
726

Cumhuriyet Science Journal

Cumhuriyet Sci. J., 43(4) (2022) 726-738
DOI: https://doi.org/10.17776/csj.1163514

│ csj.cumhuriyet.edu.tr │ Founded: 2002 ISSN: 2587-2680 e-ISSN: 2587-246X Publisher: Sivas Cumhuriyet University

Machine Learning Applications to the One-speed Neutron Transport Problems

Recep Gökhan Türeci 1,a,*
1Kırıkkale Vocational School, Kırıkkale University, Kırıkkale, Türkiye.
*Corresponding author

Research Article ABSTRACT

History
Received: 17/08/2022

Accepted: 26/10/2022

Copyright

©2022 Faculty of Science,
Sivas Cumhuriyet University

Machine learning is a branch of artificial intelligence and computer science. The purpose of machine learning is
to predict new data by using the existing data. In this study, two different machine learning methods which are
Polynomial Regression (PR) and Artificial Neural Network (ANN) are applied to the neutron transport problems
which are albedo problem, the Milne problem, and the criticality problem. ANN applications contain two
different activation functions, Leaky Relu and Elu. The training data set is calculated by using the HN method. PR
and ANN results are compared with the literature data. The study is only based on the existing data; therefore,
the study could be thought only data mining on the one-speed neutron transport problems for isotropic
scattering.
Keywords: Polynomial Regression, Artificial Neural Network, Leaky Relu activation function, Elu activation
functions, Machine Learning.

a tureci@gmail.com https://orcid.org/0000-0001-6309-6300

Introduction

The neutron distribution is essential in nuclear reactor
operations. Although the diffusion theory results are used
in the nuclear reactor theory, the solution of the neutron
transport equation is also important. However, the
neutron transport equation has seven independent
variables. Therefore, reasonable approximations can be
used, and thus the one-speed, homogeneous medium and
plane geometry neutron transport equation can be
written. All neutrons have the same energy in the one-
speed approximation. The secondary neutron number, c,
is a constant in a homogeneous medium. There are two
variables, which are spatial and angular variables, in the
plane geometry approximation.

The one-speed, homogeneous medium and plane
geometry neutron transport equation is given by

1

1

,
, ,

2

x c
x x d

x

 (1)

where x and correspond to the spatial and the

cosine of direction respectively. ,x is the neutron

distribution at x point and direction, and c

corresponds to the secondary neutron number. The
solution of Eq. (1) has been studied with different
numerical methods such as the SN method [1], PN and DPN
[2], and semi-numerical methods such as the Case method
[3,4], the CN method [5], the FN method [6] and HN method
[7].

Machine Learning is the research topic that computer
programs can learn from data [8]. After the learning
process, the new data can be predicted by the learned
programs. Especially as a result of the discovery of
quantum mechanics and the breakthroughs in technology

and computer systems, data scientists claim that we have
a large pile of data that should be analysed. Machine
learning studies are important today in terms of analysing
this large data pile and creating smart systems that can
decide on its own.

Machine learning applications are now an issue that is
studied in neutron transport and reactor calculations like
many fields with different applications. Chen et.al. [9]
investigated kinetic models in linear transport theory by
deep neural network. The mathematical structure of ANN
is well defined in this reference. So we are not interested
in the details of the mathematical background of ANN
here. We are interested in only application of ANN to
data. Whewell and McClarren [10] investigated the data
reduction for neutron scattering and fission sources by
DJINN (Deep Jointly Informed Neural Networks). The data
requirements are reduced by 94 % of the original data
according to this study. Xie et al. [11] developed ANN to
solve neutron diffusion problems. They investigated two
different approach which are boundary dependent
method and boundary independent method. Zolfaghari et
al. [12] searched the thermalization devises, which
include collimators and moderators, by multilayer
perceptron neural network. Chen et al. [13] investigated
neutron and X-ray scatterings by machine learning.

