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In this paper, we tried to describe the 23
+ ,  03

+ intruder stats in 130Xe nucleus in a configuration mixing framework. 
To this aim, we have used a transitional Hamiltonian based in the affine SU(1,1) lie algebra in the framework of 
interacting boson model. Also, we perturbed this Hamiltonian in the version 2 with adding a new term, the O(6) 
Casimir operator, due to the nature of these intruder states. The results confirm the accuracy of this mixing 
configuration in the description of all considered energy levels and especially, the intruder states. Also, these 
results suggest same approach with adding other Casimir operators of different symmetry chains to extend the 
ability of this transitional Hamiltonian.  
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Introduction 

The existence of states belong to excited enrgy bands 
between the levels of ground band of energy refered to 
the mixing of symmetries. As have been shown in various 
spectroscopic selective experiments, e.g. transfer 
reactions in particular, very near to closed shells (the In 
and Sb nuclei at Z=50 but also in other mass regions, e.g. 
the Tl and Bi nuclei at Z=82) some low-lying extra states, 
so-called intruder states have been observed with a 
conspicuous energy dependence on the number of free 
valence neutrons, hinting for 2p-2h excitations as their 
origin [1-9]. If these excitations are proton excitations 
combined with the neutron degree of freedom appearing 
on both sides of the Z=50 closed shell, such as condition 
which are available for 130Xe isotope, it is a natural step to 

suggest that low-lying extra 0+   excitations will also show 
up in the even-even nuclei in between. Because the130 Xe 
isotope with a large number of valence neutrons are 
situated near to the -stability line, they could be studied 
and must describe by such formalism which perturbed by 
some excitation [1-2]. The interacting boson model (IBM) 
Hamiltonian is regards as the most successful formalism in 
description of such concepts. IBM was written from the 
beginning in second quantization form in terms of the 
generators of the U(6)  unitary lie algebra. The model 
assumes that low-lying collective excitations of the nucleus 
can be described in terms of the number N bosons. The 
bosons correspond to pairs of nucleons in valance shell, 
coupled to angular momentum j=0 and j=2 which 
correspond respectively to s and d boson and N is constant 
for a given nucleus and equal to half its number of valance 
nucleons [3-15]. The phenomenological IBM in terms of 

U(5), SU(3) and O(6) dynamical symmetries has been 
employed in describing the collective properties of several 
medium and heavy mass nuclei. These dynamical 
symmetries correspond to harmonic vibrator, axial rotor 
and  − unstable rotor as the geometrical analogues, 

respectively. These symmetries are fairly successful in the 
investigation of low-lying nuclear states of nuclei located in 
three dynamical limits of IBM. On the other hand, the 
analytic description of structure at the critical point of 
phase transition is considered as issue, recently great 
analyses has been performed to describe them. Iachello in 
Refs [16-22] have established a new set of dynamical 
symmetries, i.e. E(5) and X(5), for nuclei which are located 
at the critical point of transitional regions. The E(5) 
symmetry describes a second order phase transition which 
corresponds to the transitional states in the region from 
U(5) to O(6) symmetries in the IBM [22-24].  

Different studies on the130 Xe nucleus report the 

excitation of as intruder states. The low-lying 32+ and 30+  

levels arises either from the intruder 2p-2h or from the 
normal 0p-0h configuration ,low-lying of these isotope are 
formed from the mixing of two intrinsic states of different 
deformations These levels are classified as two phonon 
states where must describe by 2p-2h excitation [26-37] A 
method to describe the intruder excitations in the IBM 
framework proposed to associate the different shell-
model spaces of 0P-0h, 2p-2h,etc excitations. In this 
approach, two or four protons in the z=50-82 major shell 
can be excited to next major shell. These excitations make 
the corresponding boson spaces including N,N+2,… 
bosons which N= Nπ + Nν ,The Hamiltonians of formalisms 
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in description of such levels have the 2 2
ˆ ˆ ˆ

reg p hH H H −= +  

form where mixes the regular (0p-0h) and (2p-2h) 
configurations. The correlation between valence protons 
and neutrons is enhanced [8-22] due to this cross-shell 
excitation of protons resulting in the lowering of excited

32+ and 30+  states and therefore, classified them as 

intruder states.  
In this paper we used i) the U(5)-SO(6) transitional 

Hamiltonian which is defined in the affine SU(1,1) algebra 
and ii) Due to the nature of the considered intruder levels, 
we added the O(6) Casimir operator as the perturbation 
to the both regular Hamiltonians. The efficiency of these 
both approaches are analyzed with comparison of their 
predictions for different energy levels and the 
experimental counterparts. 

