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the study could be thought only data mining on the one-speed neutron transport problems for isotropic 
scattering.  
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Introduction 

The neutron distribution is essential in nuclear reactor 
operations. Although the diffusion theory results are used 
in the nuclear reactor theory, the solution of the neutron 
transport equation is also important. However, the 
neutron transport equation has seven independent 
variables. Therefore, reasonable approximations can be 
used, and thus the one-speed, homogeneous medium and 
plane geometry neutron transport equation can be 
written. All neutrons have the same energy in the one-
speed approximation. The secondary neutron number, c, 
is a constant in a homogeneous medium. There are two 
variables, which are spatial and angular variables, in the 
plane geometry approximation.  

The one-speed, homogeneous medium and plane 
geometry neutron transport equation is given by 
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where x  and  correspond to the spatial and the 

cosine of direction respectively.  ,x   is the neutron 

distribution at x  point and   direction, and c  

corresponds to the secondary neutron number. The 
solution of Eq. (1) has been studied with different 
numerical methods such as the SN method [1], PN and DPN 
[2], and semi-numerical methods such as the Case method 
[3,4], the CN method [5], the FN method [6] and HN method 
[7].  

Machine Learning is the research topic that computer 
programs can learn from data [8]. After the learning 
process, the new data can be predicted by the learned 
programs. Especially as a result of the discovery of 
quantum mechanics and the breakthroughs in technology 

and computer systems, data scientists claim that we have 
a large pile of data that should be analysed. Machine 
learning studies are important today in terms of analysing 
this large data pile and creating smart systems that can 
decide on its own. 

Machine learning applications are now an issue that is 
studied in neutron transport and reactor calculations like 
many fields with different applications. Chen et.al. [9] 
investigated kinetic models in linear transport theory by 
deep neural network. The mathematical structure of ANN 
is well defined in this reference. So we are not interested 
in the details of the mathematical background of ANN 
here.  We are interested in only application of ANN to 
data. Whewell and McClarren [10] investigated the data 
reduction for neutron scattering and fission sources by 
DJINN (Deep Jointly Informed Neural Networks). The data 
requirements are reduced by 94 % of the original data 
according to this study. Xie et al. [11] developed ANN to 
solve neutron diffusion problems. They investigated two 
different approach which are boundary dependent 
method and boundary independent method. Zolfaghari et 
al. [12] searched the thermalization devises, which 
include collimators and moderators, by multilayer 
perceptron neural network. Chen et al. [13] investigated 
neutron and X-ray scatterings by machine learning. 

In this study, we are not interested in solving any 
equation. We are interested in only data. Therefore, our 
study can be considered as data mining for one-speed 
neutron transport theory. The data required for machine 
learning is calculated by HN method. The data is the 
training data for the one-speed neutron transport 
problems. These problems are half-space albedo, the 
Milne problem, and the criticality problem respectively. 
The albedo is defined as the ratio between the net 
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outgoing and the net incoming neutron fluxes over a 
surface. The Milne problem deals with the finding of the 
extrapolation length which is the point where the flux is 
zero. The criticality problem is studied to find the 
criticality equation. This equation gives the relation 
between the secondary neutron number and the reactor 
thickness. These problems data, which are calculated with 
HN method, are examined with polynomial regression 
(PR) and the artificial neural network (ANN) in this study.  

PR algorithm is run with the least squares method. The 
aim of PR is to find a regression relation which provides 
the training data set. To apply PR, numpy [14], scipy [15] 
and scikit-learn (sklearn) [16] modules in Python can be 
used to data. ANN algorithm is different from PR. ANN is 
an improved algorithm of the Logistic regression (LR) 
algorithm which gives only two different results, true or 
false. Moreover, ANN includes some hyperparameters 
which are dependent to the data set and the programmer. 
To determine these hyperparameters is based on 
experience over studying the data. To apply ANN, keras 
[17] and tensorflow [18] modules in Python can be used 
to data. ANN hyperparameters are given in the Table, but 
particularly two different activation functions, which are 
Leaky Relu (Leaky Rectified Linear Unit) [19] and Elu 
(Exponential Linear Unit) [20] activation functions, are 
studied in this study.  

