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Highlights 

• Properties of Iraqi oil were investigated using Back-Propagation ANNs and RSM-DOE techniques. 

• The effect of both Aromats and Paraffins on product quality (e.g. MON, RON) differs considerably.  

• Aromatics increases the octane number of the products and lowers its boiling point limits. 

• Aromatics decreases the calorific value and sulfur content of the products. 

• Optimization showed that the best percentage of aromatics should not exceed 97%.  
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Abstract 

Back-Propagation neural networks, as well as RSM-DOE techniques, were used to predict the 

properties of various compositions of Iraqi oil, which were presented in this study. Paraffin and 

Aromatics’ effect on petroleum properties, e.g., yield, density, calorific value, and other essential 

properties, were studied. The input-output data to the neural networks were obtained from existing 

local refineries in Iraq. Several network activation functions to simulate the hydrocracking 

process were tested and compared.  the network function that gave satisfactory results in terms of 

convergence time and accuracy was adopted. The data were divided into training and testing parts. 

The results of the trained artificial neural network models for each one of the tested functions 

have been cross-validated with the experimental data. The network that compared well against 

this new set of data (i.e. testing data), with an average percent error always less than 3% for the 

various products of the hydrocracking unit were chosen for the study. Aromatics showed to have 

more profound effect on the Octane number at low concentrations of paraffin, while, for specific 

gravity and calorific value they have similar effects. As for boiling points and sulfur contents, 

aromatics have almost no effect at lower levels of paraffin. 
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1. INTRODUCTION 

 

The crude oil industry owes its existence and continuity to continuous and increased consumption due to 

the high demand for hydrocarbon fuels and other petrochemical products [1]. 

 

Modern petroleum refining planta involves several complicated units and processes e.g. Crude Distillation 

Units (CDU), Catalytic Reforming Processes (CRU), Hydro-treating Units (HDT), Fluid Catalytic 

Cracking (FCC) ...etc. [1-3]. 

 

Most refineries regularly enhance and modify their operational units by implementing new technology in 

order to comply with environmental requirements and the required quality of petroleum products from a 

refinery. Utilizing Hydrotreating (HDT) machines to eliminate inorganic pollutants like sulfur, nitrogen, 

oxygen, etc. is one such example. The HDT process should take into account a number of process factors, 

including charge, pressure, temperature, liquid hourly space velocity (LHSV), and hydrogen to hydrocarbon 

(H2/HC) ratio. In the literature, this wasn't really explored all that much. One further illustration of such 

alterations is the use of hydrogen [2,4]. 
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Significant advancements in computational techniques (e.g., simulation modeling, optimization, control, 

etc.) and computational power have become significant aid to improve petrochemical industries. Aspen 

HYSYS (Version 11), Bryan Research and Engineering ProMax 2.0, ChemCAD (Version 7), EPCON 

CHEMPRO 9.2, and many others are among the software available for simulating petroleum refining 

processes. This software depends on the availability of data for modeling. Another mathematical technique 

for modeling the outcome of the refining process is Artificial Neural Network (ANN), Genetic Algorithm 

(GA), and Design of Experiments (DOE). 

 

Neural network (NN) is an effective tool for capturing the process’s non-linearities based on the data 

available from the refinery plant. After selecting the model, training it to capture the system behavior, and 

testing it, NN can predict the needed simulation variables with a good degree of accuracy and quickly [5-

6]. 

 

Reviewing the literature, one finds that a great deal of research was conducted on the effect of petroleum 

constituents on their end-use application (e.g., IC Engines, gas turbines, etc.).  

 

Kidoguchi et al. [7] showed, experimentally, that increasing aromatic content for high cetane number fuel 

caused high Oxides of Nitrogen (NOx) and particulate emissions. While, for low cetane fuel, it resulted in 

high Total Hydrocarbon (THC) emission at retarded injection timing.  

 

Tsurutani et al. [8] also found that aromatic content has a significant influence on the NOx emissions from 

the Indirect Injection Diesel Engine (IDI) diesel engine.  

