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Abstract
In this article, we derive some sharp inequalities for slant submanifolds immersed into
golden Riemannian space forms with a semi-symmetric metric connection. Also, we char-
acterize submanifolds for the case of equalities. Lastly, we discuss these inequalities for
some special submanifolds.
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1. Introduction
The golden ratio has attracted the attention of many researchers of diverse interests for

more than 2000 years. Interestingly, this attraction is not only limited to mathematicians,
but people from other backgrounds such as biology, arts, music, history, architecture and
even psychology which have pondered and debated this ratio.

Hretcanu and Crasmareanu [13] focused on various properties of the induced struc-
ture for an invariant submanifold immersed in a golden Riemannian manifold. They also
worked that a structure of a golden type on every invariant submanifold inherits a golden
structure from a total manifold [14]. In 2013, Gezer et al [9] worked on integrabilities
for golden structures. Golden structures on semi-Riemannian manifolds have also been of
high interest. Poyraz and Erol [29] obtained several results for lightlike hypersurfaces in
a golden semi-Riemannian manifold. Ozkan [28] also studied the complete and horizontal
lifts of the golden structure, that is, a polynomial structure with the structure polynomial
W(X) = X2 −X−I, in the tangent bundle. Recently, Bahadr and Uddin [2] studied slant
submanifolds of a Riemannian manifold endowed with a golden structure

In 1993, Chen [4] established an inequality involving intrinsic invariants and extrinsic
invariants; his pioneering work emerged as one of the most applicable topics in differential
geometry. Later, Chen’s work was considered in different ambient spaces ([21], [22], [25],
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[30], [33]). In stead of Chen’s extrinsic invariants, new extrinsic invariants, called Casorati
curvatures, expose optimizations for different submanifolds in an ambient Riemannian
manifold ([1], [6], [7], [10], [18], [19], [31], [32]).

The idea of a semi-symmetric linear connection on a differentiable manifold was initi-
ated by Friedmann and Schouten [8]. Later, Hayden [12] introduced a metric connection
with a torsion on a Riemannian manifold. Yano [34] proved that a Riemannian mani-
fold is conformally flat if and only if the Riemannian manifold admits a semi-symmetric
metric connection with a vanishing curvature tensor. Nakao [26] showed that any sub-
manifold of a Riemannian manifold with a semi-symmetric connection has an induced
semi-symmetric connection. Further, Imai ([15], [16]) generalized equations of Gauss and
Codazzi-Mainardi were derived by Nakao. Chen-like inequalities for submanifolds of real,
complex and Sasakian space forms endowed with a semi-symmetric metric connections
were established ([23], [24]). Moreover, some optimal inequalities for submanifolds in a
Riemannian manifold of a quasi-constant curvature with a semi-symmetric metric con-
nection were derived by using different algebraic approach in [35]. Recently, optimal
inequalities for submanifolds in real space forms, generalized space forms and generalized
Sasakian space forms endowed with a semi-symmetric metric connection were established
([17], [20], [31]).

Inspired by all the above developments, we have dedicated this study to derive op-
timizations for slant submanifolds in golden Riemannian space forms equipped with a
semi-symmetric metric connection. From Oprea’s optimization method [27], we prove the
following result:

Theorem 1.1. In a θ-slant proper submanifold Nn of a locally golden space form (N =
Np(cp) × Nq(cq), g, φ) with a semi-symmetric metric connection, we have the following
relations for the normalized δ-Casorati curvatures:

(i) for δc(n− 1)

ρ ≤ δc(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2θ

{ 1
n− 1

+ 1
n(n− 1)

trP
}

+
(

− (1 − ψ)cp + ψcq
4

) 2
n
trφ− 2

n
trα (1.1)

(ii) for δ̂c(n− 1)

ρ ≤ δ̂c(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2θ

{ 1
n− 1

+ 1
n(n− 1)

trP
}

+
(

− (1 − ψ)cp + ψcq
4

) 2
n
trφ− 2

n
trα (1.2)