 

Material and Methods  
 
The Polynomial Regression (PR) and the Results 

with PR  

The PR is a fit application between  ,x y , which are 

independent variable and the dependent variable, 
respectively. The polyfit method [14] in numpy module 
was used to the imported data for PR in this study. The 
polyfit method is based on the least squares method. The 
squares of the residuals, which are the differences 
between a calculated or an observed data and the fitted 
value, is performed minimizing in this method. Thus, the 
coefficients of the polynomial are determined. The 
polynomial is given as below:  
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The independent variable is the secondary neutron 

number, c, in all studies. The dependent variables are 
albedo values, extrapolation distance, and critical 
thickness for each problem, respectively. Therefore, 
Equation (2) can be written as in Eq. (3). 

  

 
7

0 1 2 7

0 1 2 7

0

...n

n

n

P c a c a c a c a c a c


       (3) 

 

The Artificial Neural Network (ANN) 
The basic of artificial neural networks is based on 

logistic regression [8]. A logistic regression, Figure 1, 

consists of an input layer, a summation layer, and an 
output layer. The result of the summation is applied to the 
activation function.  If the activation value is bigger than a 
threshold value, then the output is determined. The 
output gives only two different results. Therefore, the 
logistic regression is also called as binary classification. 
This structure runs as a biological neuron cell. It consists 
of dendrites, nuclei of the cell, and axon. The dendrite is 
the input, and the axon is the output. The signals are 
collected by dendrites in the nucleus. This determines the 
status of the cell. If the collected signal value is bigger than 
a threshold value, then the next cell is activated.  An 
artificial neural cell in Figure 2 works similarly to a 
biological cell. 

 

Figure 1. A logistic regression with computation graph. 

 

 

Figure 2. An artificial neuron cell in ANN. 

 

Here ix , i  and b  correspond to input data, weights 

and bias in machine learning, respectively. The first 
transition from input to output doesn’t generally give a 
good result, and it is called as the forward propagation. 
Therefore, the backward propagation is used. Thus, the 
weights and bias values are updated in the backward 
propagation process. The optimization function is used in 
this stage. It tries to minimize the loss value.  
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An ANN includes hidden layers unlike logistic 

regression. Thus, a typical ANN consists of an input layer, 

hidden layer, and the output layer as in Figure 3. An ANN 

study tries to find the weights, i , and the bias, b, of the 

interested in problem. 

 

 

Figure 3. The structure of an Artificial Neural Network. 

The connection of the layers is also important. Keras 
module gives us different model structures. If we have 
only one input layer and only one output layer, and if we 
don’t use the output of another layer, then the sequential 
model [21] will be a good option to use.  

In this study, ANN model is created by the sequential 
model, and the optimization function is selected as adam 
(adaptive moment estimation) [22] for the optimization 
function. There are different activation functions in ANN 
algorithms, and there are certain advantages and 
disadvantages of these functions. The properties of the 
activation functions used in this study are given in Table 1.  

Leaky Relu activation function is focused to zero, and 
there are no killed neutrons. The function has 0.01x for 
the negative value.  Elu (Exponential Linear Unit) 
activation function includes an exponential term and 
there are no killed neurons. However, it runs slowly in 
terms of the calculation time since it includes an 
exponential term.  

 

Table 1. Activation functions and its properties used in this study 

Mathematical definition of the activation function  The behaviour of the activation function 

   Re max 0.01 ,Leaky Luh x x x  
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Application of PR 
 
Since we are interested in the data mining for one-

speed neutron transport problems, we need a training 
data set. This data set is calculated by using the HN 
method. The HN calculations were performed with 
Mathematica 12.2 software, and WorkingPrecision value 
was selected as 32.  

It is important that the data should contain thousands 
of data for the success of ANN. However, we calculated 
only 11 different data according to the secondary neutron 
number. We could calculate much more data at shorter 
intervals and calculate hundreds or thousands of data, but 
since we have not examined complex problems, we work 
with these 11 data, especially by forcing the neural 
network. The training data set is given in Table 2 
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Table 2. The training data set for varying c  with HN method 
c  Albedo  c  Extrapolation distance c  Critical thickness  