 

Karonis et al. [9] also found in their attempt to correlate fuel properties with engine-out emissions that the 

aromatic content is strongly correlated with the cetane number, density, and the 90% distillation point of 

diesel fuel. 

 

According to Sienicki et al. [10], sulfur content, aromatic content, and 90% distillation temperature were 

the greatest predictors of particle emissions. They also stated that multi-ring aromatics had a greater impact 

on hydrocarbon and particle emissions than total aromatics content. 

 

Shekhawat et al. [11] also found that the fuel constituents (paraffin, naphthenes, and aromatics), as well as 

their chemical structure (e.g., branched versus linear paraffin) and consequently the sulfur content of the 

fuel, have a significant influence on the H2 yield of fuel cells.  

 

Rodríguez et al. [12] revealed more exceptional soot from paraffinic and, significantly, oxygenated biofuels 

to be oxidized under lower temperature conditions. 

 

Soriano et al. [13-14], found that paraffinic fuels were very beneficial in reducing THC than other 

alternatives. In their experiments on gas turbines, Ruslan et al. [15] found that the amount (mass%) of 

biphenyls, monocycloparaffin, alkylbenzene, fluorenes, distillation temperature (90%), carbon content 

(mass %), naphthalene, and the composite density, benzocycloparaffin content, liquid density at 15°C, 

aromatics content (vol %) and net heat of combustion has an apparent direct effect on the smoke number. 

In contrast, other fuel properties such as iso-paraffin content and flashpoint have less impact on the smoke 

number. 

 

The effect of aromatic concentration in gasoline fuel on the engine’s emissions was studied by Georgios et 

al. [16]. They reported significant increase in the THC with Aromatics content of the fuel. NOx, however, 

was not affected by the Aromatics content of the fuel as reported in the research work. They also reported 

good correlation between PM index and PM mass and number with Aromatics. 

 

The main goal of this work is to find the effect of paraffin and aromatics on the quality of the products of 

the refining process in Iraq. The effect of those two components on the high sulfur content [17], low octane 

number, and calorific values need to be investigated and optimized. This will help the officials in Iraq 
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modify the petroleum refining process to solve the high-sulfur, low-calorific value and low octane gasoline 

problem as a result of the current distillation process followed in their refineries. 

 

2. MATERIAL METHOD 

 

In this study, experimental data were collected from various Iraqi petroleum refineries at different intervals 

of the year, and the effect of aromatics and paraffin on the properties was modeled using the ANN 

technique. Further, the interaction between those two factors was done using the DOE technique. Three 

types of neural activation functions were tested to find the most accurate and quickest network that can 

model the properties of the distillation process. 

 

2.1. Artificial Neural Networks 

 

A multilayered perceptron (MLP) with back-propagation (BP) ANN algorithm was chosen and trained in 

this study to develop a predictive regression model with scaled crude oil properties such as paraffin, 

aromatics as input, and the rest of the distillation output gasoline properties, e.g., Motor Octane Number 

(MON) and, Research Octane Number (RON), density, etc. as output to the model. This technique is well-

established have been used earlier by other researchers [18-20]. The schematic diagram of the MLP-BP-

ANN technique is shown in Figure 1. 

 
Figure 1. Schematic diagram of the MLP-BP-ANN method 

 

The number of input neurons is fixed by the number of input factors, and in the output layer by the number 

of outputs variables to be predicted [21]. 

 

The experimental data obtained for different Iraqi oil refining plants were divided into 80% for training, 

10% for validation, and another 10% for testing of the model. The data presented in Table 1 represents a 

sample of the complete data obtained from the oil refineries. 

 

The activation functions used in this study were the Sigmoid, Tan Hyperbolic, and Gaussian functions. The 

sigmoid function is of the form (𝑥) =  
1

1+𝑒−𝑘𝑥, Tan Hyperbolic is of the form 𝐹(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥, and that for 

the Gaussian function 𝐹(𝑥) =  𝑒−
1

2
𝑥
 [22]. After finding the proper activation function, the distillate 

properties' mathematical modeling was found, and the optimum mixture (input) needed for the desired 

properties was done. 

