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1. Introduction

In recent years, many researchers have been interested in the discontinuous boundary value problems for their
application in physics as regards theoretical investigations. The discontinuity of the coefficients of the equations in
the boundary value problems relates to the fact that the nonhomogeneous media consists of two or more different
materials. On the other hand, transmission boundary value problems together with additional transmission conditions
appear frequently in various fields such as in electrostatics, magnetostatics and in solid mechanic for discontinuous
problems (in these regard see, [8, 28]). Solvability and some spectral properties of nonlocal Sturm-Liouville problems
have been investigated by many authors, see for example, [5, 6, 18, 20]. Various generalizations of classical boundary
value problems for ordinary linear differential equations have attracted a lot of attention in recent years because of
the appearance of new important applications in physical sciences and applied mathematics. An important special
case of the generalized boundary value problems are so-called multipoint boundary value problems. Such problems
have been extensively studied by many authors, see for example, [7, 16, 18]. Some of the mathematical problems
encountered in the study of boundary value transmission problems or nonclassical problems cannot be treated with
the usual techniques within the standard framework of boundary value problems. In classical theory, boundary-value
problems for ordinary differential equations are usually considered for equations with continuous coefficients and for
boundary conditions which contain only endpoints of the considered interval. However, this paper deals with one
nonclassical boundary-value problem for a second order ordinary differential equation with discontinuous coefficients
at two points and boundary conditions including not only endpoints of the considered interval, but also two point of
discontinuity and finite number of internal points.

In this paper, we consider boundary value transmission problem for Sturm-Liouville equation given by
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L(λ)u := t(x)u′′(x) + (k(x) − λ2)u(x) = f (x), x ∈ [−1, d1) ∪ (d1, d2) ∪ (d2, 1], (1.1)

with many point boundary conditions on intervals [−1, d1) , (d1, d2) and (d2, 1] given by

L1u := α1u(m1)(−1) + β1u(m1)(d1 − 0) +
n1∑

s=1

γ1su(m1)(x1s) = h1, (1.2)

L2u := α2u(m2)(d2 + 0) + β2u(m2)(1) +
n2∑

s=1

γ2su(m2)(x2s) = h2, (1.3)

respectively, and additional transmission conditions at the interior points of interaction d1, d2 given by

L ju : = α ju(m j)(dk − 0) + β ju(m j)(dk + 0) +
n j∑

s=1

γ jsu(m j)(x js) = h j,

k = 1 for j = 3, 4 and k = 2 for j = 5, 6, (1.4)

where −1 < d1 < 0 < d2 < 1, α j, β j, γ js, h j are given complex numbers; f (x) is given real-valued function; |αi| + |βi| ,
0, |αik |+ |βik | , 0; t(x) = t1 for x ∈ [−1, d1) , t(x) = t2 for x ∈ (d1, d2) , t(x) = t3 for x ∈ (d2, 1], x js ∈ [−1, d1)∪ (d1, d2)∪
(d2, 1] are internal points; k(x) is integrable function on [−1, d1) ∪ (d1, d2) ∪ (d2, 1].
Such type nonstandard discontinuous boundary-value problems arise with the implementation of the method of sep-
aration of variables to the varied assortment of physical problems, namely, in heat and mass transfer problems (see,
for example, [8, 18, 19, 24]), in diffraction problems (for example, [14]), in vibrating string problems, when the string
loaded additionally with point masses (see, [20, 21]) and etc. Also, some discontinuous problems with manypoint
and transmission conditions which arise in mechanics in the sense of thermal condition problem for a thin laminated
plate were studied in (see, [18, 19, 24]). Spectral properties, coercive and solvability of boundary value problems in
Sobolev spaces can be found in some works of Sadybekov, Agranovich, Imanbaev, Shakhmurov and Aliyev (for ex-
ample, [1, 3, 9, 10, 13, 17, 22, 23, 26, 28]). Some boundary-value problems for differential equations with discontinuous
coefficients were investigated by Rasulov in monographs (see, [21]). Various spectral properties of some transmission
problems and its applications were investigated by authors Mukhtarov, Ya. Yakubov, Kandemir, Aydemir and some
others (for example, [2, 4, 10–14, 19, 22, 27]).

From ( [25], p. 186, Th. 2 formula 16) we consider in the following spaces:
Let s0 and s1 be non-negative integers 0 ≤ s0, s1 < ∞, s0 , s1, 1 < p < ∞, 1 ≤ q ≤ ∞, 1

p +
1
q = 1, 0 < θ < 1,

s = (1 − θ)s0 + θs1 and Ω ⊂ Rn. Then the following interpolation of Sobolev space is called Besov space.

Bs
p,q(Ω) = (W s0

p (Ω),W s1
p (Ω))θ,q.

These spaces are Besov spaces with the definition by interpolation of Sobolev spaces ( [25], p. 186, Th. 2 and [28]).
The Sobolev space Wm

p (Ω) is Banach space that consists of u ∈ Lp(Ω) for which the following norm

∥u∥Wm
p (Ω) =

∑
|α|≤m

∥Dαu∥pLp(Ω)


1
p

.