0.10 0.0216976569566343 0.10 8.5382882681302200 1.10 4.2266192698707600 

0.20 0.0462648688682488 0.20 3.9239076951733300 1.20 2.5787585222225100 

0.30 0.0744514267270763 0.30 2.4947273586756700 1.30 1.8754510915842200 

0.40 0.1073349048799300 0.40 1.8249003850628600 1.40 1.4732070964173800 

0.50 0.1465444012833310 0.50 1.4408497695258000 1.50 1.2101130830389700 

0.60 0.1947164506629280 0.60 1.1922598119270000 1.60 1.0239260606883200 

0.70 0.2565567261583740 0.70 1.0180610666686400 1.70 0.8850734307673520 

0.80 0.3418664995580910 0.80 0.8890546020955310 1.80 0.7775459392298720 

0.90 0.4780245341005770 0.90 0.7895694514644200 1.90 0.6918667133043400 

0.95 0.5966629255385620 0.95 0.7478782683064080 2.00 0.6220468763406790 

0.98 0.7210172380719860 0.98 0.7249509445737220 2.50 0.4064698693764990 

PR Application for Albedo Data  
First, we should try to understand the correlation 

matrix. It gives the correlations between the variables 
which are called as features in the machine learning 
language. If the correlation between the two features is 
close to the unit value, then these features have a linear 
relation. If the correlation is close to the negative unit 

value, then the relation between the features is again 
linear, but the slope of the line is negative. If the 
correlation is close to zero, then it is understood that 
there is no relationship between the two features. The 
correlation matrix for the albedo is given in Figure 4-a. 

 

                             (a)                       (b) 

Figure 4. (a) The correlation matrix for the secondary neutron number and the albedo values. (b) The behaviour of 
the calculated albedo values. 

The target in Figure 4-a corresponds to the albedo. 
According to Figure 4-a, the correlation between the 
secondary neutron number and the albedo values is 0.92. 

This means that there is a strong relationship between c  

and albedo, and this relationship is a close linear 
behaviour. Figure 4-b represents the HN results for the 
albedo and supports to the result of Figure 4-a.  

Polyfit method in numpy module is used on the 
training data to apply polynomial regression. This analysis 
is performed for third-order, 4th order, 5th order, and 6th 

order polynomials. The coefficients for each polynomial 

regression and 2R values are given in Table 3, and the 
graphics of the polynomials on the training data are given 
in Figure 5.  
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Table 3. The polynomial coefficients for the albedo problem  

Polynomial  
Coefficients  

Third order  4th order polynomial 5th order polynomial 6th order polynomial 

a0 -0.097160764740 0.102653259668 -0.122656652880 0.160801117064 
a1 1.268863094720 -1.301081444528 2.414879932232 -3.161361500426 

a2 -2.828679335978 6.614462062288 -12.913954563141 24.992183953605 
a3 2.426921750454 -10.538806383260 33.205888658331 -86.116136609767 
a4 - 5.925015300984 -37.689181901735 151.820348299569 
a5 - - 15.929876969293 -131.434216376403 

a6 - - - 44.578524178006 
R2 0.9892459906109 0.9960750831911 0.9985235712740 0.9993852906092 

 

 
                                             (a) 

 
                                                (b) 

 
                                          (c) 

 
                                           (d) 

Figure 5. Polynomial regression for the albedo values with (a) third order, (b) 4th order, (c) 5th order and, (d) 6th order 
polynomials. 

 

Since we know the polynomial coefficients, we can 
predict the new data. The predicted values will be given in 
ANN section together with the ANN results.  

 

PR Application for The Milne Problem  
The correlation matrix and the HN method results are 

given in Figure 6 where the target corresponds to the 
extrapolation distance. The correlation between the 

extrapolation distance values and c  values has negative 

value. It corresponds to the extrapolation distance values 
decrease as c  values increase. The polynomial 

coefficients are given in Table 4 with the 2R  values. The 
behaviours of the polynomials are given in Figure 7. The 
predicted PR results for the extrapolation distance are 
given together with the ANN results. 
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(a)                                  

(b) 

Figure 6. (a) The correlation matrix for the secondary neutron number and the extrapolation distance values. (b) 
The behaviour of the calculated the extrapolation distance values. 