In addition, (1.1) and (1.2) also hold for equality if and only if Nn is an invariantly
quasi-umbilical submanifold with trivial normal connection in N, such that the shape oper-
ators Ar, r ∈ {n+ 1, . . . ,m} with respect to orthonormal tangent and orthonormal normal
frames {E1, . . . , En} and {En+1, . . . , Em} satisfy:
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An+1 =



t1 0 0 . . . 0 0
0 t1 0 . . . 0 0
0 0 t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . t1 0
0 0 0 . . . 0 2t1


, An+2 = · · · = Am = 0. (1.3)

and

An+1 =



2t1 0 0 . . . 0 0
0 2t1 0 . . . 0 0
0 0 2t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 2t1 0
0 0 0 . . . 0 t1


, An+2 = · · · = Am = 0. (1.4)

Moreover, we derived optimal inequalities for φ-invariant and φ-anti-invariant subman-
ifolds in the same entire space.

2. Preliminaries
2.1. Riemannian structures

Let N be Riemannian manifold of dimension m with a linear connection ∇ and a torsion
tensor T such that

T (X,Y ) = ∇XY − ∇YX − [X,Y ], ∀ X,Y ∈ Γ(TN).
If ϕ represents a 1-form such that the following relation holds

T (X,Y ) = ϕ(Y )X − ϕ(X)Y ,

∇ is called a semi-symmetric connection. In addition, for a Riemannian metric g on N,
∇ represents a semi-symmetric metric connection if ∇g = 0.

When ∇
′

represents the Levi-Civita connection and B is the dual vector field associated
with the 1-form ϕ ( i.e., g(B,X) = ϕ(X), X ∈ Γ(TN)), the semi-symmetric metric
connection ∇ on N is given by [34]

∇XY = ∇
′

XY + ϕ(Y )X − g(X,Y )B, ∀X,Y ∈ Γ(TN).

Let N be a submanifold of a Riemannian manifold N, and let ∇ and ∇
′
represent a semi-

symmetric metric connection and a Levi-Civita connection of N, respectively and ∇ and
∇′ represent the induced semi-symmetric metric connection and the induced Levi-Civita
connection of N, respectively. Further, we denote the curvature tensors of N (respectively
N) by R and R

′ (respectively, R and R′) with respect to ∇ and ∇
′

(respectively, ∇ and
∇′). Let us also denote h′ by the second fundamental form of N in N and h as (0, 2)-tensor
on N. Then, in the light of ∇ and ∇′ , we have

∇XY = ∇XY + h(X,Y ), ∇
′

XY = ∇′
XY + h

′(X,Y ),
for any vector fields X,Y on N. We have the Gauss equation by [26]

R
′
(X,Y, Z,W ) = R

′(X,Y, Z,W )
− g(h′(X,W ), h′(Y, Z)) + g(h′(X,Z), h′(Y,W )).

(2.1)
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In view of the semi-symmetric metric connection ∇, the curvature tensor R is expressed
as follows [16]:

R(X,Y, Z,W ) = R
′
(X,Y, Z,W ) − α(Y, Z)g(X,W )

+ α(X,Z)g(Y,W ) − α(X,W )g(Y, Z)
+ α(Y,W )g(X,Z), ∀X,Y, Z,W ∈ Γ(TN),

(2.2)

where α is a (0, 2)-tensor field satisfying the following relation

α(X,Y ) = (∇
′

Xϕ)Y − ϕ(X)ϕ(Y ) + 1
2
ϕ(B)g(X,Y ). (2.3)

Let {E1, . . . , En} and {En+1, . . . , Em} be local orthonormal tangent and local orthonor-
mal normal frames of N, respectively. Then at any p ∈ N, we represent the scalar curvature
τ with SSMC by

τ =
∑

1≤i<j≤n
R(Ei, Ej , Ej , Ei)

and the normalized scalar curvature is expressed as

ρ = 2τ
n(n− 1)

.

We write the mean curvature vector by

H =
n∑
i=1

1
n
h(Ei, Ei).