Naturally W0
p(Ω) = Lp(Ω).

Let 0 ≤ s0, s1 are integers, s0 , s1, 1 < p < ∞, 0 < θ < 1, s = (1 − θ)s0 + θs1, then by virtue of from ( [25], p. 186,
Th. 2, formula 16)

Bs
p(Ω) = W s

p(Ω) = (W s0
p (Ω),W s1

p (Ω))θ
and 1 < p0, p1 < ∞,

Lp(Ω) = (Lp0 (Ω), Lp1 (Ω))θ,p.

From ( [25], p. 186, Remark 5). Where 1 < p0, p1 < ∞



Solvability of Discontinuous BVP 260

∥u∥Bs
p(Ω) ≤ c(∥u∥1−θ

Bs0
p (Ω)
∥u∥θ

Bs1
p (Ω)
, u ∈ Bs0

p (Ω) ∩ Bs1
p (Ω),

and ( [28], p. 20 Lemma 2.4]) for 0 ≤ s ≤ l, 1 < p < ∞ and λ ∈ C

|λ|l−s ∥u∥W s
p(Ω) ≤ C(∥u∥W l

p(Ω) + |λ|
l ∥u∥Lp(Ω) .

2. Solvability and Coerciveness of Homogeneous Equation with Nonhomogeneous Transmission Conditions

First, we will consider the following boundary value problem which consist of the homogeneous differential equation

L0(λ)u := t(x)u′′(x) − λ2u(x) = 0 (2.1)

and nonhomogeneous boundary-transmission conditions

L10u := α1u(m1)(−1) + β1u(m1)(d1 − 0) = h1, (2.2)

L20u := α2u(m2)(d2 + 0) + β2u(m2)(1) = h2, (2.3)

L j0u : = α ju(m j)(dk − 0) + β ju(m j)(dk + 0) = h j,

k = 1 for j = 3, 4 and k = 2 for j = 5, 6. (2.4)

We will consider the boundary value problem (2.1)-(2.4) with nonhomogeneous transmission conditions.

The notations and definitions which we consider throughout the paper are as following:
φ jk = (−1)k 1

√
t j
, j = 1, 2, 3, k = 1, 2; φ := min

{
arg t1, arg t2, arg t3

}
, φ := max

{
arg t1, arg t2, arg t3

}
;

θ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1φ
m1
11 β1φ

m1
12 0 0 0 0

0 0 0 0 α2φ
m2
31 β2φ

m2
32

0 α3φ
m3
12 β3φ

m3
21 0 0 0

0 α4φ
m4
12 β4φ

m4
21 0 0 0

0 0 0 α5φ
m5
22 β5φ

m5
31 0

0 0 0 α6φ
m6
22 β6φ

m6
31 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

D(ε, λ) :=
{
λ ∈ C| π + φ < arg λ < 3π + φ − ε

}
.

Below, the direct sum of Sobolev spaces Wk
q(−1, d1)+̇Wk

q(d1, d2)+̇Wk
q(d2, 1) (for an integer k ≥ 0 and real q > 1) is

defined as Banach space of complex-valued functions u = u(x) defined on [−1, d1) ∪ (d1, d2) ∪ (d2, 1] which belong to
Wk

q(−1, d1), Wk
q(d1, d2) and Wk

q(d2, 1) on intervals (−1, d1), (d1, d2) and (d2, 1) ,respectively, with the norm

∥u∥Wk
q (−1,1) = ∥u∥Wk

q (−1,d1)
+ ∥u∥

Wk
q (d1 ,d2)

+ ∥u∥
Wk

q (d2 ,1)

Here, as usual, Wk
q(a, b) is the Sobolev space, i.e. the Banach space consisting of all measurable functions u(x) that

have generalized derivatives up to k-th order inclusive on the interval (a, b) with the infinite norm

∥u∥Wk
q (a,b) =

k∑
i=0

(∫ b

a

∣∣∣u(i)(x)
∣∣∣q dx

) 1
q

, k ≥ 0 and q > 1.

Theorem 2.1. If θ , 0 then, for any ε > 0 there exists rε > 0 such that for all λ ∈ D(ε, λ) for which |λ| > rε,
the problem (2.1)- (2.4) has a unique solution u(x, λ) that belongs to Wk

q(−1, d1)+̇Wk
q(d1, d2)+̇Wk

q(d2, 1) for arbitrary
n ≥ max{2,max {m1,m2,m3,m4,m5,m6} + 1} and for these λ the coercive estimate

n∑
k=0

|λ|n−k ∥u∥Wk
q (−1,1) ≤ C(ε)