 

Training of the MLP-BP-ANN proposed model was done till the minimum value of the mean square error 

(MSE) was achieved during the validation phase. The effectiveness of the model was judged based on the 

overall accuracy of the predicted data at this stage. For better performance (both from a time and accuracy 

point of view), the data used was scaled down to 0-1 form with 0 as the new 𝑥𝑚𝑖𝑛 and 1 as the new 𝑥𝑚𝑎𝑥 

using Equation (1) below [23]: 
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𝑥𝑖−𝑛 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
(𝑛𝑒𝑤 𝑥𝑚𝑎𝑥 − 𝑛𝑒𝑤 𝑥𝑚𝑖𝑛) + 𝑛𝑒𝑤 𝑥𝑚𝑖𝑛 .                (1) 

 

In Equation (1), 𝑥𝑖 is the input/output data (data of independent and dependent variable variables), 𝑥𝑚𝑎𝑥 

and 𝑥𝑚𝑖𝑛 are the maximum and minimum values of the particular variable, respectively. 

 

Table 1. Sample results obtained from Al-Doura Refinery in Baghdad 

Properties items Test methods LSRN Reformate 

Al Doura  

Pool 

Power  

Formate 

Sp.gr. IROX test 0.659 0.755 0.715 0.757 

RVP bar ASTM D323 0.94 0.38 0.6 0.37 

Distillation Temp. oC ASTM D86        

IBP   32 43 36 40 

10%   43 68 54 58 

20%   52 82 64 77 

30%   58 98 72 95 

40%   63 110 82 117 

50%   68 121 92 135 

60%   74 134 102 152 

70%   80 146 115 168 

80%   86 161 129 186 

90%   97 182 148 198 

EBP   115 215 187 219 

T.D.ml   98 98 98.5 98.5 

Max.S.content ppm ASTM D4294 74.90 91.40 43.8 34.80 

Water content ppm ASTM D4928 35.60 67.22 131.95 42.00 

Existent gum mgm/100ml ASTM D381 0.60 Nill 1.2 Nill 

Calorific value kcal/kgm   11488 11203 11326 11197 

MON ASTM D2700 64.60 86.00 80 84.80 

RON ASTM D2699 69.20 90.50 84.5 89.30 

Aromatics  IROX test 4.30 41.66 24.25 39.23 

Olefins IROX test 0.00 0.00 0 0.00 

Paraffins & Naphthenes        IROX test 95.70 58.34 75.75 60.77 

 

2.2. Response Surface Methodology 

 

The polynomial model was selected in this study to show the interaction between the different experimental 

factors. This model is shown in Equation (2) below: 

 

𝑦 =  𝛽𝑜 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑘
1≤𝑖≤𝑗 + 𝜖𝑘

𝑖=1  .                (2) 

 

In Equation (3), 𝛽𝑖𝑗 represents the coefficients of the interaction parameters. To determine a critical point 

(maximum, minimum, or saddle), the polynomial function must contain quadratic terms according to 

Equation (3) presented below: 

 

𝑦 =  𝛽𝑜 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖
2𝑘

𝑖=1 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑘
1≤𝑖≤𝑗 + 𝜖𝑘

𝑖=1                 (3) 

 

where 𝛽𝑖𝑖 represents the coefficients of the quadratic relationship. To estimate the parameters in Equation 

(4), the experimental design is to assure that all studied variables are carried out at least three-factor levels. 

 

The use of the RSM and ANN methods to simulate the petroleum refining process has been well-established 

and used by several researchers. 
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Anish et al. [24] used the RSM methodology to optimize the operation of the fluid catalytic cracking (FCC) 

unit. Their results showed that statistical techniques can be effectively used to simulate and optimize 

complex chemical engineering operations 

 

Festus et al. [25] used the RSM method to study the effect of time and temperature on the desulfurization 

of crude oil using NaOH solution concentration. They reported an accuracy of about 97.5% which shows 

the suitability of such statistical methods in the simulate-related processes. 

 

Nalini et al. [26] used the ANN method to predict the crude oil pricing which they reported to perform 

excellently in predicting the oil price. 