Let us put
hrij = g(h(Ei, Ej), Er), 1 ≤ i, j ≤ n and n+ 1 ≤ r ≤ m.

We view the squared norm of mean curvature vector as

||H||2 = 1
n2

m∑
r=n+1

( n∑
i=1

hrii

)2

and the Casorati curvature is defined by

C = 1
n

||h||2

= 1
n

m∑
r=n+1

n∑
i,j=1

(
hrij

)2
.

(2.4)

Let L be a s-dimensional subspace of TN, s ≥ 2 and {E1, . . . , Es} be an orthonormal
basis of L. Then the scalar curvature of the s−plane section L is given by

τ(L) =
∑

1≤i<j≤s
R(Ei, Ej , Ej , Ei)

and the Casorati curvature of the subspace L is defined by

C(L) = 1
s

m∑
r=n+1

s∑
i,j=1

(
hrij

)2

The normalized δ-Casorati curvatures δc(n) and δ̂c(n) are defined as

[δc(n− 1)]p = 1
2
Cp + n+ 1

2n
inf{C(L)|L : a hyperplane of TpN}

and

[δ̂c(n− 1)]p = 2Cp + 2n− 1
2n

sup{C(L)|L : a hyperplane of TpN}.
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We note that the submanifold N is said to be invariantly quasi-umbilical if there exist
m−n mutually orthogonal unit normal vectors En+1, . . . , Em such that the shape operator
with respect to the direction Er has an eigenvalue of multiplicity n− 1 and that for each
Er the distinguished eigen-direction is the same (Details in [3]).

2.2. Golden Riemannian manifolds
Let (N, g) be an m-dimensional Riemannian manifold and let B be a (1, 1)-tensor field

on N. If B satisfies the following equation ([2], [5], [11] )

W(X) = Xn + anX
n−1 + ...+ a2X + a1I = 0,

where I is the identity transformation and (for X = B) Bn−1(p),Bn−2(p), ...,B(p), I are
linearly independent at each point p ∈ N. Then, the polynomial W(X) is called the
structure polynomial. If we select the structure polynomial W(X) = X2 + I, we get an
almost complex structure. On the other hand, the structure polynomial W(X) = X2 − I
produces an almost product structure.

Let (N, g) be an m-dimensional Riemannian manifold and let φ be a (1, 1)-tensor field
on N. If φ satisfies the following equation [2, 11]

φ2 − φ− I = 0,

where I is the identity transformation. Then the tensor field φ is called a golden structure
on N. The golden structure φ also satisfies the following recurrence relation:

φn+1 = fn+1 . φ+ fn . I,

where (fn)n∈N is the Fibonacci sequence defined by fn+2 = fn+1 + fn,f1 = f2 = 1.
We note that g is said to be φ-compatible if it satisfies

g(φX, Y ) = g(X,φY ) ∀X,Y ∈ Γ(TN), (2.5)

where Γ(TN) is the set of all vector fields on N.
Let (N, g) be a Riemannian manifold endowed with a golden structure φ and φ-compatible

Riemannian metric g. Then (N, g, φ) is called a golden Riemannian manifold ([2], [5]).
Replacing X by φX in (2.5), we get

g(φX,φY ) = g(φ2X,Y ) = g(φX, Y ) + g(X,Y ) ∀X,Y ∈ Γ(TN).

Let (N, g) be an m-dimensional differentiable manifold with a tensor field B of type (1, 1)
on N such that B2 = I. Then B is called an almost product structure [2]. If the almost
product structure B admits the Riemannian metric g such that

g(BX,Y ) = g(X,BY ),∀X,Y ∈ Γ(TN),

then (N, g) is called an almost product Riemannian manifold.
We remark that the almost product structure B induces the golden structure

φ = 1
2

(I +
√

5B)

and a golden structure φ produces an almost product structure

B = 1√
5

(2φ− I).