In this study, we are not interested in solving any
equation. We are interested in only data. Therefore, our
study can be considered as data mining for one-speed
neutron transport theory. The data required for machine
learning is calculated by HN method. The data is the
training data for the one-speed neutron transport
problems. These problems are half-space albedo, the
Milne problem, and the criticality problem respectively.
The albedo is defined as the ratio between the net

http://xxx.cumhuriyet.edu.tr/
https://orcid.org/0000-0001-6309-6300

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

727

outgoing and the net incoming neutron fluxes over a
surface. The Milne problem deals with the finding of the
extrapolation length which is the point where the flux is
zero. The criticality problem is studied to find the
criticality equation. This equation gives the relation
between the secondary neutron number and the reactor
thickness. These problems data, which are calculated with
HN method, are examined with polynomial regression
(PR) and the artificial neural network (ANN) in this study.

PR algorithm is run with the least squares method. The
aim of PR is to find a regression relation which provides
the training data set. To apply PR, numpy [14], scipy [15]
and scikit-learn (sklearn) [16] modules in Python can be
used to data. ANN algorithm is different from PR. ANN is
an improved algorithm of the Logistic regression (LR)
algorithm which gives only two different results, true or
false. Moreover, ANN includes some hyperparameters
which are dependent to the data set and the programmer.
To determine these hyperparameters is based on
experience over studying the data. To apply ANN, keras
[17] and tensorflow [18] modules in Python can be used
to data. ANN hyperparameters are given in the Table, but
particularly two different activation functions, which are
Leaky Relu (Leaky Rectified Linear Unit) [19] and Elu
(Exponential Linear Unit) [20] activation functions, are
studied in this study.

Material and Methods

The Polynomial Regression (PR) and the Results

with PR

The PR is a fit application between ,x y , which are

independent variable and the dependent variable,
respectively. The polyfit method [14] in numpy module
was used to the imported data for PR in this study. The
polyfit method is based on the least squares method. The
squares of the residuals, which are the differences
between a calculated or an observed data and the fitted
value, is performed minimizing in this method. Thus, the
coefficients of the polynomial are determined. The
polynomial is given as below:

 0 1 2

0 1 2 ...
N

n N

n N

n

P x a x a x a x a x a x (2)

The independent variable is the secondary neutron

number, c, in all studies. The dependent variables are
albedo values, extrapolation distance, and critical
thickness for each problem, respectively. Therefore,
Equation (2) can be written as in Eq. (3).

7

0 1 2 7

0 1 2 7

0

...n

n

n

P c a c a c a c a c a c

 (3)

The Artificial Neural Network (ANN)
The basic of artificial neural networks is based on

logistic regression [8]. A logistic regression, Figure 1,

consists of an input layer, a summation layer, and an
output layer. The result of the summation is applied to the
activation function. If the activation value is bigger than a
threshold value, then the output is determined. The
output gives only two different results. Therefore, the
logistic regression is also called as binary classification.
This structure runs as a biological neuron cell. It consists
of dendrites, nuclei of the cell, and axon. The dendrite is
the input, and the axon is the output. The signals are
collected by dendrites in the nucleus. This determines the
status of the cell. If the collected signal value is bigger than
a threshold value, then the next cell is activated. An
artificial neural cell in Figure 2 works similarly to a
biological cell.

Figure 1. A logistic regression with computation graph.

Figure 2. An artificial neuron cell in ANN.

Here ix , i and b correspond to input data, weights

and bias in machine learning, respectively. The first
transition from input to output doesn’t generally give a
good result, and it is called as the forward propagation.
Therefore, the backward propagation is used. Thus, the
weights and bias values are updated in the backward
propagation process. The optimization function is used in
this stage. It tries to minimize the loss value.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

728

An ANN includes hidden layers unlike logistic

regression. Thus, a typical ANN consists of an input layer,

hidden layer, and the output layer as in Figure 3. An ANN

study tries to find the weights, i , and the bias, b, of the

interested in problem.

Figure 3. The structure of an Artificial Neural Network.

The connection of the layers is also important. Keras
module gives us different model structures. If we have
only one input layer and only one output layer, and if we
don’t use the output of another layer, then the sequential
model [21] will be a good option to use.

In this study, ANN model is created by the sequential
model, and the optimization function is selected as adam
(adaptive moment estimation) [22] for the optimization
function. There are different activation functions in ANN
algorithms, and there are certain advantages and
disadvantages of these functions. The properties of the
activation functions used in this study are given in Table 1.

Leaky Relu activation function is focused to zero, and
there are no killed neutrons. The function has 0.01x for
the negative value. Elu (Exponential Linear Unit)
activation function includes an exponential term and
there are no killed neurons. However, it runs slowly in
terms of the calculation time since it includes an
exponential term.