Table 4. The polynomial coefficients for the Milne problem  

Polynomial  
Coefficients  

Third order  4th order 
polynomial 

5th order polynomial 6th order polynomial 

a0 12.731039590977 15.788245491725 18.485254724793 20.894687303262 
a1 -54.931030528914 -94.652754304187 -139.480703388677 -187.134618844626 
a2 83.735974910281 231.577867207033 469.633521969347 795.996424716015 

a3 -41.293833149226 -
247.138836479952 

-786.754877968709 -1823.178700875148 

a4 - 95.432074098969 640.269808323104 2302.409952872807 

a5 - - -201.601504460371 -1507.521802226705 
a6 - - - 399.319132359482 
R2 0.9714452701730 0.9940761925904 0.9990018141316 0.999872681941 

 

 
                                             (a) 

 
                                                (b) 

 
                                          (c) 

 
                                           (d) 

Figure 7. Polynomial regression for the extrapolation distance values with (a) third order, (b) 4th order, (c) 5th order, and (d) 
6th order polynomials. 

 

PR Application for The Criticality Problem  
The correlation matrix and the HN method results are given in Figure 8 

where the target corresponds to the critical thickness values. The 

correlation between the criticality thickness values and c  values has 

negative value. It corresponds to the critical thickness values decrease as 

c  values increase. The polynomial coefficients are given in Table 5 with 

the 
2R  values. The behaviours of the polynomials are given in Figure 9. 
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                                                (a) 

                                 
(b) 

Figure 8. (a) The correlation matrix for the secondary neutron number and the extrapolation distance values. (b) 
The behaviour of the calculated the extrapolation distance values. 

Table 5. The polynomial coefficients for the critically problem  

Polynomial  
Coefficients  

Third order  4th order polynomial 5th order polynomial 6th order polynomial 

a0 36.033612931841 94.467135307170 244.733526359218 627.280616843006 
a1 -

52.875734964750 
-193.416454497710 -646.162511121329 -2030.175944634479 

a2 26.241293304929 149.504546920933 683.519407553603 2733.972521931903 
a3 -4.326510203990 -51.117712902239 -359.541070193650 -1952.377568565584 
a4 - 6.498778152535 93.803659999828 778.418589815078 
a5 - - -9.700542427477 -164.163088552406 

a6 - - - 14.302087604165 
R2 0.9707663267140 0.992025771469 0.9980065173723 0.9995529480494 

 

 
                                             (a) 

 
                                                (b) 

 
                                          (c)  

                                           (d) 

Figure 9. Polynomial regression for the critical thickness values with (a) third order, (b) 4th order, (c) 5th order, and (d) 
6th order polynomials. 
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Application of ANN  
 
ANN application is different from PR application. ANN 

includes hyperparameters which are depend on the 
problem and the user. It is important that there is no any 
linearity among these hyperparameters. The used 

hyperparameters for each problem are given in Table 6. 
Unfortunately, the values or situations of these 
hyperparameters depend on the experience and the type 
of problem.  The ANN results for albedo are given in Figure 
10 with the loss functions. 

 

Table 6. The ANN hyperparameters used in this study 

Hyperparameters Albedo The Milne problem Criticality  

Number of neurons  200 200 200 
Epoch number 300 600 600 
Batch size parameter 8 8 8 
Test size 0.2 0.2 0.2 
Validation split parameter 0.2 0.2 0.2 
Number of hidden layers 5 5 10 
Loss function msle msle msle 
Optimization function  adam adam adam 

Activation function LRelu / 
Elu(a=0.1) 

LRelu / Elu(a=0.1) LRelu / 
Elu(a=0.4) 

msle: Mean square logarithmic error 

 

 
                                             (a) 

 
                                                (b) 

 
                                          (c) 

 
                                           (d) 

Figure 10. (a) ANN with Leaky Relu activation function, (b) Loss function for Leaky Rely, (c) ANN with Elu activation 
function, (d) Loss function for Elu. 

Figures 11 and 12 show the ANN results with Leaky 
Relu and Elu activation functions and PR results with third 
order and 4th order and with 5th and 6th order PR results. 
These figures are given as separated not to cause 
confusion. According to the results PR gives good results 
for the training data set range. But PR results are not good 

for out of the training data set. While ANN results are 
reasonable. Table 7 represents the predicted values by PR 
and ANN predictions and the calculated data by HN 
method. According to the tabulated results, ANN results 
are better than the PR results in the training data range.  
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                             (a) 

 
                                 (b) 

Figure 11. (a) ANN results and PR of third and 4th order 
polynomials, 

Figure 11 (b). ANN results and PR with 5th and 6th order 
polynomials. 