6∑
j=1

|λ|n−m j−
1
q
∣∣∣h j

∣∣∣
is valid.
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Proof. We shall define six basic solutions u jk = u jk(x, λ) of the equation (2.1) as

u jk :=
{

eφ jkλ(x−ξ jk), for x ∈ I j

0 , for x < I j
j = 1, 2, 3, k = 1, 2,

where ξ11 = −1, ξ12 = ξ21 = d1, ξ22 = ξ31 = d2, ξ32 = 1 ; I1 = [−1, d1), I2 = (d1, d2), I3 = (d2, 1]. Then, the general
solution of the equation (2.1) can be written in the form

u(x, λ) =

3∑
j=1

(
C j1u j1(x, λ) +C j2u j2(x, λ

)
(2.5)

Substituting (2.5) into boundary-transmission conditions (2.2)-(2.4) yields a system of linear homogeneous equations

with respect to variables C11,C12,C21,C22,C31,C32 as

C11

(
α1 + β1eφ11λ(d1+1)

)
(φ11λ)m1 +C12

(
α1eφ12λ(−1−d1) + β1

)
(φ12λ)m1 = h1

+C31

(
α2 + β2eφ31λ(1−d2)

)
(φ31λ)m2 +C32

(
α2eφ32λ(d2−1) + β2

)
(φ32λ)m2 = h2

C11α3eφ11λ(d1+1)(φ11λ)m3 +C12α3(φ12λ)m3 +C21β3(φ21λ)m3

+C22β3eφ22λ(d1−d2)(φ22λ)m3 = h3

C11α4eφ11λ(d1+1)(φ11λ)m4 +C12α4(φ12λ)m4 +C21β4(φ21λ)m4

+C22β4eφ22λ(d1−d2)(φ22λ)m4 = h4

C21α5eφ21λ(d2−d1)(φ21λ)m5 +C22α5(φ22λ)m5 +C31β5(φ31λ)m5

+C32β5eφ32λ(d2−1)(φ32λ)m5 = h5

C21α6eφ21λ(d2−d1)(φ21λ)m6 +C22α6(φ22λ)m6 +C31β6(φ31λ)m6

+C32β6eφ32λ(d2−1)(φ32λ)m6 = h6 (2.6)

From λ ∈ D(ε, λ), let
π

2
+ ε < arg λφ jk <

3π
2
− ε, j = 1, 2, 3, k = 1,

−
π

2
+ ε < arg λφ jk <

π

2
− ε, j = 1, 2, 3, k = 2.

Consequently, for these λ and for ε > 0 , we have

(−1)k+1Reλφ jk ≤ − |λ|
∣∣∣φ jk

∣∣∣ sin ε, j = 1, 2, 3, k = 1, 2.

Let ω11 := d1 + 1, ω12 := −1 − d1, ω21 := d2 − d1, ω22 := d1 − d2, ω31 := 1 − d2, ω32 := d2 − 1. Hence, the determinant
of the system (2.6) has the form

∆(λ) = λ

6∑
j=1

m j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1φ
m1
11 β1φ

m1
12 0 0 0 0

0 0 0 0 α2φ
m2
31 β2φ

m2
32

0 α3φ
m3
12 β3φ

m3
21 0 0 0

0 α4φ
m4
12 β4φ

m4
21 0 0 0

0 0 0 α5φ
m5
22 β5φ

m5
31 0

0 0 0 α6φ
m6
22 β6φ

m6
31 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ e
3∑

j=1

2∑
k=1
λφ jkω jk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1φ
m1
11 α1φ

m1
12 0 0 0 0

0 0 0 0 α2φ
m2
31 β2φ

m2
32

α3φ
m3
11 0 0 β3φ

m3
22 0 0

α4φ
m4
11 0 0 β4φ

m4
22 0 0

0 0 α5φ
m5
21 0 0 β5φ

m5
32

0 0 α6φ
m6
21 0 0 β6φ

m6
32

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


= λm (θ + σ(λ)) ,
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where m =
6∑

j=1
m j. It is easy to see that σ(λ)→ 0 if λ ∈ D(ε, λ) and |λ| → ∞, since φ jkω jk < 0 for each j = 1, 2, 3, k =

1, 2. Because of the fact that θ , 0, there exists rε > 0 such that for all complex numbers λ satisfying λ ∈ D(ε, λ) and
|λ| > rε, we have ∆(λ) , 0. So, the system (2.6) has a unique solution

C jk(λ) =
1
∆(λ)

6∑
i=1

∆i jk(λ)hi, j = 1, 2, 3, k = 1, 2,

where the determinants ∆i jk(λ) have the representation given by

∆i jk(λ) =
(
θi jk + σi jk(λ)

)
λ

6∑
υ=1

mυ−mi
, j = 1, 2, 3, k = 1, 2,

where θi jk are complex numbers and σi jk → 0 as |λ| → ∞ in the angle D(ε, λ). Then, we have

C jk(λ) =
6∑

i=1

λ−mi
θi jk + σi jk(λ)
θ + σ(λ)

hi, j = 1, 2, 3, k = 1, 2.

Thus, the solution of the problem (2.1)-(2.4) has the form

u(x, λ) =

3∑
j=1

2∑
k=1

C jk(λ)u jk(x, λ)

=

3∑
j=1

2∑
k=1

6∑
i=1

λ−mi
θi jk + σi jk(λ)
θ + σ(λ)

hiu jk(x, λ).