 
Theoretical Framework 

The nature of 
3 30 , 2+ +  in 130Xe is reported in Ref [9] 

which correspond with SO (6) symmetry of IBM. In the first 
part of this study we used a transitional Hamiltonian 
which describe both U(5) and O(6) limits as regular part to 
cover the spherical properties of the considered nucleus. 
The analytic description of nuclear structure at the critical 
point of phase transitions has attracted extensive interest 
in the recent decades. One has to employ some 
complicated numerical methods to diagonalize the 
transitional Hamiltonian in these situations but Pan et al. 
[23-24] have proposed a new solution based on algebraic 
technique and explores the properties of nuclei classified 
in the U(5)↔SO(6) transitional region of IBM. 
Hamiltonian with two control parameters was used in 
which the results for the control parameter of transitional 
Hamiltonian offer a combination of spherical and 
deformed shapes in different isotopic Also, this 
Hamiltonian extended by adding a corresponding O(6) 
operator to increase the effect of O(6) symmetry and 
increase the accuracy of this formalism in description of 
intruder levels as:   

 

( )2 (6)
(1,1)

ˆˆ ˆ ,= +extended SO
SU

H H C  (1) 

 
η is a constant which extract in comparison with 

experimental data. By employing the generators of 
SU(1,1) algebra, a Hamiltonian construct which is suitable 
for the investigation of such nuclei which located between 
U(5) and SO(6) limits The SU(1,1) algebra has been 
described in Refs[23-24]. Here, we briefly outline the basic 
ansatz and summarize the results. The lie algebra 
corresponds to the SU(1,1)lie algebra is generated by 

S

, 0 = and  , which satisfies the following 
commutation relations: 

 
0 0[ , ]  ,    [ , ] 2  + −=  = −S S S S S S  (2) 

 
The Casimir operator of SU(1,1) group can be written as: 

 

( )
0 0

2 2 (6)
ˆ ˆ( 1) + −= − − 

SO
C S S S S C  (3) 

 
We would use this operator to describe some intruder 

states which have SO(6) nature which detailed are present 
in the following. Representations of SU(1,1) are 
determined by a single number , thus the 
representation of Hilbert space is spanned by 

orthonormal basis   where can be any positive 

number and , 1,...  = + . Therefore,  

 
0

2
ˆ ( (1,1)) ( 1)  ,        = − =C SU S  (4) 

 
 

In IBM, the generators of s and d − bosons pairing 
algebra is created by: 

 

† † 0 † †1 1 1
( ) ( . )  ,   ( ) ( . )   ,  ( ) ( )

2 2 4
   



+ −= = = +S d d d S d d d S d d d d d  (5) 

†2 2 0 † †1 1 1
( )      ,      ( )      ,      ( ) ( )

2 2 4

+ −= = = +S s s S s s S s s s ss  (6) 

 

On the other hand, the infinite dimensional SU(1,1) algebra is generated by using of [23-24]: 

2 1 2 1 0 2 0 2 0

; ; ; ; ( ; ) ( ; )   ,      ( ; ) ( ; ) +  + = + = + n n n n

n s t d t n s t d t

t t

S c S s t c S d t S c S s t c S d t  (7) 

 

And the sum is over proton,, and neutron,  , indices Where cs  and cd  are real parameters and n can be 

0, 1, 2,...  . These generators satisfy the commutation relations, 
0 0

1[ , ]   ,    [ , ] 2  + −

+ + +=  = −m n m n m n m nS S S S S S
 

(8) 
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Then,{ , 0, , ; 1, 2,...}
 = + −  S
m generates an affine lie algebra SU(1,1) without central extension. By employing the 

generators of SU(1,1) algebra, the following Hamiltonian is constructed for the transitional region between 
(5) (6)U SO limits [23-24]: 

 
0

0 0 1 1 2 2 2 1 2 2 2 2
ˆ ˆ ˆ ˆ ˆˆ    ( (5))  ( (5))  ( (3)) +  ( (3))  ( (3))        + −= + + + + +H g S S S C SO C SO C SO C SO C SO  (9) 

 

, ,g   and are real parameters and ˆ ( (3))
2

C SO and ˆ ( (5))
2

C SO denote the Casimir operators of these groups. It 

can be seen that Hamiltonian (9) would be equivalent with (6)SO Hamiltonian if 
s dc c= and with (5)U Hamiltonian 

when 0 &  0s dc c=  . Therefore, the 0s dc c   requirement just corresponds to the (5) (6)U SO transitional 

region. To control this transitional Hamiltonian via single parameter and also due to the O(5) sub algebras which joint 

symmetry for both U(5) and O(6) dynamical limits, we take 
dc (=1) constant value and 

sc vary between 0 and .dc
 

Eigenstates of Hamiltonian(9) can obtain with using the Fourier-Laurent expansion of eigenstates and SU(1,1) 

generators in terms of unknown c− number parameters
ix with 1,2,...,i k= . It means, one can consider the 

eigenstates as [23-24]: 
 

1 2

1 2 1 21 2; ; , , , ; , ; ... ... ...     