Table 7. The predicted albedo values with PR and ANN, HN results and the literature data  

c PR third 

order 

PR 4th 

order 

PR 5th 

order 

PR 6th 

order 

ANN 

LeakyRelu 

ANN ELu HN results Ref 

[6] 

0.05 -0.040485943 0.052855023 -0.030277386 0.055357485 0.015550368 0.019501526 0.010527886 - 
0.10 0.003865673 0.028743431 0.019288064 0.022382941 0.027096316 0.021702837 0.021697657 0.0217 
0.15 0.037714275 0.023747507 0.043210760 0.025665113 0.038747564 0.028760070 0.021697317 - 
0.20 0.062880055 0.032185027 0.054203130 0.042993716 0.052679956 0.041934598 0.046264869 0.04626 
0.25 0.081183203 0.049262519 0.061116334 0.062485542 0.066931598 0.055374168 0.059847996 - 
0.30 0.094443911 0.071075264 0.069537638 0.079410954 0.080342233 0.070764676 0.074451427 0.07445 
0.35 0.104482370 0.094607294 0.082387780 0.093521891 0.095019184 0.089193664 0.090220877 - 

0.40 0.113118771 0.117731395 0.100518348 0.106881382 0.110837251 0.108875334 0.107334905 0.1073 
0.45 0.122173307 0.139209104 0.123309139 0.122194567 0.126786008 0.127226219 0.126015681 - 
0.50 0.133466167 0.158690711 0.149265541 0.141641226 0.148766205 0.147058889 0.146544401 - 
0.55 0.148817544 0.176715258 0.176615896 0.166209819 0.170162231 0.169510245 0.169284290 - 
0.60 0.170047629 0.194710540 0.203908873 0.195533031 0.196252808 0.195216626 0.194716451 0.1947 
0.65 0.198976613 0.214993102 0.230610837 0.228224827 0.226612359 0.224009961 0.223497145 - 
0.70 0.237424687 0.240768243 0.257703221 0.262719018 0.258634686 0.255775630 0.256556726 - 
0.75 0.287212043 0.276130016 0.288279897 0.298609331 0.295483530 0.293667436 0.295279357 - 

0.80 0.350158872 0.326061223 0.328144544 0.338490986 0.346499681 0.344976991 0.341866500 0.3419 
0.85 0.428085366 0.396433420 0.386408019 0.390303793 0.403047055 0.405470312 0.400170417 - 
0.90 0.522811714 0.494006916 0.476085728 0.470176740 0.494039237 0.500720441 0.478024534 0.4780 
0.95 0.636158110 0.626430770 0.614694997 0.605774103 0.638666987 0.630749643 0.596668782 - 

 

The Milne problem results with ANN are given in 
Figure 12. The predicted values are given in Table 8. ANN 
results are better than the PR results as in the albedo 
investigation. The comparisons are given in Figures 13 and 
14. The critical thickness results with ANN are given in 
Figure 15 with the loss functions. The comparisons of the 

results with both ANN and PR are given in Figures 16 and 
17.  The predicted values and calculated values with HN 
method are given in Table 9. Table 10 represents the CPU 
times for ANN calculations. 
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                                             (a) 

 
                                                (b) 

 
                                          (c) 

 
                                           (d) 

Figure 12. (a) ANN with Leaky Relu activation function, (b) Loss function for Leaky Rely, (c) ANN with Elu activation 
function, (d) Loss function for Elu. 

 

 
                             (a) 

 
                                 (b) 

Figure 13. ANN results and PR with third and 4th order 
polynomials. 

Figure 14. ANN results and PR with 5th and 6th order 
polynomials 
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Table 8. The predicted albedo values with PR and ANN, HN results and the literature data  

c PR third 

order 

PR 4th 

order 

PR 5th 

order 

PR 6th 

order 

ANN 

LeakyRelu 

ANN ELu HN 

results 

Ref [6] 

0.05 10.188666273 11.604256540 12.590897686 13.313975286 11.840276718 11.550756454 18.17324720 - 
0.10 8.034002454 8.401153104 8.508775693 8.533576061 8.537860870 8.543089867 8.538288268 8.53829 

0.15 6.236077760 6.015053273 5.783433224 5.636852014 5.736626625 5.809600353 5.426971982 - 
0.20 4.763921816 4.296389946 4.040335114 3.949196288 3.837925434 3.960925341 3.923907695 3.92391 

