- pair excitations must be solved. To this aim we have changed the variables as:

$$\dot{E} = \frac{g}{\gamma} (g = 1 \text{ keV}) \quad , \quad c = \frac{c}{c_d} \leq 1 \quad , \quad y_i = c_d x_i$$

(17)

so, the new form of Eq.(13) would be

$$\frac{c}{y_i} = \sum_i (c_i^2 \frac{v_i + 1}{2} + \frac{(v_i^2 + \frac{5}{2})}{2}) \cdot \sum y_j - y_i$$

for $i=1,2,...,k$

(18)

We have solved Eq.(18) with definite values of c and ε for $i = 1$ to determine the roots of Bethe-Ansatz equations (BAE) with specified values of v_i and v_j, similar to procedure which have done in Refs [38-39]. Then, we have used “Find root” in the Maple17 to get all y_j. We carry out this procedure with different values of c and ε to provide energy spectra (after inserting γ and δ) with minimum variation as compared to the experimental counterparts:

$$\sigma = \left(\frac{1}{N_{\text{tot}}} \sum_i \left| E_{\text{exp}}(i) - E_{\text{cal}}(i) \right|^2 \right)^{1/2}$$

Which N_{tot} is the number of energy levels where are included in extraction processes. We have extracted the best set of Hamiltonian’s parameters, i.e. γ and δ, via the available experimental data [25-29] for excitation energies of selected states, $0^+_1, 2^+_1, 4^+_1, 0^+_2, 2^+_2, 4^+_2,$ and etc., e.g. 12 levels up to 2^+_4, or two neutron separation energies for nuclei which are considered in this study. In summary, we have extracted γ and δ externally from empirical evidences and other quantities of Hamiltonian, e.g. c and ε would determine through the minimization of σ.

Results

In this paper, we try to increase the accuracy of theoretical prediction in the determination of energy levels in 130Xe nucleus with using an extension of transitional Hamiltonian. As have explained in the previous parts, due to the nature of considered intruder levels, $2p-2h$ excitation, we added a $O(6)$ Casimir to improve our methods. We calculated all the roots of Eq (18) and then extracted the constants of energy formula with least square method, then, we determined the energy of different states with Eq (14), namely without the mixing term. Also we carried out these calculations with using different values of c, δ, and ε to get the best corresponding between theoretical predictions and experimental counterparts. These results are presented in Table 1 and the best arrangement which yield by $C_5=0.7$ and $\sigma = 137$. Also, for excited energy levels and especially, intruder levels, we need to add new terms to optimize our theoretical predictions. The new results which yield with using Eq (16) are presented in Table 2. Also, the best corresponding between theoretical predictions and experimental counterparts yield via $C_5=0.8$ and $\sigma = 183$, are presented in Table 2.

Table 1. The parameters of IBM-2 Hamiltonian for 130Xe isotope which are extracted by least square method from experimental data were taken from [25-29] σ is regarded as the quality for extraction processes (N=5 the Boson number).

<table>
<thead>
<tr>
<th>C_5</th>
<th>y_1</th>
<th>y_2</th>
<th>δ_1</th>
<th>δ_2</th>
<th>Δ</th>
<th>ε</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>76.41</td>
<td>43.75</td>
<td>80.33</td>
<td>-105.49</td>
<td>11.74</td>
<td>500</td>
<td>228</td>
</tr>
<tr>
<td>0.3</td>
<td>80.35</td>
<td>42.77</td>
<td>85.42</td>
<td>-110.08</td>
<td>11.09</td>
<td>500</td>
<td>302</td>
</tr>
<tr>
<td>0.4</td>
<td>88.26</td>
<td>42.32</td>
<td>94.64</td>
<td>-118.57</td>
<td>10.99</td>
<td>500</td>
<td>270</td>
</tr>
<tr>
<td>0.5</td>
<td>91.76</td>
<td>41.98</td>
<td>110.21</td>
<td>-133.77</td>
<td>9.89</td>
<td>500</td>
<td>230</td>
</tr>
<tr>
<td>0.6</td>
<td>101.43</td>
<td>40.64</td>
<td>150.55</td>
<td>-140.58</td>
<td>7.83</td>
<td>500</td>
<td>244</td>
</tr>
<tr>
<td>0.7</td>
<td>120.65</td>
<td>39.85</td>
<td>170.76</td>
<td>-146.04</td>
<td>3.16</td>
<td>500</td>
<td>137</td>
</tr>
<tr>
<td>0.8</td>
<td>118.87</td>
<td>44.45</td>
<td>180.90</td>
<td>-190.41</td>
<td>2.75</td>
<td>500</td>
<td>267</td>
</tr>
<tr>
<td>0.9</td>
<td>112.98</td>
<td>45.32</td>
<td>210.48</td>
<td>-220.88</td>
<td>1.74</td>
<td>500</td>
<td>280</td>
</tr>
</tbody>
</table>
Table 2. The parameters of extended IBM-2 Hamiltonian for 130Xe isotope which are extracted by least square method from experimental data were taken from [25-29]. δ is regarded as the quality for extraction processes.(N=5 the Boson number)