Table 1. Activation functions and its properties used in this study

Mathematical definition of the activation function The behaviour of the activation function

 Re max 0.01 ,Leaky Luh x x x

 1 , 0

, , 0

x

ELu

e x
h

x x

Application of PR

Since we are interested in the data mining for one-

speed neutron transport problems, we need a training
data set. This data set is calculated by using the HN
method. The HN calculations were performed with
Mathematica 12.2 software, and WorkingPrecision value
was selected as 32.

It is important that the data should contain thousands
of data for the success of ANN. However, we calculated
only 11 different data according to the secondary neutron
number. We could calculate much more data at shorter
intervals and calculate hundreds or thousands of data, but
since we have not examined complex problems, we work
with these 11 data, especially by forcing the neural
network. The training data set is given in Table 2

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

729

Table 2. The training data set for varying c with HN method
c Albedo c Extrapolation distance c Critical thickness

0.10 0.0216976569566343 0.10 8.5382882681302200 1.10 4.2266192698707600

0.20 0.0462648688682488 0.20 3.9239076951733300 1.20 2.5787585222225100

0.30 0.0744514267270763 0.30 2.4947273586756700 1.30 1.8754510915842200

0.40 0.1073349048799300 0.40 1.8249003850628600 1.40 1.4732070964173800

0.50 0.1465444012833310 0.50 1.4408497695258000 1.50 1.2101130830389700

0.60 0.1947164506629280 0.60 1.1922598119270000 1.60 1.0239260606883200

0.70 0.2565567261583740 0.70 1.0180610666686400 1.70 0.8850734307673520

0.80 0.3418664995580910 0.80 0.8890546020955310 1.80 0.7775459392298720

0.90 0.4780245341005770 0.90 0.7895694514644200 1.90 0.6918667133043400

0.95 0.5966629255385620 0.95 0.7478782683064080 2.00 0.6220468763406790

0.98 0.7210172380719860 0.98 0.7249509445737220 2.50 0.4064698693764990

PR Application for Albedo Data
First, we should try to understand the correlation

matrix. It gives the correlations between the variables
which are called as features in the machine learning
language. If the correlation between the two features is
close to the unit value, then these features have a linear
relation. If the correlation is close to the negative unit

value, then the relation between the features is again
linear, but the slope of the line is negative. If the
correlation is close to zero, then it is understood that
there is no relationship between the two features. The
correlation matrix for the albedo is given in Figure 4-a.

 (a) (b)

Figure 4. (a) The correlation matrix for the secondary neutron number and the albedo values. (b) The behaviour of
the calculated albedo values.

The target in Figure 4-a corresponds to the albedo.
According to Figure 4-a, the correlation between the
secondary neutron number and the albedo values is 0.92.

This means that there is a strong relationship between c

and albedo, and this relationship is a close linear
behaviour. Figure 4-b represents the HN results for the
albedo and supports to the result of Figure 4-a.

Polyfit method in numpy module is used on the
training data to apply polynomial regression. This analysis
is performed for third-order, 4th order, 5th order, and 6th

order polynomials. The coefficients for each polynomial

regression and 2R values are given in Table 3, and the
graphics of the polynomials on the training data are given
in Figure 5.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

730

Table 3. The polynomial coefficients for the albedo problem

Polynomial
Coefficients

Third order 4th order polynomial 5th order polynomial 6th order polynomial

a0 -0.097160764740 0.102653259668 -0.122656652880 0.160801117064
a1 1.268863094720 -1.301081444528 2.414879932232 -3.161361500426

a2 -2.828679335978 6.614462062288 -12.913954563141 24.992183953605
a3 2.426921750454 -10.538806383260 33.205888658331 -86.116136609767
a4 - 5.925015300984 -37.689181901735 151.820348299569
a5 - - 15.929876969293 -131.434216376403

a6 - - - 44.578524178006
R2 0.9892459906109 0.9960750831911 0.9985235712740 0.9993852906092

 (a)

 (b)

 (c)

 (d)

Figure 5. Polynomial regression for the albedo values with (a) third order, (b) 4th order, (c) 5th order and, (d) 6th order
polynomials.

Since we know the polynomial coefficients, we can
predict the new data. The predicted values will be given in
ANN section together with the ANN results.