      + + +

 



= k

k k

i

nn n

s s n n n k n n n

n Z

k n L n L LM a a a x x x S S S lw  (10) 

 

Due to the analytical behavior of wave functions, it suffices to consider ix near zero. With using the commutation  
relations between the generators of SU(1,1) algebra, i.e. Eq(10), wave functions can be considered as: 

 

1 2
; ; , , , ; , ; ...     

      + + +

  =
ks s x x xk n L n L LM NS S S lw  (11) 

 

N is the normalization factor and 

; ; 

2 2

; ; 

( ; ) ( ; )
1 1

+ + += +
− −

i

s t d t

x

t s t i d t i

c c
S S s t S d t

c x c x
 (12) 

 

The c-numbers  are determined through the following set of equations as: 

2 2

; t ; t

2 2

; t ; t

1 5
( ) ( )

22 2  ( )-    
1 1

 



+ +

= +
− − −

 

t t

s s d

t i ji s i d i i j

c c

g
x c x c x x x

for i=1,2,...,k  (13) 

 

Eigenvalues of Hamiltonian (9), i.e. ( )kE , can be expressed as  

( ) 0

1 2 1 2 1

1

0 2 2

1 ; t ; t

( 3) ( 3) ( 1) ( 1) ( 1)                       

1 1 5
                                          [ ( ) ( )] 

2 2 2

   

   


         

 

=

= + + + + + + + + + + + 

 = + + +





k
k

i i

t t

s s d

t

E L L L L L L
x

c c

 (14) 

 

Similarly, the eigenvalues of Hamiltonian (1), i.e. E extended (k), can be expressed as: 

( ) ( )ˆ [ (6)]   ,         
2

 1


= =

=

kk k
C SO h h

xi i

 (15) 

 

( ) ( ) ( ) 0

1 2 1 2 1

11
            , ( 3) ( 3) ( 1) ( 1) ( 1)   

   

 
         

=


=

= + = + + + + + + + + + + + 
k

k

i i

k
k k

extended xii
E E E L L L L L L

x
 (16) 

 

The quantum number k, is related to total boson number N, by 

2 s sk N N    

     = + − − − −   
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To obtain the numerical results for E(k), we have followed the prescriptions have introduced in Refs.[38-39], namely 

a set of non-linear Bethe-Ansatz equations (BAE) with −k unknowns for −k pair excitations must be solved. To this aim 
we have changed the variables as:  

 

2( 1  )   ,     1    ,   


= = =  =s
i d i

d

c
ò g keV c y c x

g c
 (17) 

 
 
so, the new form of Eq.(13) would be  
 

2

 t

2

 t

1 5
( ) ( )

22 2( )-                       for i=1,2,...,k
1 1

 



+ +

= +
− − −

 

t t

s

t i ji i i i j

c

y c y y y y
 (18) 

 
 

We have solved Eq.(18) with definite values ofc and

 for 1i = to determine the roots of Beth-Ansatz 

equations (BAE) with specified values of
s and , similar 

to procedure which have done in Refs [38-39]. Then, we 

have used “Find root” in the Maple17 to get all
'

jy s. We 

carry out this procedure with different values of c and  

to provide energy spectra (after inserting  and ) with 

minimum variation as compared to the experimental 
counterparts: 

2 1/2
exp2

1

1
(  ( ) ( )  )cal

tot i

E i E i
N


=

= −  

 Which totN is the number of energy levels where are 

included in extraction processes. We have extracted the 

best set of Hamiltonian’s parameters, i.e. and , via the 

available experimental data [25-29] for excitation 

energies of selected states, 
1 1 1 2 2 20 ,2 ,4 ,0 ,2 ,4+ + + + + + and etc, 

e.g. 12 levels up to 42+
, or two neutron separation energies 

for nuclei which are considered in this study. In summary, 

we have extracted and externally from empirical 

evidences and other quantities of Hamiltonian, e.g. c and

 would determine through the minimization of . 

Results 

In this paper We try to increase the accuracy of 
heoretical prediction in the determination of energy levels 
in 130Xe nucleus with using an extension of transitional 
Hamiltonian. As have explained in the previous parts, due 
to the nature of considered intruder levels, 2p-2h 
excitation, we added a O(6) Casimir to improve our 
methods.  we calculated all the roots of Eq (18) and then 
extracted the constants of energy formula with least 
square method, then, we determined the energy of 
different states with Eq (14), namely without the mixing 
term. Also we carried out these calculations with using 
different values of cs,  δ,  γand ɛ to get the best 
corresponding between theoretical predictions and 
experimental counterparts. These results are presented in 
Table 1 and the best arrangement which yield by Cs=0.7 
and Ϭ =137 Also, for excited energy levels and especially, 
intruder levels, we need to add new terms to optimize our 
theoretical predictions. The new results which yield with 
using Eq (16) are presented in Table 2. Also, the best 
corresponding between theoretical predictions and 
experimental counterparts yield via Cs=0.8 and Ϭ =183, 
are presented in Table 2. 