One can also note that a golden Riemannian manifold (N, g) is said to be locally golden
if φ is parallel with respect to Levi-Civita connection associated to g.
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2.3. Slant submanifolds of a golden Riemannian manifold
Let (N, g) be a submanifold of a Golden Riemannian manifold (N, g, φ), where g is the

induced metric on N. Then, for any X ∈ Γ(TN) we can write
φX = PX +QX,

where PX and QX are the tangential and normal components of φX, respectively. In
this case, we have

g(PX, Y ) = g(X,PY ).
A submanifold (N, g) of a golden Riemannian manifold (N, g, φ) is said to be slant if

for any nonzero vector X ∈ TpN, p ∈ N, the angle θ(X) between φX and tangent space
TpN is independent of the choice of p ∈ N and X ∈ TpN. If the slant angle θ = 0 (θ = π

2 ,
respectively), then N is known as φ-invariant (φ-anti-invariant, respectively) submanifold.
A slant submanifold which is neither invariant nor anti-invariant is called a proper slant
(or θ-slant proper) submanifold.

We have the following characterization of slant submanifolds in a golden Riemannian
manifolds.

Lemma 2.1 ([2]). Let (N, g) be a submanifold of a golden Riemannian manifold (N, g, φ).
Then, the following relations hold:

(1) N is a slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that
P 2 = λ(φ+ I). Furthermore, if θ is the slant angle of N, then λ = cos2 θ.

(2) N is a slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that
φ2 = 1

λP
2, where λ = cos2 θ for the slant angle θ of N.

(3) g(PX,PY ) = cos2 θ (g(X,Y ) + g(X,PY )) , ∀X,Y ∈ Γ(TN)
(4) g(QX,QY ) = sin2 θ (g(X,Y ) + g(PX, Y )) , ∀X,Y ∈ Γ(TN)

Example 1 ([2]). Consider the Euclidean 4-space E4 with standard coordinates (a1, a2, a3, a4).
Let φ be an (1, 1)-tensor field on E4, defined by

φ(a1, a2, a3, a4) = ((1 − ψ)a1, ψa2, (1 − ψ)a3, ψa4)

for any vector field (a1, a2, a3, a4) ∈ E4, where ψ = 1+
√

5
2 and 1 − ψ = 1−

√
5

2 are the roots
of the equation a2 = a+ 1. Then we obtain

φ2(a1, a2, a3, a4) = ((1 − ψ)2a1, ψ
2a2, (1 − ψ)2a3, ψ

2a4)
= ((1 − ψ)a1, ψa2, (1 − ψ)a3, ψa4) + (a1, a2, a3, a4).

Thus, we have φ2 = φ+ I. Moreover, we get
< φ(a1, a2, a3, a4), (b1, b2, b3, b4) >=< (a1, a2, a3, a4), φ(b1, b2, b3, b4) >

for each vector fields (a1, a2, a3, a4), (b1, b2, b3, b4) ∈ E4, where <,> is the standard metric
on E4. Hence, (E4, <,>, φ) is a golden Riemannian manifold. Let us consider a submani-
fold N of E4, given by

a(u1, u2) = (ψu1, k(1 − ψ)u1, ψu2, k(1 − ψ)u2)
for any k ̸= 0, 1. Then, we have E1 = (ψ, k(1 − ψ), 0, 0), E2 = (0, 0, ψ, k(1 − ψ)) and
φE1 = (−1,−k, 0, 0), φE2 = (0, 0,−1,−k). so, we derive

< φE1, E1 >=< φE2, E2 >= (−k2 + 1)ψ − 1 and < φE1, E2 >= 0.

Therefore, N is a slant submanifold with the slant angle θ = cos−1
(

−1+ψ−k2ψ√
k2+1

)
.