PR Application for The Milne Problem
The correlation matrix and the HN method results are

given in Figure 6 where the target corresponds to the
extrapolation distance. The correlation between the

extrapolation distance values and c values has negative

value. It corresponds to the extrapolation distance values
decrease as c values increase. The polynomial

coefficients are given in Table 4 with the 2R values. The
behaviours of the polynomials are given in Figure 7. The
predicted PR results for the extrapolation distance are
given together with the ANN results.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

731

(a)

(b)

Figure 6. (a) The correlation matrix for the secondary neutron number and the extrapolation distance values. (b)
The behaviour of the calculated the extrapolation distance values.

Table 4. The polynomial coefficients for the Milne problem

Polynomial
Coefficients

Third order 4th order
polynomial

5th order polynomial 6th order polynomial

a0 12.731039590977 15.788245491725 18.485254724793 20.894687303262
a1 -54.931030528914 -94.652754304187 -139.480703388677 -187.134618844626
a2 83.735974910281 231.577867207033 469.633521969347 795.996424716015

a3 -41.293833149226 -
247.138836479952

-786.754877968709 -1823.178700875148

a4 - 95.432074098969 640.269808323104 2302.409952872807

a5 - - -201.601504460371 -1507.521802226705
a6 - - - 399.319132359482
R2 0.9714452701730 0.9940761925904 0.9990018141316 0.999872681941

 (a)

 (b)

 (c)

 (d)

Figure 7. Polynomial regression for the extrapolation distance values with (a) third order, (b) 4th order, (c) 5th order, and (d)
6th order polynomials.

PR Application for The Criticality Problem
The correlation matrix and the HN method results are given in Figure 8

where the target corresponds to the critical thickness values. The

correlation between the criticality thickness values and c values has

negative value. It corresponds to the critical thickness values decrease as

c values increase. The polynomial coefficients are given in Table 5 with

the
2R values. The behaviours of the polynomials are given in Figure 9.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

732

 (a)

(b)

Figure 8. (a) The correlation matrix for the secondary neutron number and the extrapolation distance values. (b)
The behaviour of the calculated the extrapolation distance values.

Table 5. The polynomial coefficients for the critically problem

Polynomial
Coefficients

Third order 4th order polynomial 5th order polynomial 6th order polynomial

a0 36.033612931841 94.467135307170 244.733526359218 627.280616843006
a1 -

52.875734964750
-193.416454497710 -646.162511121329 -2030.175944634479

a2 26.241293304929 149.504546920933 683.519407553603 2733.972521931903
a3 -4.326510203990 -51.117712902239 -359.541070193650 -1952.377568565584
a4 - 6.498778152535 93.803659999828 778.418589815078
a5 - - -9.700542427477 -164.163088552406

a6 - - - 14.302087604165
R2 0.9707663267140 0.992025771469 0.9980065173723 0.9995529480494

 (a)

 (b)

 (c)

 (d)

Figure 9. Polynomial regression for the critical thickness values with (a) third order, (b) 4th order, (c) 5th order, and (d)
6th order polynomials.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

733

Application of ANN

ANN application is different from PR application. ANN

includes hyperparameters which are depend on the
problem and the user. It is important that there is no any
linearity among these hyperparameters. The used

hyperparameters for each problem are given in Table 6.
Unfortunately, the values or situations of these
hyperparameters depend on the experience and the type
of problem. The ANN results for albedo are given in Figure
10 with the loss functions.

Table 6. The ANN hyperparameters used in this study

Hyperparameters Albedo The Milne problem Criticality

Number of neurons 200 200 200
Epoch number 300 600 600
Batch size parameter 8 8 8
Test size 0.2 0.2 0.2
Validation split parameter 0.2 0.2 0.2
Number of hidden layers 5 5 10
Loss function msle msle msle
Optimization function adam adam adam

Activation function LRelu /
Elu(a=0.1)

LRelu / Elu(a=0.1) LRelu /
Elu(a=0.4)

msle: Mean square logarithmic error

 (a)

 (b)

 (c)

 (d)

Figure 10. (a) ANN with Leaky Relu activation function, (b) Loss function for Leaky Rely, (c) ANN with Elu activation
function, (d) Loss function for Elu.