In that case, for each integer n ≥ 0 and π+φ2 + ε ≤ arg λ ≤
3π+ φ

2 − ε, |λ| → ∞, we have the estimate

∥∥∥u(n)
∥∥∥

Lq(−1,1) ≤ C
6∑

i=1

|λ|n−mi |hi|

3∑
j=1

2∑
k=1

∥∥∥u jk(., λ)
∥∥∥

Lq(I j)

 , (2.7)

or ∥∥∥u(n)
∥∥∥

Lq(−1,1) ≤ C
6∑

i=1

|λ|n−mi |hi|

(∥∥∥eφ11λ(x+1)
∥∥∥

Lq(−1,d1) +
∥∥∥eφ12λ(x−d1)

∥∥∥
Lq(−1,d1)

+
∥∥∥eφ21λ(x−d1)

∥∥∥
Lq(d1,d2) +

∥∥∥eφ22λ(x−d2)
∥∥∥

Lq(d1,d2)

+
∥∥∥eφ31λ(x−d2)

∥∥∥
Lq(d2,1) +

∥∥∥eφ32λ(x−1)
∥∥∥

Lq(d2,1)

)
.

Further,

∥u11(., λ)∥qLq(−1,d1) =

∫ d1

−1
eReφ11λ(x+1)dx ≤

∫ d1

−1
e−q|λ||φ11 | sin ε2 (x+1)dx

=

(
−q |λ| |φ11| sin

ε

2

)−1 (
e−q|λ||φ11 | sin ε2 (d1+1) − 1

)
≤ C(ε) |λ|−1 ,

∥u12(., λ)∥qLq(−1,d1) =

∫ d1

−1
eReφ12λ(x−d1)dx ≤

∫ d1

−1
e−q|λ||φ12 | sin ε2 (x−d1)dx

=

(
−q |λ| |φ12| sin

ε

2

)−1 (
1 − eq|λ||φ12 | sin ε2 (1+d1)

)
≤ C(ε) |λ|−1 ,
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∥u21(., λ)∥qLq(−1,d1) =

∫ d2

d1

eReφ21λ(x−d1)dx ≤
∫ d2

d1

e−q|λ||φ21 | sin ε2 (x−d1)dx

=

(
−q |λ| |φ21| sin

ε

2

)−1 (
e−q|λ||φ21 | sin ε2 (d2−d1) − 1

)
≤ C(ε) |λ|−1 ,

as |λ| → ∞ in the angle λ ∈ D(ε, λ). In a similar way, we have∥∥∥u jk(., λ)
∥∥∥q

Lq(I j)
≤ C(ε) |λ|−1 , j = 2, 3, k = 1, 2

as |λ| → ∞ in the angle λ ∈ D(ε, λ). Substituting these inequalities in 2.7), we have∥∥∥u(n)
∥∥∥

Lq(−1,1) ≤ C(ε)
6∑

i=1

|λ|n−mi−
1
q |hi| ,

which, in turn, gives us the needed estimation (2.7). The proof is complete. □

3. Fredholm Property of theMain Problem

Let X and Y be Banach spaces and Y∗ be the adjoint of Y . The linear operator A : X → Y is called a Fredholm operator
if the following conditions are satisfied:
1) The range R(A) = {Au| u ∈ D(A)} is closed in Y ,
2) ker A = {u| u ∈ D(A) and Au = 0} and
co ker A = {u∗| u∗ ∈ Y∗ and u∗(Au) = 0 for all u ∈ D(A)} are finite dimensional subspaces in X and Y∗, respectively,
3) dim ker A = dim co ker A.

Suppose that n ≥ max
{
2,max

{
m j : j = 1, 2, ..., 6

}
+ 1

}
and define a linear operator L from Wn

q (−1, d1)+̇Wn
q (d1, d2)

+̇Wn
q (d2, 1) into Wn

q (−1, d1)+̇Wn
q (d1, d2) +̇Wn

q (d2, 1) + C6 by action law

Lu = (L(λ)u, L1u, L2u, L3u, L4u, L5u, L6u).

Theorem 3.1. Let the following conditions be satisfied:
1) t(x) = t1 on [−1, d1), t(x) = t2 on (d1, d2), t(x) = t3 at x ∈ (d2, 1], t1 , 0, t2 , 0, t3 , 0 ; mk ≥ 0; θ , 0.
2) k(x) is measurable function on [−1, d1) ∪ (d1, d2) ∪ (d2, 1].
Then, the linear operator

L : u −→ Lu :=
(
t(x)u′′(x) + k(x)u, L1u, L2u, L3u, L4u, L5u, L6u

)
from Wn

q (−1, d1)+̇Wn
q (d1, d2) +̇Wn

q (d2, 1) onto Wn−2
q (−1, d1)+̇Wn−2

q (d1, d2)+̇Wn−2
q (d2, 1)+̇C6 is bounded and Fredholm.