Example 2 Let f : N −→ E2n be an immersion given by
f(u1, u2, · · · , un) = (kψu1, kψu2, · · · , kψun, (1 − ψ)u1, (1 − ψ)u2, · · · , (1 − ψ)un)
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for any k ̸= 0, 1. We can find a local vector fields on N:

Ei = kψ
∂

∂xi
+ (1 − ψ) ∂

∂xn+i

for any i ∈ {1, 2, · · · , n}. We remark that Ei⊥Ej for i ̸= j, where i, j ∈ {1, 2, · · · , n}.
Let φ : E2n −→ E2n be the (1, 1)-tensor field defined by

φ(x1, x2, · · · , xn, xn+1, · · · , x2n) = ((1 − ψ)x1, · · · , (1 − ψ)xn, ψxn+1, · · · , ψx2n),

where ψ = 1+
√

5
2 and 1 − ψ = 1−

√
5

2 . It is easy to verify that φ is a golden structure on
E2n (i.e., φ2 − φ − I = 0) with φ-compatible metric <,>. Therefore, (E2n, <>,φ) is a
golden Riemannian manifold. Moreover, φEi = −k ∂

∂xi
− ∂

∂xn+i
for any i ∈ {1, 2, · · · , n}.

We can verify

< φEi, Ei >= −1 + ψ − k2ψ and φEi⊥Ej (i ̸= j),

where i, j ∈ {1, 2, · · · , n}. Hence, N is a slant submanifold with the slant angle θ =
cos−1

(
−1+ψ−k2ψ√

k2+1

)
.

Example 3 Let N2 be a submanifold which is spanned by {E1, E2} (see Example 1 ). Since
∇

′
is the Levi-Civita connection, we have

∇
′

E1E1 = E3, ∇
′

E1E2 = 0, ∇
′

E1E3 = −E1,

∇
′

E1E4 = 0, ∇
′

E2E1 = 0, ∇
′

E2E2 = E4,

∇
′

E2E3 = 0, ∇
′

E2E4 = −E2.

By using the definition of SSMC ∇, we get

∇E1E1 = E3 + ϕ(E1)E1,

∇E1E2 = ϕ(E2)E1 − [(1 − ψ)2 + k2ψ2]ϕ(E1),
∇E2E1 = ϕ(E1)E2 − [(1 − ψ)2 + k2ψ2]ϕ(E2),
∇E2E2 = E4 + ϕ(E1)E1.

Thus, we obtain

∇E1E1 = ϕ(E1)E1, ∇E1E2 = ϕ(E2)E1 − [(1 − ψ)2 + k2ψ2]ϕ(E1),
∇E2E1 = ϕ(E1)E2 − [(1 − ψ)2 + k2ψ2]ϕ(E2), ∇E2E2 = ϕ(E1)E1.

And the second fundamental forms with respect to SSMC are given as

h(E1, E1) = E3, h(E1, E2) = h(E2, E1) = 0, h(E2, E2) = E4.

From this, we can easily compute the mean curvature with respect to SSMC as

H = 1
2

[h(E1, E1) + h(E2, E2)] = 1
2

[E3 + E4].

And the Casorati curvature with SSMC is given by

C = 1
2

||h||2 = 1.

Now, we suppose that Np and Nq are two real space forms with constant sectional
curvatures cp and cq, respectively. Then, the Riemannian curvature tensor R′ of a locally
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golden space form (N = Np(cp) × Nq(cq), g, φ) is given by [29]

R
′
(X,Y )Z =

(
− (1 − ψ)cp − ψcq

2
√

5

){
g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX

− g(φX,Z)φY
}

+
(

− (1 − ψ)cp + ψcq
4

){
g(φY,Z)X

− g(φX,Z)Y + g(Y, Z)φX − g(X,Z)φY
} (2.6)

Further, we assume that N is a locally golden space form with a semi-symmetric metric
connection ∇. Then in the light of (2.2) and (2.6), the curvature tensor R of N can be
written as

R(X,Y, Z,W ) =
(

− (1 − ψ)cp − ψcq

2
√

5

){
g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )

+ g(φY,Z)g(φX,W ) − g(φX,Z)g(φY,W )
}

+
(

− (1 − ψ)cp + ψcq
4

){
g(φY,Z)g(X,W ) − g(φX,Z)g(Y,W )

+ g(Y, Z)g(φX,W ) − g(X,Z)g(φY,W )
}

− α(Y, Z)g(X,W ) + α(X,Z)g(Y,W )
− α(X,W )g(Y, Z) + α(Y,W )g(X,Z).