0.25 3.586564248 3.109910836 2.978306502 2.992731577 2.928089142 3.025303841 3.054278391 - 
0.30 2.673034679 2.334678464 2.361972772 2.445501237 2.494558573 2.496745348 2.494727359 2.49473 

0.35 1.992362736 1.864070166 2.014199497 2.105152759 2.157500029 2.143542767 2.107561555 - 
0.40 1.513578044 1.605778085 1.808532382 1.857113569 1.824761152 1.826388121 1.824900385 1.82490 

0.45 1.205710227 1.481809179 1.661637210 1.647259169 1.581019044 1.614304304 1.609850598 - 
0.50 1.037788910 1.428485213 1.525739783 1.459073629 1.440720677 1.441888928 1.440849770 1.44085 

0.55 0.978843720 1.396442766 1.381065865 1.295302402 1.319161654 1.315809488 1.304544227 - 
0.60 0.997904281 1.350633227 1.228281131 1.164097496 1.203084111 1.206238747 1.192259812 1.19226 

0.65 1.064000218 1.270322798 1.080931103 1.069654976 1.096536160 1.100451231 1.098132352 - 
0.70 1.146161157 1.149092489 0.957881098 1.007344810 1.017981768 1.019245267 1.018061067 1.01806 

0.75 1.213416721 0.994838123 0.875756172 0.963333053 0.960831523 0.961277604 0.949094398 - 
0.80 1.234796538 0.829770334 0.841381062 0.918696374 0.903681397 0.903938890 0.889054602 0.889055 

0.85 1.179330231 0.690414567 0.844220129 0.858028921 0.846531689 0.846978545 0.836299972 - 
0.90 1.016047426 0.627611078 0.848817303 0.782541528 0.789381742 0.790483654 0.789569451 0.789569 

0.95 0.713977749 0.706514934 0.787236027 0.727653262 0.728278637 0.733815908 0.747878268 - 

 

 
                                             (a) 

 
                                                (b) 

 
                                          (c) 

 
                                           (d) 

Figure 15. (a) ANN with Leaky Relu activation function, (b) Loss function for Leaky Rely, (c) ANN with Elu activation 
function, (d) Loss function for Elu. 
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                             (a) 

 
                                 (b) 

Figure 16. ANN results and PR with third and 4th order 
polynomials. 

Figure 17. ANN results and PR with 5th and 6th order 
polynomials 

 

Table 9. The predicted critical thickness  values with PR and ANN, HN results and the literature data  

c PR third 

order 

PR 4th 

order 

PR 5th 

order 

PR 6th 

order 

ANN 

LeakyRelu 

ANN ELu HN 

results 

Ref [6] 

1.05 4.436640713 4.932784128 5.267616683 5.500000720 4.759516716 4.665410995 6.600527483 - 
1.10 3.863684288 4.086722354 4.179200859 4.212667744 4.239711285 4.222702503 4.226619270 4.22674 
1.15 3.350546912 3.380727934 3.335961807 3.284674501 3.389765739 3.397710323 3.187897630 - 
1.20 2.893983701 2.798395958 2.692706239 2.625772469 2.603260517 2.569414139 2.578758522 - 
1.25 2.490749773 2.324296336 2.209944696 2.163469717 2.217116833 2.138610840 2.170721623 - 
1.30 2.137600245 1.943973792 1.853527782 1.840655903 1.889006495 1.871923208 1.875451092 1.87766 
1.35 1.831290235 1.643947868 1.594282390 1.613388171 1.664572239 1.643992543 1.650649761 - 
1.40 1.568574859 1.411712922 1.407647933 1.448837946 1.487948179 1.470546722 1.473207096 1.47688 
1.45 1.346209236 1.235738131 1.273312576 1.323398629 1.332890511 1.329103589 1.329304314 - 
1.50 1.160948482 1.105467485 1.174849460 1.220954189 1.210703254 1.213001370 1.210113083 - 
1.55 1.009547716 1.011319793 1.099352938 1.131308657 1.107202888 1.109943986 1.109702483 - 
1.60 0.888762053 0.944688681 1.037074800 1.048776508 1.012116909 1.021637082 1.023926061 1.03039 
1.65 0.795346613 0.897942591 0.981060505 0.970933957 0.933853269 0.952186227 0.949789829 - 
1.70 0.726056511 0.864424782 0.926785412 0.897531141 0.871189833 0.891013980 0.885073431 0.89275 
1.75 0.677646865 0.838453328 0.871791003 0.829565207 0.809955120 0.839110076 0.828092811 - 
1.80 0.646872794 0.815321123 0.815321123 0.768514291 0.758651495 0.795110703 0.777545939 0.7863 
1.85 0.630489413 0.791295876 0.757958201 0.715732404 0.714092731 0.755685329 0.732409325 - 
1.90 0.625251840 0.763620111 0.701259481 0.672005211 0.677867234 0.718870461 0.691866713 0.70157 
1.95 0.627915194 0.730511172 0.647393258 0.637266710 0.652532697 0.684144139 0.655258774 - 
2.00 0.635234590 0.691161218 0.598775100 0.610476808 0.629557252 0.651447415 0.622046876 0.63257 