Proof. The operator L can be rewritten in the form L = L1 +L2, where

L1u =
(
t(x)u′′(x), u(−1), u′(−1), u(−d1) − u(+d1), u′(−d1) − u′(+d1),
u(−d2) − u(+d2), u′(−d2) − u′(+d2)

)
,

L2u =
(
k(x), L1u − u(−1), L2u − u′(−1), L3u − u(−d1) + u(+d1) ,
L4u − u′(−d1) + u′(+d1), L5u − u(−d2) + u(+d2), L6u − u′(−d2) + u′(+d2)

)
.

Let f ∈ Lq(−1, 1). Then, from condition (1) and 1
p+

1
q = 1, it follows that the function t−1(x) f (x) ∈ L1(−1, 1)∩Lq(−1, 1).

Indeed, because of Schwartz inequality, we have∫ 1

d2

∣∣∣t−1(x) f (x)
∣∣∣ dx ≤

(∫ 1

d2

x−p(x) f (x)dx
) 1

p
(∫ 1

d2

xq(x) | f (x)|q dx
) 1

q

≤ C x
1
p−1

∣∣∣∣1
d2

(∫ 1

d2

xq(x) | f (x)|q dx
) 1

q

≤ C ∥ f ∥Lq(d2,1) . (3.1)

Consequently, a solution of the problem
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t(x)u′′(x) = f (x), x ∈ (−1, d1) ∪ (d1, d2) ∪ (d2, 1),

u(−1) = g1, u′(−1) = g2,

u(−d1) − u(+d1) = g3, u′(−d1) − u′(+d1) = g4,

u(−d2) − u(+d2) = g5, u′(−d2) − u′(+d2) = g6,

has the form

u(x) =

∫ x

−1
(x − y)t−1(y) f (y)dy + g1 + (x + 1)g2, x ∈ (−1, d1),

u(x) =

∫ x

d1

(x − y)t−1(y) f (y)dy +
∫ d1

−1
(x − y)t−1(y) f (y)dy + g1 + g2 − g3

+

(∫ d1

−1
t−1(y) f (y)dy + g2 − g4

)
(x − d1) , x ∈ (d1, d2) ,

u(x) =

∫ x

d2

(x − y)t−1(y) f (y)dy +
∫ d2

d1

(x − y)t−1(y) f (y)dy +
∫ d1

−1
(x − y)t−1(y) f (y)dy + g1 + g2 − g3

+

(∫ d1

−1
t−1(y) f (y)dy + g2 − g4

)
(d2 − d1) − g5

+

(∫ d2

d1

t−1(y) f (y)dy + 2
∫ d1

−1
t−1(y) f (y)dy + g2 − g4 − g6

)
(x − d2), x ∈ (d2, 1) . (3.2)

If f ∈ W l−2
q (−1, d1)+̇W l−2

q (d1, d2)+̇W l−2
q (d2, 1), then (3.2) implies u′′(x) = t−1(x) f (x), u(p+2)(x) = t−1(x) f (p)(x),

0 ≤ p ≤ l − 2. Thus, from condition 1, the inequality (3.1) and Theorem 2.1, we obtain that the operator L1 from
Wn

q (−1, d1)+̇Wn
q (d1, d2) +̇Wn

q (d2, 1) onto Wn−2
q (−1, d1)+̇Wn−2

q (d1, d2)+̇Wn−2
q (d2, 1)+̇C6 is isomorphism. Also, it is easy

to see that the linear operator L2 acts compactly from Wn
q (−1, d1)+̇Wn

q (d1, d2) +̇Wn
q (d2, 1) onto

Wn−2
q (−1, d1)+̇Wn−2

q (d1, d2)+̇Wn−2
q (d2, 1)+̇C6. Consequently, we can apply the theorem of Fredholm operator perturba-

tion [15] to the operator L = L1 + L2, from which it follows that the operator L is Fredholm. Moreover, it is obvious
that the operator L is bounded. Thus the proof is completed. □

4. Isomorphism and Coerciveness of the Principal Part of the Problem

Consider the problem (1.1)-(1.4) without internal points, namely,

L0(λ)u := t(x)u′′(x) − λ2u(x) = f (x), x ∈ [−1, d1) ∪ (d1, d2) ∪ (d2, 1], (4.1)

L01u := α1u(m1)(−1) + β1u(m1)(d1 − 0) = h1, (4.2)

L02u := α2u(m2)(d2 + 0) + β2u(m2)(1) = h2, (4.3)

L0 ju := α ju(m j)(dk − 0) + β ju(m j)(dk + 0) = h j, k = 1 for j = 3, 4 and k = 2 for j = 5, 6. (4.4)

The operator corresponding to this problem is

L̃0u = (L0(λ)u, L01(λ)u, L02, L03, L04, L05, L06) .