(2.7)

We recall the following result, which is useful in proving the main result.

Lemma 2.2 ([27]). Let (N, g) be a Riemannian submanifold of a Riemannian manifold
(N, g) with the induced metric g and f : N → R be a differentiable function. Let h be
the second fundamental form of N and y ∈ N be the solution of the constrained extremum
problem minx∈Nf(x), then

(i) (grad f)(y) ∈ T⊥
y N;

(ii) the bilinear form L : TyN × TyN → R;
L(X,Y ) = g(h(X,Y ), (grad(f))(y)) +Hessf (X,Y )
is positive semi-definite, where grad(f) is the gradient of f.

3. Inequalities for the Casorati curvatures
In this section, we give the proof of Theorem 1.1 in which we derive optimal Casorati

inequalities for slant submanifold N in N.

Proof. (i) Since N is a locally golden space form, then from (2.7) and the Gauss equation
with respect to semi-symmetric metric connection, we have

2τ(p) =
(

− (1 − ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2 θ(n+ trP )

+
(

− (1 − ψ)cp + ψcq
4

)
2(n− 1)trφ

+ n2||H||2 − nC − 2(n− 1)tr(α).

(3.1)
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We define a quadratic polynomial, denoted by Q as follows:

Q = 1
2
n(n− 1)C + n2 − 1

2
C(L) − 2τ(p)

+
(

− (1 − ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2 θ(n+ trP )

+
(

− (1 − ψ)cp + ψcq
4

)
2(n− 1)trφ− 2(n− 1)tr(α),

(3.2)

where L is a hyperplane of TpN. We can assume without loss of generality that L is
spanned by {E1, . . . , En−1}. Then we have

Q = 1
2

(n− 1)
m∑

α=n+1

n∑
i,j=1

(hαij)2 + n+ 1
2

m∑
α=n+1

n−1∑
i,j=1

(hαij)2 − 2τ(p)

+
(

− (1 − ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2 θ(n+ trP )

+
(

− (1 − ψ)cp + ψcq
4

)
2(n− 1)trφ− 2(n− 1)tr(α).

(3.3)

From (3.1) and (3.3), we obtain

Q = n+ 1
2

m∑
α=n+1

n∑
i,j=1

(hαij)2 + n+ 1
2

m∑
α=n+1

n−1∑
i,j=1

(hαij)2

−
m∑

α=n+1

( n∑
i=1

hαii
)2
.

Now, we can easily derive the following relation:

Q =
m∑

α=n+1

n−1∑
i=1

[
n(hαii)2 + (n+ 1)(hαin)2

]

+
m∑

α=n+1

[
2(n+ 1)

n−1∑
i<j=1

(hαij)2 − 2
n∑

i<j=1
hαiih

α
jj

+ n− 1
2

(hαnn)2
]

≥
m∑

α=n+1

n−1∑
i=1

[
n(hαii)2 − 2

n∑
i<j=1

hαiih
α
jj

+ n− 1
2

(hαnn)2
]
.

(3.4)

For α ∈ {n+ 1, . . . ,m}, let us consider the quadratic form fα : Rn → R defined by

fα(hα11, . . . , h
α
nn) =

n−1∑
i=1

n(hαii)2 − 2
n∑

i<j=1
hαiih

α
jj + n− 1

2
(hαnn)2,

and the constrained extremum problem minfα subject to F : hα11 + · · · + hαnn = βα, where
βα is a real constant.
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We observe that the function fα has the following partial derivatives:

∂fα
∂hα11

= 2nhα11 − 2
n∑
l=2

hαll,

∂fα
∂hα22

= 2nhα22 − 2hα11 − 2
n∑
l=3

hαll,

... (3.5)
∂fα

∂hαn−1 n−1
= 2nhαn−1 n−1 − 2

n−2∑
l=1

hαll − 2hαnn,

∂fα
∂hαnn

= −2
n−1∑
l=1

hαll + (n− 1)hαnn.