 

The ANN method was also used by Lluvia et al. [27] to improve heat-integrated crude oil distillation 

systems. They claimed that the neural network model could solve convergence issues caused by rigorous 

or simplified models, and that using neural networks, as opposed to rigorous models, the simulation time 

was significantly reduced with almost no loss in model accuracy. 

 

The artificial neural network (ANN) technique was used by Vo Thanh et al. [28] to forecast the oil recovery 

and CO2 storage capacity in residual oil zones. (ROZs). Their findings showed that the ANN model could 

forecast CO2 storage and oil recovery with exceptional accuracy and that it could be used as a reliable tool 

to assess the viability of CCUS in ROZs at an early stage. 

 

An extensive review on the use of ANN in petroleum-related processes (e.g. Oil/gas exploration, drilling, 

production, and reservoir management …etc), Alkinani et al [29]. 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

The data used in the study was collected from several oil refineries across Iraq. A sample of the data 

collected from other refineries for different oil wells and different qualities is shown in Table 2. A statistical 

summary of the data used in this research is shown below in Table 3. 

 

Table 2. The data used for the study 
Aromatics  Paraffins  RON MON Sp.Gr S H2O Qcv RVP IBP EBP Recovery 

% vol % vol       (ppm) (ppm) (kcal/kg) (bar) (C ) (C ) % 

4.3 95.7 69.2 64.6 0.659 74.96 35.6 11488 0.94 32 115 98 

8.85 89.26 60.31 55.71 0.71 45 40 11341 0.56 45 174 98 

10.8 86.5 56.5 51.2 0.733 32 43 11272 0.4 62 203 98.5 

23.1 76.9 80.5 76 0.637 86.6 44 11547.9 0.62 37 190 98 

23.4 76.6 81.5 77 0.63 84.2 43.5 11566.5 0.62 34 187 98 

32.99 67.01 89.7 85.1 0.733 44.5 45.4 11972 0.44 49 179 98 

33.63 66.37 95.4 90.9 0.744 34.3 43.4 12058.6 0.48 47 179 99 

38.67 61.33 89.6 85 0.761 35.2 39.4 11229 0.42 51 184 98 

39.12 59.88 89.3 85.8 0.756 35.3 41.9 11209.8 0.385 50 185 98 

39.23 59.77 89.3 84.8 0.757 35.8 42 11197 0.382 49 185 98 

41.66 58.34 90.5 86 0.755 91.4 67.22 11050 0.38 43 205 98 

 

Table 3. Statistical summary of the data used in the analysis 
 Aromatics  Paraffin RON MON Sp.Gr S H2O Qcv RVP IBP EBP Recovery 

 % vol % vol       (ppm) (ppm) (kcal/kg) (bar) (C ) (C ) % 

Number 33 33 33 33 33 33 33 33 33 33 33 33 

Mean 43.09 56.77 113.08 110.51 0.76 41.65 93.35 11252.91 0.46 95.40 203.03 98.4 

Median 39.12 60.88 86.06 86.23 0.75 57.8 48.26 11225.35 0.44 45.62 186.80 98 

Standard 

Deviation 28.13 27.97 50.45 55.06 0.095 249.75 84.97 401.86 0.28 111.75 63.85 0.9774 
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Figure 2 shows three main activation functions (Sigmoid, TanH, and Gaussian) that were tested in this 

study. The aim was to use the one that gives the best performance in reaching the best solution with the 

least epochs and time. 

 

 
Figure 2. Performance comparison between activation functions 

 

It was clearly shown in the figure that the Tan Hyperbolic functions failed to give the same performance as 

the other activation functions. There was a slight edge in favor of the Gaussian function over the sigmoid 

for both training and testing. This is shown in the figure by the RSM error for each activation function at a 

steady state or after a certain number of runs. Therefore, the Gaussian activation function was chosen. The 

detailed model properties and their accuracy are summarized in Table 4. 