Theorem 4.1. Let the following conditions be satisfied:
1) t1 , 0, t2 , 0, t3 , 0 ; mk ≥ 0; θ , 0,
2) n ≥ max{2,max {m1,m2,m3,m4,m5,m6} + 1}.
Then, for each ε > 0, there exists ρε > 0 such that for all complex numbers λ satisfying λ ∈ D(ε, λ), |λ| > ρε

the operator L̃0(λ) from Wn
q (−1, d1)+̇Wn

q (d1, d2) +̇Wn
q (d2, 1) onto Wn−2

q (−1, d1)+̇Wn−2
q (d1, d2)+̇Wn−2

q (d2, 1)+̇C6 is an
isomorphism and for these λ the following coercive estimate holds for the solution of the problem (4.1)-(4.4),

n∑
k=0

|λ|n−k ∥u∥Wk
q
≤ C(ε)

∥ f ∥Wn−2
q
+ |λ|n−2 ∥ f ∥Lq,0

+

6∑
j=1

|λ|n−m j−
1
q
∣∣∣h j

∣∣∣ . (4.5)
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Proof. It is obvious that, the linear operator L̃0(λ) is continuous from Wn
q (−1, d1)+̇Wn

q (d1, d2) +̇Wn
q (d2, 1) to Wn−2

q (−1, d1)
+̇Wn−2

q (d1, d2)+̇Wn−2
q (d2, 1)+̇C6. Let ( f (x), h1, h2, h3, h4, h5, h6) ∈ Wn−2

q (−1, d1)+̇Wn−2
q (d1, d2)+̇Wn−2

q (d2, 1)+̇C6 be any
elements. We shall look for the solution u(x, λ) of problem (15)-(18) in the type of the sum u(x, λ) = u1(x, λ)+u2(x, λ)+
u3(x, λ) where u1(x, λ) = u11(x, λ) + u12(x, λ); u2(x, λ) = u21(x, λ) + u22(x, λ); u3(x, λ) = u31(x, λ) + u32(x, λ).

By f j(x) ( j = 1, 2, 3), we shall denote the restriction of f (x) on the interval I j ( j = 1, 2, 3). Let f̃ j(x) ∈ Wn−2
q (R) be

an extension of f j(x) ∈ Wn−2
q (I j) such that the extension operator T j f j := f̃ j from Wn−2

q (I j) to Wn−2
q (R) is bounded for

j = 1, 2, 3 ( [23], Lemma 1.7.6), where as usual R = (−∞,∞). First, consider the equations

t(x)u′′(x) − λ2u(x) = f̃ j(x), x ∈ R

for j = 1, 2, 3. Applying the ( [23], Theorem 3.2.1), it is seen that, this equation has a unique solution ũ j1 = ũ j1(x, λ) ∈
Wn

q (R) and for u j1(x, λ) (i.e. the restriction of ũ j1(x, λ) on interval I j) the estimate

n∑
k=0

|λ|n−k
∥∥∥u j1(x, λ)

∥∥∥
Wk

q (I j)
≤ C(ε)

(
∥ f ∥Wn−2

q (I j) + |λ|
n−2 ∥ f ∥Lq(I j)

)
(4.6)

for j = 1, 2, 3, is valid for all complex numbers satisfying λ ∈ D(ε, λ). Consequently, the function

u10(x, λ) :=


u11(x, λ), x ∈ (−1, d1)
u21(x, λ), x ∈ (d1, d2)
u31(x, λ), x ∈ (d2, 1)

satisfies the equation(4.1). In terms of this solution, we construct the boundary-value problem

L0(λ)u := t(x)u′′(x) − λ2u(x) = f (x), x ∈ [−1, d1) ∪ (d1, d2) ∪ (d2, 1],

L0 ju = h j − L ju, j = 1, 2, 3, 4, 5, 6.

By Theorem 1, this problem has a unique solution u20(x, λ) =: u12(x, λ)+u22(x, λ)+u32(x, λ) that belongs to Wn
q (−1, d1)+̇Wn

q (d1, d2)+̇Wn
q (d2, 1)

for all complex numbers λ sufficiently large in modulus satisfying λ ∈ D(ε, λ), and for these λ the estimate

n∑
k=0

|λ|n−k ∥u20(x, λ)∥q,k ≤ C(ε)
6∑

j=1

|λ|n−m j−
1
q
(∣∣∣h j

∣∣∣ + ∣∣∣L0 ju10
∣∣∣) (4.7)

holds. By applying Theorem 1 and taking into account ( [23], Theorem 1.7.7/2), we have that for all λ ∈ D(ε, λ) and
n ≥ max{2,max {m1,m2,m3,m4,m5,m6} + 1} the following estimates hold.

|λ|n−m j−
1
q
∣∣∣L0 ju10

∣∣∣ ≤ C |λ|n−m j−
1
q ∥u10∥Cm j [−1,d1]+Cm j [d1,d2]+Cm j [d2,1]

≤ C
(
|λ| ∥u10∥q,0 + ∥u10∥q,n

)
≤ C

(
∥ f ∥q,n−2 + |λ|

n−2 ∥ f ∥q,0
)
. (4.8)