<table>
<thead>
<tr>
<th>Cs</th>
<th>γ_1</th>
<th>γ_2</th>
<th>δ_1</th>
<th>δ_2</th>
<th>Δ</th>
<th>ϵ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>101.32</td>
<td>80.65</td>
<td>110.95</td>
<td>-90.76</td>
<td>13.99</td>
<td>500</td>
<td>230</td>
</tr>
<tr>
<td>0.3</td>
<td>110.67</td>
<td>77.09</td>
<td>130.09</td>
<td>-95.54</td>
<td>11.74</td>
<td>500</td>
<td>210</td>
</tr>
<tr>
<td>0.4</td>
<td>118.21</td>
<td>71.39</td>
<td>145.88</td>
<td>-100.89</td>
<td>9.09</td>
<td>500</td>
<td>225</td>
</tr>
<tr>
<td>0.5</td>
<td>124.12</td>
<td>68.44</td>
<td>160.37</td>
<td>-110.55</td>
<td>7.78</td>
<td>500</td>
<td>218</td>
</tr>
<tr>
<td>0.6</td>
<td>133.45</td>
<td>60.56</td>
<td>177.05</td>
<td>-116.04</td>
<td>6.45</td>
<td>500</td>
<td>190</td>
</tr>
<tr>
<td>0.7</td>
<td>155.38</td>
<td>57.34</td>
<td>198.29</td>
<td>-126.47</td>
<td>5.63</td>
<td>500</td>
<td>198</td>
</tr>
<tr>
<td>0.8</td>
<td>160.44</td>
<td>44.45</td>
<td>188.94</td>
<td>-130.66</td>
<td>3.88</td>
<td>500</td>
<td>183</td>
</tr>
<tr>
<td>0.9</td>
<td>140.77</td>
<td>49.32</td>
<td>200.44</td>
<td>-149.68</td>
<td>2.95</td>
<td>500</td>
<td>205</td>
</tr>
</tbody>
</table>

Obviously, this extended formalism improve theoretical predictions and confirm our idea to add this term in description of intruder levels of 130Xe nucleus. A detailed report on the results of these two formalisms about each levels are showed in Table 3 and Figure 1.

Table 3. Theoretical predictions of both normal and extended Hamiltonian for 130Xe nucleus. All energies are in keV.

<table>
<thead>
<tr>
<th>level</th>
<th>$E_{\text{Experimental}}$</th>
<th>$E_{SU(1,1)}$</th>
<th>$E_{\text{Extended SU(1,1)}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2^+_1</td>
<td>536</td>
<td>499</td>
<td>510</td>
</tr>
<tr>
<td>4^+_1</td>
<td>1204</td>
<td>1290</td>
<td>1180</td>
</tr>
<tr>
<td>6^+_1</td>
<td>1944</td>
<td>2015</td>
<td>1902</td>
</tr>
<tr>
<td>2^+_2</td>
<td>1122</td>
<td>1200</td>
<td>1100</td>
</tr>
<tr>
<td>3^+_1</td>
<td>1632</td>
<td>1550</td>
<td>1675</td>
</tr>
<tr>
<td>4^+_2</td>
<td>1808</td>
<td>1700</td>
<td>1878</td>
</tr>
<tr>
<td>0^+_2</td>
<td>1793</td>
<td>1500</td>
<td>1750</td>
</tr>
<tr>
<td>2^+_3</td>
<td>2150</td>
<td>2430</td>
<td>2220</td>
</tr>
<tr>
<td>3^+_3</td>
<td>2017</td>
<td>2221</td>
<td>2430</td>
</tr>
</tbody>
</table>

Figure 1. energy spectra of 130Xe nucleus, a) experimental spectra together b) theoretical predictions based on $SU(1,1)$ transitional Hamiltonian and c) extended Hamiltonian.

Conclusions and Summary

These results show the advantages of the considered transitional Hamiltonian in the description of only the states of ground band. This confirm the spherical nature of this nucleus and therefore, explain the reason of using such transitional Hamiltonian for this nucleus. On the other hand, we got the biggest differences between theoretical predictions and experimental data in 2^+_1 and 0^+_1 states which as reported have O(6) nature. To optimize our theoretical predictions, we need to add new term as explained in Eq.(1) and due to the properties of these intruder states, the $C_{2(U(5)\delta)}$ e.g. Eq.(3), is our selection. By using same method which have used to get roots and predictions of the transitional Hamiltonian in transitional Hamiltonian, we changed the control parameter of this model which describe symmetries mixing, together the excitation term to describe the energy spectra with high accuracy. The results of normal and perturbed Hamiltonians show the advantages of perturbed one for all of the considered states and especially 2^+_1 and 0^+_1 intruder states. Also, the changes in the control parameters of this transitional Hamiltonian verify the superposition of two $U(5)$ and O(6) nature of this nucleus. The better agreement which yield by the extended Hamiltonian suggest the partial symmetry-like structure in this nucleus which is type-II and only, these intruder states belong to this additional symmetry.

Acknowledgment

This work is supported by the Research Council of the University of Tabriz.

Conflict of interests

Conflict-of-interest statement the authors have no conflicts of interest to declare. The authors have seen and agree with the contents of the manuscript and there is no
financial interest to report. We certify that the submission is original work and is not under review at any other publication.

References