 
Table 1. The parameters of IBM-2 Hamiltonian for 130 Xe isotope which are extracted by least square method from 

experimental data were taken from [25-29] Ϭ is regarded as the quality for extraction processes (N=5 the Boson 
number) 

Cs γ 1 γ 2 1δ  δ 2 Δ Ԑ Ϭ 

0.2 
0.3 
0.4 

76.41 
80.35 
88.26 

43.75 
42.77 
42.32 

80.33 
85.42 
94.64 

-105.49 
-110.08 
-118.57 

11.74 
11.09 
10.99 

500 
500 
500 

228 
302 
270 

0.5 91.76 41.98 110.21 -133.77 9.89 500 230 

0.6 101.43 40.64 150.55 -140.58 7.83 500 244 

0.7 120.65 39.85 170.76 -146.04 3.16 500 137 

0.8 
0.9 

118.87 
112.98 

44.45 
45.32 

180.90 
210.48 

-190.41 
-220.88 

2.75 
1.74 

500 
500 

267 
280 
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Table 2. The parameters of extended IBM-2 Hamiltonian for 130 Xe isotope which are extracted by least square method 
from experimental data were taken from [25-29]. Ϭ is regarded as the quality for extraction processes.(N=5 the 
Boson number) 

Cs γ 1 γ 2 1δ  δ 2 Δ Ԑ Ϭ 

0.2 
0.3 
0.4 

101.32 
110.67 
118.21 

80.65 
77.09 
71.39 

110.95 
130.09 
145.88 

-90.76 
-95.54 

-100.89 

13.99 
11.74 
9.09 

500 
500 
500 

230 
210 
225 

0.5 124.12 68.44 160.37 -110.55 7.78 500 218 
0.6 133.45 60.56 177.05 -116.04 6.45 500 190 

0.7 155.38 57.34 198.29 -126.47 5.63 500 198 

0.8 
0.9 

160.44 
140.77 

44.45 
49.32 

188.94 
200.44 

-130.66 
-149.68 

3.88 
2.95 

500 
500 

183 
205 

 
Obviously, this extended formalism improve 

theoretical predictions and confirm our idea to add this 
term in description of intruder levels of 130Xe nucleus. A 
detailed report on the results of these two formalisms 
about each levels   are showed in Table 3 and Figure 1. 

 
Table 3. Theoretical predictions of both normal and 

extended Hamiltonian for 130Xe nucleus. All energies 
are in keV. 

level Eexperimental ESU(1,1) Eextended SU(1,1) 

+

10  0 0 0 

12+

 
536 499 510 

14+

 
1204 1290 1180 

16+

 
1944 2015 1902 

22+

 
1122 1200 1100 

13+

 
1632 1550 1675 

24+

 
1808 1700 1878 

20+

 
1793 1500 1750 

32+

 
2150 2430 2220 

30+

 
2017 2221 2430 

 

 

Figure 1. The basal latencies of rats before and after 
operation (paired student t-test, *p<0.05) 

Figure1.energy spectra of 130Xe nucleus, a) experimental 
spectra together b) theoretical predictions based on 
SU(1,1) transitional Hamiltonian and  c) extended 
Hamiltonian.  
 

Conclusions and Summary  

These results show the advantages of the considered 
transitional Hamiltonian in the description of only the 
states of ground band. This confirm the spherical nature 
of this nucleus and therefore, explain the reason of using 
such transitional Hamiltonian for this nucleus.  On the 
other hand, we got the biggest differences between 

theoretical predictions and experimental data in 32+ and

30+  states which as reported have O(6) nature. To 

optimize our theoretical predictions, we need to add new 
term as explained in Eq.(1) and due to the properties of 

these intruder states, the 
( )2 (6)

ˆ
SO

C , e.g. Eq.(3), is our 

selection. By using same method which have used to get 
roots and predictions of the transitional Hamiltonian In 
transitional Hamiltonian, we changed the control 
parameter of this model which describe symmetries 
mixing, together the excitation term to describe the 
energy spectra with high accuracy. The results of normal 
and perturbed Hamiltonians show the advantages of 
perturbed one for all of the considered states and 

especially 32+ and 30+  intruder states. Also, the changes in 

the control parameters of this transitional Hamiltonian 
verify the superposition of two U(5) and O(6) nature of 
this nucleus. The better agreement which yield by the 
extended Hamiltonian suggest the partial symmetry-like 
structure in this nucleus which is type-II and only, these 
intruder states belong to this additional symmetry.    
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