Figures 11 and 12 show the ANN results with Leaky
Relu and Elu activation functions and PR results with third
order and 4th order and with 5th and 6th order PR results.
These figures are given as separated not to cause
confusion. According to the results PR gives good results
for the training data set range. But PR results are not good

for out of the training data set. While ANN results are
reasonable. Table 7 represents the predicted values by PR
and ANN predictions and the calculated data by HN
method. According to the tabulated results, ANN results
are better than the PR results in the training data range.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

734

 (a)

 (b)

Figure 11. (a) ANN results and PR of third and 4th order
polynomials,

Figure 11 (b). ANN results and PR with 5th and 6th order
polynomials.

Table 7. The predicted albedo values with PR and ANN, HN results and the literature data

c PR third

order

PR 4th

order

PR 5th

order

PR 6th

order

ANN

LeakyRelu

ANN ELu HN results Ref

[6]

0.05 -0.040485943 0.052855023 -0.030277386 0.055357485 0.015550368 0.019501526 0.010527886 -
0.10 0.003865673 0.028743431 0.019288064 0.022382941 0.027096316 0.021702837 0.021697657 0.0217
0.15 0.037714275 0.023747507 0.043210760 0.025665113 0.038747564 0.028760070 0.021697317 -
0.20 0.062880055 0.032185027 0.054203130 0.042993716 0.052679956 0.041934598 0.046264869 0.04626
0.25 0.081183203 0.049262519 0.061116334 0.062485542 0.066931598 0.055374168 0.059847996 -
0.30 0.094443911 0.071075264 0.069537638 0.079410954 0.080342233 0.070764676 0.074451427 0.07445
0.35 0.104482370 0.094607294 0.082387780 0.093521891 0.095019184 0.089193664 0.090220877 -

0.40 0.113118771 0.117731395 0.100518348 0.106881382 0.110837251 0.108875334 0.107334905 0.1073
0.45 0.122173307 0.139209104 0.123309139 0.122194567 0.126786008 0.127226219 0.126015681 -
0.50 0.133466167 0.158690711 0.149265541 0.141641226 0.148766205 0.147058889 0.146544401 -
0.55 0.148817544 0.176715258 0.176615896 0.166209819 0.170162231 0.169510245 0.169284290 -
0.60 0.170047629 0.194710540 0.203908873 0.195533031 0.196252808 0.195216626 0.194716451 0.1947
0.65 0.198976613 0.214993102 0.230610837 0.228224827 0.226612359 0.224009961 0.223497145 -
0.70 0.237424687 0.240768243 0.257703221 0.262719018 0.258634686 0.255775630 0.256556726 -
0.75 0.287212043 0.276130016 0.288279897 0.298609331 0.295483530 0.293667436 0.295279357 -

0.80 0.350158872 0.326061223 0.328144544 0.338490986 0.346499681 0.344976991 0.341866500 0.3419
0.85 0.428085366 0.396433420 0.386408019 0.390303793 0.403047055 0.405470312 0.400170417 -
0.90 0.522811714 0.494006916 0.476085728 0.470176740 0.494039237 0.500720441 0.478024534 0.4780
0.95 0.636158110 0.626430770 0.614694997 0.605774103 0.638666987 0.630749643 0.596668782 -

The Milne problem results with ANN are given in
Figure 12. The predicted values are given in Table 8. ANN
results are better than the PR results as in the albedo
investigation. The comparisons are given in Figures 13 and
14. The critical thickness results with ANN are given in
Figure 15 with the loss functions. The comparisons of the

results with both ANN and PR are given in Figures 16 and
17. The predicted values and calculated values with HN
method are given in Table 9. Table 10 represents the CPU
times for ANN calculations.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

735

 (a)

 (b)

 (c)

 (d)

Figure 12. (a) ANN with Leaky Relu activation function, (b) Loss function for Leaky Rely, (c) ANN with Elu activation
function, (d) Loss function for Elu.

 (a)

 (b)

Figure 13. ANN results and PR with third and 4th order
polynomials.