 

Table 4. Summary of the model accuracy 

 Network Structure R2 RMSE 

  Training Testing Training Testing 

Motor Octane Number 2-5-1 0.9941 0.9948 1.0308 3.2340 

Research Octane Number 2-5-1 0.9978 0.9942 1.6676 1.0635 

Specific Gravity 2-5-1 0.9985 0.9939 0.0023 0.0047 

Reid Vapor Pressure 2-5-1 0.9948 0.9812 0.0011 0.0321 

Initial Boiling Point 2-5-1 0.9953 0.9833 3.094 1.3971 

End Boiling Point 2-5-1 0.9995 009942 0.3304 2.2597 

Sulfur Content 2-5-1 0.9971 0.9955 10.7901 21.4072 

H2O 2-5-1 0.9800 0.9720 1.3893 10.9067 

Calorific Value 2-5-1 0.9996 0.9676 6.5302 69.3384 

Recovery percent 2-6-1 0.9998 0.9949 0.0021 0.03089 

  Percentage Evaporated 

10% 2-6-1 0.9914 0.7185 3.6707 4.9676 

20% 2-6-1 0.9960 0.7831 2.3352 4.9431 

30% 2-6-1 0.9913 0.9843 3.1673 1.7777 

40% 2-6-1 0.9657 0.8639 5.8150 6.1525 

50% 2-6-1 0.9335 0.7252 7.6619 9.8718 

60% 2-6-1 0.8880 0.9227 9.3857 5.9883 

70% 2-6-1 0.8314 0.9757 11.4391 3.7262 

80% 2-6-1 0.7374 0.9774 13.8828 4.0909 

90% 2-6-1 0.7168 0.9424 14.2822 7.3431 

 

As shown in Table 4 the values for the R2 are close to unity for all predicted variables. This means that the 

model predicted by ANN for these variables is accurate. 
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As for the model equations, a generic form of the final equation taking that for MON as an example is 

presented below, and the rest are tabulated in Table 4. The hidden layer neurons’ equations were in the 

form, as shown below in Equation (4): 

 

𝐻𝑖 =  𝑒−
1

2
(a𝑖𝑜  + 𝑏𝑖 ∗ Aromatics+ 𝑐𝑖 ∗ Paraffins)

2

                   (4) 
where a𝑖𝑜

 is the bias for every neuron (i), b is the weight between the input aromatics and the hidden neuron, 

and c is the weight between paraffin and the hidden neuron.  

 

The equation relating the output to the inputs through the hidden neurons is expressed as in Equation (5): 

 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑎𝑗𝑜
+ ∑ 𝑤𝑗𝐻𝑗

𝑛
𝑗=1                     (5) 

 

where n is the number of hidden neurons. 

 

An example of the first equation for the MON values is shown in Equations (6) and (7). The rest of the 

hidden neuron equations are tabulated in Table 5. The weights between the hidden layer and the output 

parameter used in Equation (4) for all 18 parameters are given in Table 6. The above equations were then 

used to generate the data needed for the design of experiment analysis and optimization using RMS. This 

part was conducted using Minitab R19 software. The hidden layer equations obtained by the ANN model 

are shown below in Equation (6) below: 

 

𝐻1 =  𝑒−
1

2
(0.504900275409111 + 0.0539234532539091 ∗ Aromatics −0.0538847299842973 ∗ Paraffins)2

  

𝐻2 =  𝑒−
1

2
(6.24519435953332 −0.0902377857918179 ∗ Aromatics −0.0405453422855877 ∗ Paraffins)2

  

𝐻3 =  𝑒−
1

2
(4.45590735958828 + 0.0525719636776719 ∗ Aromatics  −0.0830521615463908 ∗ Paraffins)2

                     (6) 

𝐻4 =  𝑒−
1

2
(−1.9832002315875 + 0.0500896838484564 ∗ Aromatics+ 0.00578451692137609 ∗ Paraffins)2

  

𝐻5 =  𝑒−
1

2
(−1.71141059795421 −0.00937848011682443 ∗ Aromatics + 0.0593037417991988 ∗ Paraffins)2

         

  

From these hidden layer formulas, the equation predicting the output parameter, here MON is shown, for 

example, can be written as: 