From (4.7) and (4.8), we have the following inequality

n∑
k=0

|λ|n−k ∥u20(x, λ)∥q,k ≤ C(ε)

∥ f ∥q,n−2 + |λ|
n−2 ∥ f ∥q,0 +

6∑
j=1

|λ|n−m j−
1
q
∣∣∣h j

∣∣∣ . (4.9)

It is easy to see that the function u(x, λ) defined as u(x, λ) = u10(x, λ) + u20(x, λ) =
3∑

i=1

2∑
j=1

ui j(x, λ) is the solu-

tion of the considered problem (4.1)-(4.4). Taking into account the estimates (4.6) and (4.9), it is seen that the
required estimation (4.5) is valid for this solution . Furthermore, from estimate (4.5), the uniqueness of the solu-
tion is obvious. Meanwhile by Theorem 2, the operator L is Fredholm from Wn

q (−1, d1)+̇Wn
q (d1, d2) +̇Wn

q (d2, 1) to
Wn−2

q (−1, d1)+̇Wn−2
q (d1, d2)+̇Wn−2

q (d2, 1)+̇C6. The fact that the operator is an isomorphism is obvious, since the opera-
tor is a Fredholm. Thus, we completed the proof. □
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5. Isomorphism and Coerciveness of theMain Problem

We shall study the main problem(1.1)-(1.4) now.

Theorem 5.1. Let
1. t1 , 0, t2 , 0, t3 , 0,mk ≥ 0 and θ , 0
2. n ≥ max{2,max {m1,m2,m3,m4,m5,m6} + 1}.

Then, for any ε > 0 there exists rε > 0 such that for all complex numbers λ ∈ D(ε, λ) for which |λ| > rε the operator

Lu = (L(λ)u, L1(λ)u, L2, L3, L4, L5, L6)

is an isomorphism from Wn
q (−1, d1)+̇Wn

q (d1, d2) +̇Wn
q (d2, 1) onto Wn−2

q (−1, d1)+̇Wn−2
q (d1, d2)+̇Wn−2

q (d2, 1)+̇C6 and for
these λ, the following coercive estimate holds for the solution of main problem (1.1)-(1.4)

n∑
k=0

|λ|n−k ∥u(x, λ)∥q,k ≤ C(ε)

∥ f ∥q,n−2 + |λ|
n−2 ∥ f ∥q,0 +

6∑
j=1

|λ|n−m j−
1
q
∣∣∣h j

∣∣∣ , (5.1)

where C(ε) is a constant which depend on only ε.

Proof. Let ( f (x), h1, h2, h3, h4, h5, h6) be any element of Wn−2
q (−1, d1)+̇Wn−2

q (d1, d2)+̇Wn−2
q (d2, 1)+̇C6. Assume that

there exists a solution u(x, λ) of problem (1.1)-(1.4) corresponding to this element. Then, this solution satisfies the
following equalities

L0(λ)u = L(λ)u − k(x)u
L0 ju = L ju − A ju, j = 1, 2, 3, 4, 5, 6,

where A ju =
n j∑

s=1
a jsu(m j)(x js). By applying Theorem 3 to the problem (4.1)- (4.4), we have that for this solution the

following a priory estimate holds
n∑

k=0

|λ|n−k ∥u(x, λ)∥q,k ≤ C(ε)
(
∥L(λ)u − k(x)u∥q,n−2 + |λ|

n−2 ∥L(λ)u − k(x)u∥q,0

+

6∑
j=1

|λ|n−m j−
1
q
∣∣∣L ju − A ju

∣∣∣
≤ C(ε)

(
∥ f ∥q,n−2 + |λ|

n−2 ∥ f ∥q,0 + ∥k(x)u∥q,n−2 + |λ|
n−2 ∥k(x)u∥q,0

+

6∑
j=1

|λ|n−m j−
1
q
∣∣∣h j

∣∣∣ + 6∑
j=1

|λ|n−m j−
1
q
∣∣∣A ju

∣∣∣ . (5.2)

Let µ be any real number satisfying

µ := min
{

min
xi j∈(−1,d1)

{
−1 + xi j, d1 − xi j

}
, min

xi j∈(d1,d2)

{
d1 + xi j, d2 − xi j

}
, min

xi j∈(d2,1)

{
d2 + xi j, 1 − xi j

}}
.