Figure 14. ANN results and PR with 5th and 6th order
polynomials

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

736

Table 8. The predicted albedo values with PR and ANN, HN results and the literature data

c PR third

order

PR 4th

order

PR 5th

order

PR 6th

order

ANN

LeakyRelu

ANN ELu HN

results

Ref [6]

0.05 10.188666273 11.604256540 12.590897686 13.313975286 11.840276718 11.550756454 18.17324720 -
0.10 8.034002454 8.401153104 8.508775693 8.533576061 8.537860870 8.543089867 8.538288268 8.53829

0.15 6.236077760 6.015053273 5.783433224 5.636852014 5.736626625 5.809600353 5.426971982 -
0.20 4.763921816 4.296389946 4.040335114 3.949196288 3.837925434 3.960925341 3.923907695 3.92391

0.25 3.586564248 3.109910836 2.978306502 2.992731577 2.928089142 3.025303841 3.054278391 -
0.30 2.673034679 2.334678464 2.361972772 2.445501237 2.494558573 2.496745348 2.494727359 2.49473

0.35 1.992362736 1.864070166 2.014199497 2.105152759 2.157500029 2.143542767 2.107561555 -
0.40 1.513578044 1.605778085 1.808532382 1.857113569 1.824761152 1.826388121 1.824900385 1.82490

0.45 1.205710227 1.481809179 1.661637210 1.647259169 1.581019044 1.614304304 1.609850598 -
0.50 1.037788910 1.428485213 1.525739783 1.459073629 1.440720677 1.441888928 1.440849770 1.44085

0.55 0.978843720 1.396442766 1.381065865 1.295302402 1.319161654 1.315809488 1.304544227 -
0.60 0.997904281 1.350633227 1.228281131 1.164097496 1.203084111 1.206238747 1.192259812 1.19226

0.65 1.064000218 1.270322798 1.080931103 1.069654976 1.096536160 1.100451231 1.098132352 -
0.70 1.146161157 1.149092489 0.957881098 1.007344810 1.017981768 1.019245267 1.018061067 1.01806

0.75 1.213416721 0.994838123 0.875756172 0.963333053 0.960831523 0.961277604 0.949094398 -
0.80 1.234796538 0.829770334 0.841381062 0.918696374 0.903681397 0.903938890 0.889054602 0.889055

0.85 1.179330231 0.690414567 0.844220129 0.858028921 0.846531689 0.846978545 0.836299972 -
0.90 1.016047426 0.627611078 0.848817303 0.782541528 0.789381742 0.790483654 0.789569451 0.789569

0.95 0.713977749 0.706514934 0.787236027 0.727653262 0.728278637 0.733815908 0.747878268 -

 (a)

 (b)

 (c)

 (d)

Figure 15. (a) ANN with Leaky Relu activation function, (b) Loss function for Leaky Rely, (c) ANN with Elu activation
function, (d) Loss function for Elu.

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

737

 (a)

 (b)

Figure 16. ANN results and PR with third and 4th order
polynomials.

Figure 17. ANN results and PR with 5th and 6th order
polynomials

Table 9. The predicted critical thickness values with PR and ANN, HN results and the literature data

c PR third

order

PR 4th

order

PR 5th

order

PR 6th

order

ANN

LeakyRelu

ANN ELu HN

results

Ref [6]

1.05 4.436640713 4.932784128 5.267616683 5.500000720 4.759516716 4.665410995 6.600527483 -
1.10 3.863684288 4.086722354 4.179200859 4.212667744 4.239711285 4.222702503 4.226619270 4.22674
1.15 3.350546912 3.380727934 3.335961807 3.284674501 3.389765739 3.397710323 3.187897630 -
1.20 2.893983701 2.798395958 2.692706239 2.625772469 2.603260517 2.569414139 2.578758522 -
1.25 2.490749773 2.324296336 2.209944696 2.163469717 2.217116833 2.138610840 2.170721623 -
1.30 2.137600245 1.943973792 1.853527782 1.840655903 1.889006495 1.871923208 1.875451092 1.87766
1.35 1.831290235 1.643947868 1.594282390 1.613388171 1.664572239 1.643992543 1.650649761 -
1.40 1.568574859 1.411712922 1.407647933 1.448837946 1.487948179 1.470546722 1.473207096 1.47688
1.45 1.346209236 1.235738131 1.273312576 1.323398629 1.332890511 1.329103589 1.329304314 -
1.50 1.160948482 1.105467485 1.174849460 1.220954189 1.210703254 1.213001370 1.210113083 -
1.55 1.009547716 1.011319793 1.099352938 1.131308657 1.107202888 1.109943986 1.109702483 -
1.60 0.888762053 0.944688681 1.037074800 1.048776508 1.012116909 1.021637082 1.023926061 1.03039
1.65 0.795346613 0.897942591 0.981060505 0.970933957 0.933853269 0.952186227 0.949789829 -
1.70 0.726056511 0.864424782 0.926785412 0.897531141 0.871189833 0.891013980 0.885073431 0.89275
1.75 0.677646865 0.838453328 0.871791003 0.829565207 0.809955120 0.839110076 0.828092811 -
1.80 0.646872794 0.815321123 0.815321123 0.768514291 0.758651495 0.795110703 0.777545939 0.7863
1.85 0.630489413 0.791295876 0.757958201 0.715732404 0.714092731 0.755685329 0.732409325 -
1.90 0.625251840 0.763620111 0.701259481 0.672005211 0.677867234 0.718870461 0.691866713 0.70157
1.95 0.627915194 0.730511172 0.647393258 0.637266710 0.652532697 0.684144139 0.655258774 -
2.00 0.635234590 0.691161218 0.598775100 0.610476808 0.629557252 0.651447415 0.622046876 0.63257