 
𝑀𝑂𝑁𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  89.2466049  − 252.80038310 ∗  𝐻1  +  412.846307 ∗  𝐻2 

                 −90.495782965 ∗  𝐻3   − 180.801673681 ∗  𝐻4  +  7.2448114436 ∗  𝐻5

  

              (7) 

Table 5. Weights between the hidden layer and output parameter 
   Bias W1 W2 W3 W4 W5 W6 

Research ON 61.6098 -131.4367 329.142 -30.43344 -11.3627 1.32367 0 

Specific Gravity 0.18318 -0.289059 0.17286 -0.500751 1.10782 -0.00476 0 

RVP 2.99806 -0.802974 4.91549 -2.063749 0.03685 -4.65714 0 

Sulfur Content -8819.71 977.6782 -40.5743 7208.3001 -498.267 9631.27 0 

Initial Boiling Point 565.579 -23.89793 -967.374 510.99078 -339.494 137.137 0 

End Boiling Point 9672.12 -327.1301 823.032 208.61216 -9787.34 -535.607 0 

H2O content 48.45565 215.6331 -323.722 431.11729 -263.259 -190.159 0 

Calorific Value 11471.55 2889.992 -727.835 2634.5364 -1219.09 -2086.98 0 

Recovery (%) 148.2146 -49.65141 -67.2807 -22.11997 89.03423 2.169937 -12.687 

10% Evaporated 146.5731 -43.21388 -2.60746 -26.21899 -92.97669 57.11532 -41.210 

20% Evaporated 177.6610 -0.161014 -17.5524 -77.36252 -41.08247 41.01890 -90.634 

30% Evaporated 122.5311 -63.32803 -35.0521 -46.50951 -47.75886 114.3280 19.1379 

40% Evaporated 106.9317 -42.71848 -58.1178 -53.23196 -17.39421 148.5502 -1.2641 

50% Evaporated 102.2420 -20.40738 -71.3581 -51.45216 -0.074565 164.6898 -29.179 

60% Evaporated 117.2108 -24.79134 -73.9769 -53.88544 7.164428 155.3027 -26.370 

70% Evaporated 130.0545 -19.40446 -67.5508 -49.83736 7.315496 143.3186 -32.099 

80% Evaporated 145.1035 -22.48214 -57.4266 -42.93229 2.874205 128.0462 -38.490 

90% Evaporated 145.7793 -10.31829 -47.8016 -24.59089 0.515717 114.9782 -49.991 



434  Jehad YAMIN, Eiman SHEET, Ayad AL JUBOURİ/ GU J Sci, 37(1): 427-441 2024) 

 
 