2.05 0.643965147 0.645737224 0.557704080 0.589659799 0.607055962 0.620682538 0.591786523 - 
2.10 0.650861981 0.595380984 0.525999009 0.572103739 0.584608793 0.591545403 0.564107544 - 
2.15 0.652680211 0.542209106 0.504634661 0.554720714 0.562175453 0.563958168 0.538665175 - 
2.20 0.646174953 0.489313017 0.493378006 0.534568018 0.539779484 0.537853360 0.515298304 - 
2.25 0.628101325 0.440758958 0.490424436 0.509530217 0.517384887 0.513141751 0.493649386 - 
2.30 0.595214444 0.401587991 0.492034001 0.479162122 0.494980454 0.489778817 0.473655588 - 
2.35 0.544269428 0.377815991 0.492167630 0.445692651 0.472600222 0.467705846 0.455029751 - 
2.40 0.472021393 0.376433650 0.482123370 0.415189600 0.450304508 0.446859717 0.437739484 - 
2.45 0.375225457 0.405406479 0.450172606 0.398885300 0.427969217 0.427191317 0.421561906 - 
2.50 0.250636738 0.473674805 0.381196300 0.414663185 0.405631959 0.408649623 0.406469869 - 
2.55 0.095010353 0.591153769 0.256321214 0.488705251 0.383291245 0.391174197 0.392302667 - 

Table 10. The CPU times in seconds 

Activation function Albedo Milne’s problem Criticality 

Leaky Relu 7.81 14.20 18.60 
Elu 7.66 14.90 21.30 
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Conclusions 
 

In this study, two different machine learning 
algorithms, polynomial regression and artificial neural 
network, were applied to isotropic scattering neutron 
transport theory problems. This study is about the data 
mining for the existing data for albedo, Milne problem, 
and criticality problem. These data are the training data. 
The training data for each problem was calculated by HN 
method.  

The success of machine learning applications depends 
on the size of the training data. We studied here with 
restricted data. We have only 11 different data for each 
problem. We could have created a larger data set, but we 
especially wanted to force the artificial neural network.  

According to the results   
Polynomial regression could give reasonable results 

for only training data range. PR results are not good for 
out of data ranges. Therefore, the predictions used PR 
should belong to the training data range.  

ANN results are more successful both the training data 
range and out of the training data range. Although ANN 
calculations take more time than polynomial regression, 
the success of ANN is worth it.  

ANN includes hyperparameters. Unfortunately, there 
is no any linearity among these hyperparameters. Used 
hyperparameters in this study are given in Table 6. When 
we create a larger neural network of 10 or 20 hidden 
layers, we see that ANN result becomes an underfitting 
situation, a linear behaviour. When we create a smaller 
neural network, we again see that ANN gives an 
underfitting result. This comparison is only for the number 
of hidden layers. Similar comparisons are valid for other 
hyperparameters such as neuron number, activation 
function, optimizers. For example, if we think that we can 
choose much more neuron number then, ANN will give 
underfitting results. The hyperparameters in this study are 
the valid for the training data set in this study. If we use 
richer data set, then the hyperparameters could be 
updated.  

Although the values are completely different for the 
extrapolation distance and the criticality problem, the 
behaviour is similar. The extrapolation distance and the 
critical thickness values decrease as the secondary 
neutron number increase. However, ANN includes 5 
hidden layers in the extrapolation distance calculations, 
10 hidden layers in the critical thickness calculations.  
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