For an optimal solution (hα11, . . . , h
α
nn) of the problem, grad(fα) is normal at F . From

(3.5), we have the following critical points of the considered problem:

hα11 = hα22 = . . . hαn−1n−1 = 1
n+ 1

βα, hαnn = 2
n+ 1

βα (3.6)

Now, let us fix an arbitrary point y ∈ F., From lemma 2.2, the bilinear form L : TyF ×
TyF → R is defined by

L(X,Y ) = g(h(X,Y ), (gradfα)(y)) +Hessfα(X,Y ),

where h is the second fundamental form of F in Rn. Now, as F is totally geodesic in Rn,
considering a vector X = (X1, X2, . . . , Xn) tangent to F at the arbitrary point y on F
(that is, verifying the relation

∑n
l=1Xi = 0), we obtain the following:

L(X,X) = −2(X1, ..., Xn−1, Xn)


−n 1 . . . 1 1
1 −n . . . 1 1
... ... . . . ... ...
1 1 . . . −n 1
1 1 . . . 1 1−n

2




X1
X2
...

Xn−1
Xn


= 2(n+ 1)

n−1∑
l=1

X2
i + (n+ 1)X2

n − 2(
n∑
l=1

Xi)2

= 2(n+ 1)
n−1∑
l=1

X2
i + (n+ 1)X2

n

≥ 0,

Hence, in the light of lemma 2.2 the point (hα11, . . . , h
α
nn) (see (3.6)) is a global minimum

point. Moreover, we have fα(hα11, . . . , h
α
nn) = 0. Thus, we arrive at

Q ≥ 0, (3.7)

which implies that
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2τ(p) ≤ 1
2
n(n− 1)C + 1

2
(n2 − 1)C(L)

+
(

− (1 − ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2θ(n+ trP )

+
(

− (1 − ψ)cp + ψcq
4

)
2(n− 1)trφ− 2(n− 1)tr(α),

whereby, we obtain

ρ ≤ 1
2
C + n+ 1

2n
C(L)

+
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

)
cos2 θ

{ 1
n− 1

+ 1
n(n− 1)

trP
}

+
(

− (1 − ψ)cp + ψcq
4

) 2
n
trφ− 2

n
tr(α)

(3.8)

for every tangent hyperplane L of TpN and inequality (1.1) obviously follow from (3.8).

Moreover, the equality sign holds in (1.1) if and only if

hαij = 0, ∀ i, j ∈ {1, . . . , n}, i ̸= j, α ∈ {n+ 1, . . . ,m} (3.9)

and

hαnn = 2hα11 = 2hα22 · · · = 2hαn−1n−1, ∀ α ∈ {n+ 1, . . . ,m}. (3.10)

From (3.9) and (3.10), we conclude that the equality sign holds in the inequality (1.1) if
and only if the submanifold N is invariantly quasi-umbilical with trivial normal connec-
tion in N, such that with respect to suitable orthonormal tangent and normal orthonormal
frames, the shape operators take the form of (1.3).

(ii) In the same manner, we can establish an inequality in the second part of the theorem.
�

4. Applications of Theorem 1.1 for different kind of submanifolds
As an application of Theorem 1.1, we give sharp inequalities for φ-invariant and φ-anti-

invariant submanifolds in the same ambient space.

Theorem 4.1. In an invariant submanifold Nn of a locally golden space form (N =
Np(cp) ×Nq(cq), g, φ) with semi-symmetric metric connection, we have the following rela-
tions for the normalized δ-Casorati curvatures:

(i) for δc(n− 1)

ρ ≤ δc(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

){ 1
n− 1

+ 1
n(n− 1)

trP
}

+
(

− (1 − ψ)cp + ψcq
4

) 2
n
trφ− 2

n
trα

(4.1)
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(ii) for δ̂c(n− 1)

ρ ≤ δ̂c(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
−

(
− (1 − ψ)cp − ψcq

2
√

5

){ 1
n− 1

+ 1
n(n− 1)

trP
}

+
(

− (1 − ψ)cp + ψcq
4

) 2
n
trφ− 2

n
trα.