Table 6. The weights between the inputs and hidden layer neurons 

  H1 H2 H3 H4 H5 H6 

RON ao 1.218026 -4.94525 8.360285 -7.179424 1.755552 0 

 b 0.010861 0.037146 -0.20458 -0.028626 0.042612 0 

 c -0.01302 0.036048 0.008115 0.114751 -0.041395 0 

Specific Gravity 

ao 2.622068 1.692600 -3.79097 -4.361374 -0.966850 0 

b -0.07238 0.061045 0.031017 0.045232 -0.043283 0 

c -0.00874 -0.053559 0.022211 0.053061 0.012820 0 

RVP ao 1.881966 2.087132 1.248031 -0.140765 -4.506550 0 

 b 0.039084 -0.049098 -0.00738 0.000379 0.023737 0 

 c -0.04036 -0.009155 -0.01449 -0.001209 0.056266 0 

Sulfur ao -5.89542 3.006306 -2.69400 7.351241 0.117395 0 

 b 0.088187 -0.072316 0.028506 -0.001515 -0.023144 0 

 c 0.035287 0.010593 0.009427 -0.121017 0.008526 0 

Initial BP ao 5.684775 2.414354 0.363873 -6.210412 -2.469675 0 

 b -0.15164 -0.044078 0.027827 0.012303 -0.018286 0 

 c -0.01679 -0.012636 -0.01700 0.066931 0.034090 0 

End BP ao -1.59213 1.963313 2.240794 -1.369122 0.984382 0 

 b -0.03705 0.005430 0.043127 0.016013 0.042853 0 

 c 0.028272 -0.034382 -0.05041 0.0121751 -0.040710 0 

H2O ao 2.744160 4.607682 -1.98252 1.519695 2.709939 0 

 b 0.090289 -0.05619 0.004618 0.070056 0.063986 0 

 c -0.08292 -0.058165 0.036473 -0.065886 -0.064092 0 

Calorific Value 

ao 0.866205 -3.488047 1.539958 -4.764899 -2.889805 0 

b -0.05729 -0.099014 0.025971 -0.061963 0.008233 0 

c 0.015366 0.072321 -0.00617 0.119508 0.035484 0 

Recovery ao -2.80766 0.221966 1.482031 2.337206 3.839143 1.999809 

 b -0.00295 0.016259 -0.02289 0.001913 0.07216 -0.026381 

 c 0.035694 -0.011789 0.001182 -0.034137 -0.071206 -0.017069 

Evaporation Percent 

ao -2.39343 -6.853717 4.243779 -5.585484 -27.57259 22.03325 

b 0.162172 0.085469 -0.01346 0.024171 0.2642982 -0.165187 

c 0.024029 0.0421755 -0.05505 0.073282 0.2973759 -0.21551 

 

4. RESULTS AND DISCUSSION 

 

The results of the modeling study are shown in Figures (3 A through J). The models obtained for the data 

were accurate to an acceptable limit of 3-5%. These figures clearly show that the models were able to 

predict the properties of petroleum with a reasonable degree of accuracy. 
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Figure 3. Predicted versus experimental data for distillate properties 
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Figures 4 show the results of the simulation study based on the models obtained above. The effect of 

presence of Aromatics and Paraffin on various fuel properties is shown in the figures (4.a through d). Based 

on Figure 4-a, it is noticed that the effect of both components causes the fuel’s Octane Number (ON) to 

increase. The effect is higher for lower concentrations of Paraffins. This is expected because ON for 

aromatics is much higher than those for paraffins [30]. Hence, as shown in the figure, the effect of aromatics 

is more pronounced at lower levels of paraffins tat at higher levels. This is one reason for petroleum 

refineries to add aromatics to the fuel to improve its ON. 

 

  
Figure 4-a. Effect on fuel Octane Number 

 

Figure 4-b shows the effect of both aromatics and paraffins on specific gravity and calorific value of the 

fuel. The calorific value of a fuel (or called heat of combustion) based on the (ASTM D240, ASTM D1405, 

and others) is a direct measure of energy content of the fuel. It is measured by the quantity of heat liberated 

by the combustion of a unit quantity of fuel with oxygen in a standard bomb calorimeter. A high calorific 

value is obviously desirable in oil used for heating purposes. Specific gravity of the fuel, on the other hand, 

is also important since fuels are sold on a volume basis; hence more energy content (kJ/m3) is available in 

one liter of fuel if the specific gravity increases. A proposed correlation between the calorific value and 

specific gravity can be given by [31]: 

 

𝑄𝐶𝑉 = 12400 − 2100 ∗ 𝑆𝐺2                    (8) 

 

where 𝑄𝐶𝑉 is the heat of combustion and 𝑆𝐺 is the specific gravity. Any method used to compute such a 

property, however, is not guaranteed to be accurate and should only be used as a guide or an approximation 

to the measured value. 

 

 
Figure 4-b. Effect on fuel specific gravity and calorific value 
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The carbon-to-hydrogen (C/H) ratios of the aromatic compounds are higher than those of naphthenes, which 

are higher than those of paraffins. The C/H ratio of crude oil increases with weight (specific gravity). 

Aromatics have a heating value of 5.4 MJ/kg, while paraffins have the highest [32].  

 

This helps explain the results shown in Figure 4-b where both properties show almost similar trends with 

change in paraffins and aromatics with higher effect for paraffins on calorific value compared with 

aromatics. The use of higher specific gravity fuel would improve the fuel consumption of the vehicle. 