2.05 0.643965147 0.645737224 0.557704080 0.589659799 0.607055962 0.620682538 0.591786523 -
2.10 0.650861981 0.595380984 0.525999009 0.572103739 0.584608793 0.591545403 0.564107544 -
2.15 0.652680211 0.542209106 0.504634661 0.554720714 0.562175453 0.563958168 0.538665175 -
2.20 0.646174953 0.489313017 0.493378006 0.534568018 0.539779484 0.537853360 0.515298304 -
2.25 0.628101325 0.440758958 0.490424436 0.509530217 0.517384887 0.513141751 0.493649386 -
2.30 0.595214444 0.401587991 0.492034001 0.479162122 0.494980454 0.489778817 0.473655588 -
2.35 0.544269428 0.377815991 0.492167630 0.445692651 0.472600222 0.467705846 0.455029751 -
2.40 0.472021393 0.376433650 0.482123370 0.415189600 0.450304508 0.446859717 0.437739484 -
2.45 0.375225457 0.405406479 0.450172606 0.398885300 0.427969217 0.427191317 0.421561906 -
2.50 0.250636738 0.473674805 0.381196300 0.414663185 0.405631959 0.408649623 0.406469869 -
2.55 0.095010353 0.591153769 0.256321214 0.488705251 0.383291245 0.391174197 0.392302667 -

Table 10. The CPU times in seconds

Activation function Albedo Milne’s problem Criticality

Leaky Relu 7.81 14.20 18.60
Elu 7.66 14.90 21.30

Türeci / Cumhuriyet Sci. J., 43(4) (2022) 726-738

738

Conclusions

In this study, two different machine learning
algorithms, polynomial regression and artificial neural
network, were applied to isotropic scattering neutron
transport theory problems. This study is about the data
mining for the existing data for albedo, Milne problem,
and criticality problem. These data are the training data.
The training data for each problem was calculated by HN
method.

The success of machine learning applications depends
on the size of the training data. We studied here with
restricted data. We have only 11 different data for each
problem. We could have created a larger data set, but we
especially wanted to force the artificial neural network.

According to the results
Polynomial regression could give reasonable results

for only training data range. PR results are not good for
out of data ranges. Therefore, the predictions used PR
should belong to the training data range.

ANN results are more successful both the training data
range and out of the training data range. Although ANN
calculations take more time than polynomial regression,
the success of ANN is worth it.

ANN includes hyperparameters. Unfortunately, there
is no any linearity among these hyperparameters. Used
hyperparameters in this study are given in Table 6. When
we create a larger neural network of 10 or 20 hidden
layers, we see that ANN result becomes an underfitting
situation, a linear behaviour. When we create a smaller
neural network, we again see that ANN gives an
underfitting result. This comparison is only for the number
of hidden layers. Similar comparisons are valid for other
hyperparameters such as neuron number, activation
function, optimizers. For example, if we think that we can
choose much more neuron number then, ANN will give
underfitting results. The hyperparameters in this study are
the valid for the training data set in this study. If we use
richer data set, then the hyperparameters could be
updated.