(4.2)

In addition, (4.1) and (4.2) also hold for equality if and only if Nn is an invariantly
quasi-umbilical with trivial normal connection in N, such that Ar, r ∈ {n + 1, . . . ,m}
with respect to orthonormal tangent and orthonormal normal frames {E1, . . . , En} and
{En+1, . . . , Em} satisfy:

An+1 =



t1 0 0 . . . 0 0
0 t1 0 . . . 0 0
0 0 t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . t1 0
0 0 0 . . . 0 2t1


, An+2 = · · · = Am = 0 (4.3)

and

An+1 =



2t1 0 0 . . . 0 0
0 2t1 0 . . . 0 0
0 0 2t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 2t1 0
0 0 0 . . . 0 t1


, An+2 = · · · = Am = 0. (4.4)

Next, we have

Theorem 4.2. In an anti-invariant submanifold Nn of a locally golden space form (N =
Np(cp) ×Nq(cq), g, φ) with semi-symmetric metric connection, we have the following rela-
tions for the normalized δ-Casorati curvatures:

(i) for δc(n− 1)

ρ ≤ δc(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
+

(
− (1 − ψ)cp + ψcq

4

) 2
n
trφ− 2

n
trα

(4.5)

(ii) for δ̂c(n− 1)

ρ ≤ δ̂c(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

){
1 + 1

n(n− 1)
tr2φ

}
+

(
− (1 − ψ)cp + ψcq

4

) 2
n
trφ− 2

n
trα.

(4.6)

In addition, (4.5) and (4.6) also hold for equality if and only if Nn is an invariantly
quasi-umbilical with trivial normal connection in N, such that Ar, r ∈ {n + 1, . . . ,m}
with respect to orthonormal tangent and orthonormal normal frames {E1, . . . , En} and
{En+1, . . . , Em} satisfy:
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An+1 =



t1 0 0 . . . 0 0
0 t1 0 . . . 0 0
0 0 t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . t1 0
0 0 0 . . . 0 2t1


, An+2 = · · · = Am = 0 (4.7)

and

An+1 =



2t1 0 0 . . . 0 0
0 2t1 0 . . . 0 0
0 0 2t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 2t1 0
0 0 0 . . . 0 t1


, An+2 = · · · = Am = 0. (4.8)

Any Riemannian manifold N immersed in a Riemannian manifold N is named as C-
totally real if φ(TN) ⊂ T⊥N. We have the following result.

Theorem 4.3. In a C-totally real submanifold Nn of a locally golden space form (N =
Np(cp) ×Nq(cq), g, φ) with semi-symmetric metric connection, we have the following rela-
tions for the normalized δ-Casorati curvatures:

(i) for δc(n− 1)

ρ ≤ δc(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

)
− 2
n
trα (4.9)

(ii) for δ̂c(n− 1)

ρ ≤ δ̂c(n− 1) +
(

− (1 − ψ)cp − ψcq

2
√

5

)
− 2
n
trα (4.10)

In addition, (4.9) and (4.10) also hold for equality if and only if Nn is an invariantly
quasi-umbilical with trivial normal connection in N, such that Ar, r ∈ {n + 1, . . . ,m}
with respect to orthonormal tangent and orthonormal normal frames {E1, . . . , En} and
{En+1, . . . , Em} satisfy:

An+1 =



t1 0 0 . . . 0 0
0 t1 0 . . . 0 0
0 0 t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . t1 0
0 0 0 . . . 0 2t1


, An+2 = · · · = Am = 0. (4.11)

and
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An+1 =



2t1 0 0 . . . 0 0
0 2t1 0 . . . 0 0
0 0 2t1 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 2t1 0
0 0 0 . . . 0 t1


, An+2 = · · · = Am = 0. (4.12)
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