Moreover, increasing the specific gravity of the fuel would result in increasing the boiling point and ON 

for the fuel. On the other hand, increasing the aromatics percentage has an adverse effect on the fuel’s 

calorific value, which is an undesired effect. 

 

An indicator of how volatile petroleum products like gasoline, diesel, and others is the Reid Vapor Pressure 

(RVP), which is shown in Figure 4-c below. It can be referred to as the pressure exerted on the fuel at a 

temperature of 37.8 °C (100 °F) by the vapor of the liquid and any dissolved gases or moisture. It is typically 

measured using the test method ASTM-D-323, which originated in 1930 and has undergone numerous 

revisions. (the latest version is ASTM D323-15a). 

 

One such problem faced in summer is the vapor lock caused by excessive fuel evaporation, while, in winter, 

difficulty in starting the vehicle due to low fuel evaporation is another problem. Thus, manipulating the 

RVP seasonally accurately to maintain gasoline engine reliability. Another disadvantage of using high-

aromatics crude oil is the sulfur content (shown below in the figures) of the fuel. High aromatics resulted 

in the high sulfur content of the fuel. 

 

Sulfur is the third most common element in crude oil and must be removed due to its corrosiveness, 

unbearable odor and harmful combination with sulfur dioxide (SO2) and hydrogen sulfide (H2S). 

Traditionally, excess sulfur is removed from crude oil during refining process, as sulfur oxides emitted to 

the atmosphere when oil is burned are the major pollutants.  

 

  
Figure 4-c. Effect on fuel’s Reid vapor pressure and sulphur content 

 

Aromatics increase the RVP of fuel at low levels of paraffins, while Paraffins decrease it. Similar findings 

is reported in [32]. Hence, it is expected that in summer, low percentages of Aromatics should be added, 

while in winter, Aromatics are desired. This is highly undesired as it increases the SO2 levels in the exhaust 

with all its harmful effects on the environment (e.g., acid rain) and automotive parts (e.g., corrosion).  

Another undesired effect of the presence of sulfur is that it decreases the effectiveness of the catalytic 

converters as well as oxygen sensors in the exhaust. 

 

Several factors affect the boiling point (shown below in Figures 4-d) for complex systems such as 

hydrocarbons. carbon number, molecular size, and the type of hydrocarbons (aliphatic, naphthenic, or 

aromatic) are an example of such factors affecting the boiling point of petroleum products. 
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Generally, it is noticed that boiling points tend to decrease with the increase of both Aromatics and 

Paraffins. Further noticed that the percentage of H2O in the products also increase with both Aromatics and 

Paraffins. This has an undesired effect on fuel combustion properties as well as storage. 

 

 
 

 
Figure 4-d. Effect on boiling points and water content 

Finally, based on the above, since Aromatics and Paraffins have a greater effect on fuel behavior in practical 

applications, optimization was done to improve the Octane number, specific gravity, calorific value, and 

minimum water and sulfur contents. The results are presented in Table 7. The best percentages for this 

purpose were found to be 97% Aromatics and 3% Paraffins. 

 

Table 7. The result of the optimization study 

Parameter Lowest 

(% vol) 

Highest 

(% vol) 

Optimum value  

(%) 

Aromatics 0 100 96.9561 

Paraffins 0 100 2.8126 

 

5. SUMMARY AND CONCLUSION 

 

To conclude the findings of this research, modeling the effect of Aromatics and Paraffins on distillate’s 

properties was conducted using experimental data collected from different refineries in Iraq. ANN and DOE 

techniques were used. 

 

The effect of both Aromats and Paraffins on product quality (e.g. MON, RON, …) differs considerably. 

Whereas Aromatics are used for increasing the octane number of the products and lowering its boiling point 
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limits, it is unfavorable for the calorific value and sulfur content of the products. 

 

Aromatics have a stronger effect on the octane number at low concentrations of paraffin, while, for specific 

gravity and calorific value they have similar effects.  

 

Regarding boiling points and sulfur contents, aromatics have almost no effect at lower levels of paraffin. 

Optimization based on RON, RVP, H2O, and sulfur content showed that the best percentage of aromatics 

should not exceed 97%. 
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