Although the values are completely different for the
extrapolation distance and the criticality problem, the
behaviour is similar. The extrapolation distance and the
critical thickness values decrease as the secondary
neutron number increase. However, ANN includes 5
hidden layers in the extrapolation distance calculations,
10 hidden layers in the critical thickness calculations.

Acknowledgment

This work was studied with the computer system which

was collected with personal opportunities.

Conflicts of interest

There are no conflicts of interest in this work.

References

[1] Carlson B.G., Solution of the Transport Equation by SN
Approximations. Los Alamos Scientific Laboratory, LA-
1599, United States, (1955) 1-29.

[2] Lewis E.E., Miller W.F., Computational Methods of Neutron
Transport. United States, (1984).

[3] Case K.M., Zweifel P.F., Linear Transport Theory. Addition-
Wesley: MA, (1967) 1-270.

[4] Case K.M., Elementary solutions of the transport equation
and their applications, Annals of Phys., 9 (1) (1960) 1–23.

[5] Kavenoky A., The CN Method of Solving the Transport
Equation: Application to Plane Geometry, Nuclear Science
and Eng., 65 (2) (1978) 209-225.

[6] Grandjean P., Siewert C.E., The FN method in neutron-
transport theory. Part II: applications and numerical
results, Nucl. Sci. Eng., 69 (2) (1979) 161-168.

[7] Tezcan C., Kaşkaş A., Güleçyüz M.Ç., The HN method for
solving linear transport equation: theory and applications,
JQSRT., 78 (2) (2003) 243-254.

[8] Géron A., Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, 2nd ed. O'Reilly Media, (2019).

[9] Chen Z., Andrejevic N., Drucker N.C., Nguyen T., Xian R.P.,
Smidt T., Wang Y., Ernstorfer R., Tennant D.A., Chan M., Li
M., Machine learning on neutron and x-ray scattering and
spectroscopies, Chem. Phys. Rev., 2 (2021) 031301.

[10] Whewell B., McClarren R.G., Data reduction in
deterministic neutron transport calculations using
machine learning, Annals of Nuclear Energy., 176 (1)
(2022) 109276.

[11] Xie Y., Wang Y., Ma Y., Wu Z., Neural Network Based Deep
Learning Method for Multi-Dimensional Neutron Diffusion
Problems with Novel Treatment to Boundary, J. Nucl. Eng.,
2 (2021) 533-552.

[12] Zolfaghari M., Masoudi S.F., Rahmani F., Fathi A., Thermal
neutron beam optimization for PGNAA applications using
Q-learning algorithm and neural network, Sci. Rep., 12
(2022) 8635.

[13] Zheng C., Liub L., Muc L., Solving the linear transport
equation by a deep neural network approach, Preprint
submitted to Journal of Discrete and Continuous Dynamical
System-S., 15 (4) (2021) 669-686.

[14] Numpy. Available at:
https://numpy.org/doc/stable/user/index.html#user
Retrieved August 2022.

[15] Scipy. Available at: https://scipy.org/ Retrieved August
2022.

[16] Sklearn. Available at: https://scikit-learn.org/stable/
Retrieved August 2022.

[17] Keras. Available at: https://keras.io/ Retrieved August
2022.

[18] Tensorflow. Available at: https://www.tensorflow.org/
Retrieved August 2022.

[19] Polyfit. Available at:
https://numpy.org/doc/stable/reference/generated/num
py.polyfit.html Retrieved August 2022.

[20] Sutskever, I., Vinyals O., Le Q.V., Sequence to Sequence
Learning with Neural Networks, arXiv:1409.3215v3.,
(2014).

[21] Kingma D.P., Ba J.L., Adam: A Method for Stochastic
Optimization, arXiv:1412.6980v9., (2017).

[22] Xu B., Wang N., Chen T., Li M., Empirical Evaluation of
Rectified Activations in Convolution Network,
arXiv:1505.00853v2., (2015).

[23] Clevert D., Unterthiner T., Hochreiter S., Fast and accurate
deep network learning by exponential linear units (Elus),
arXiv:1511.07289v5., (2016).

[24] Atalay M.A. The critical slab problem for reflecting
boundary conditions in one-speed neutron transport
theory, Annals of Nuclear Energy., 23 (3) (1996) 183-193.

https://numpy.org/doc/stable/user/index.html#user
https://scipy.org/
https://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