By applying the same approach as in [19], it is easy to construct a function ζµ(x) ∈ C∞0 [−1, 1] such that

ζµ(x) = 1 for x ∈ [−1 + µ, d1 − µ] ∪ [d1 + µ, d2 − µ] ∪ [d2 + µ, 1 − µ],

ζµ(x) = 0 for x ∈ [−1,−1 +
µ

2
] ∪ [d1 −

µ

2
, d1 +

µ

2
] ∪ [d2 −

µ

2
, d2 +

µ

2
] ∪ [1 −

µ

2
, 1],

and 0 ≤ ζµ(x) ≤ 1 for all x ∈ [−1, 1]. It is obvious that,∣∣∣A ju
∣∣∣ ≤ C

∥∥∥∥(ζµu)(m j)
∥∥∥∥

C[−1,1]
. (5.3)

By ( [21], Theorem 3.10.4]), for u ∈ Wn
q (−1, d1)+̇Wn

q (d1, d2) +̇Wn
q (d2, 1) the following estimate holds,

|λ|n−m j−
1
q
∥∥∥u(m j)

∥∥∥
C[−1,1] ≤ C

(
∥u∥q,n + |λ|

n ∥u∥q,0
)
. (5.4)

By Theorem 3, from (5.3)-(5.4) it follows that for all λ ∈ D(ε, λ) sufficiently large in modulus the following estimate
holds,
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|λ|n−m j−
1
q
∣∣∣A ju

∣∣∣ ≤ C |λ|n−m j−
1
q

∥∥∥∥(ζµu)(m j)
∥∥∥∥

C[−1,1]

≤ C
(∥∥∥ζµu∥∥∥q,n + |λ|

n
∥∥∥ζµu∥∥∥q,0

)
≤ C(ε)

(∥∥∥L0(λ)(ζµu)
∥∥∥

q,n−2 + |λ|
n−2

∥∥∥L0(λ)(ζµu)
∥∥∥

q,0

)
≤ C(ε)

(
∥L0(λ)∥q,n−2 + |λ|

n−2 ∥L0(λ)∥q,0

+ ∥k(x)u∥q,n−2 + |λ|
n−2 ∥k(x)u∥q,0 +

n−1∑
k=0

|λ|n−1−k ∥u∥q,k


≤ C(ε)

(
∥ f ∥q,n−2 + |λ|

n−2 ∥ f ∥q,0

+ ∥k(x)u∥q,n−2 + |λ|
n−2 ∥k(x)u∥q,0 +

n−1∑
k=0

|λ|n−1−k ∥u∥q,k

 . (5.5)

By ( [4], 2014, Theorem 1.3.3) there is a positive constant C such that for all u in the set Wn
q (−1, d1)+̇Wn

q (d1, d2)
+̇Wn

q (d2, 1) and for each k = 0, 1, ..., n − 1 the following inequality is valid

∥u∥q,k ≤ ∥u∥
k

k+1
q,k ∥u∥

1
k+1
q,0 . (5.6)

Applying the well-known Young inequality

ab ≤
1
p

(ra)p +
1
q

(
b
r

)q

,

where a > 0, b > 0, r > 0, 1 < p, q < ∞, 1
p +

1
q = 1 to the right hand-side of (5.6) for a = ∥u∥

k
k+1
q,k , b = ∥u∥

1
k+1
q,0 , p =

k+1
k , it yields

∥u∥q,k ≤
(

k
k + 1

r
k+1

k ∥u∥q,k+1 +
1

k + 1
r−(k+1) ∥u∥q,0

)
, for k = 0, 1, ..., n − 1.

We denote

M(r) = max
(
C

k
k + 1

r
k+1

k , k = 0, 1, ..., n − 1
)
,

N(r) = max
(
C

1
k + 1

r−(k+1), k = 0, 1, ..., n − 1
)
.

Then, from inequality (5.5), we have

|λ|n−m j−
1
q
∣∣∣A ju

∣∣∣ ≤ C(ε)
(
∥ f ∥q,n−2 + |λ|

n−2 ∥ f ∥q,0
)

+C(ε)
n−1∑
k=0

|λ|n−1−k
(
M(r) ∥u∥q,k+1 + N(r) ∥u∥q,0

)
≤

(
C(ε)M(r) + T (r, ε) |λ|−1

) n∑
k=0

|λ|n−k ∥u∥q,k , (5.7)

where T (r, ε) is a constant which depends on only of r and ε. In view of ( [28], Theorem 1.7.7/2), for any τ > 0 we
obtain

∥u∥q,k ≤ τ ∥u∥q,k+1 +C(τ) ∥u∥q,0 .
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From (5.7), we have

∥k(x)u∥q,n−2 + |λ|
n−2 ∥k(x)u∥q,0 +

6∑
j=1

|λ|n−m j−
1
q
∣∣∣A ju

∣∣∣
≤ C(ε)

(
∥ f ∥q,n−2 + |λ|

n−2 ∥ f ∥q,0
)
+ τ

(
∥u∥q,k+1 + |λ|

n−2 ∥u∥q,0
)

+C(τ) |λ|n−2 ∥u∥q,0 +
(
C(ε)M(r) + T (r, ε) |λ|−1

) n∑
k=0

|λ|n−k ∥u∥q,k +C
6∑

j=1

|λ|n−m j−
1
q ∥u∥q,k

≤ C(ε)
(
∥ f ∥q,n−2 + |λ|

n−2 ∥ f ∥q,0
)
+

(
C(ε)M(r) + T (r, ε) |λ|−

1
q

) n∑
k=0

|λ|n−k ∥u∥q,k . (5.8)

Substituting (5.8) into (5.2), we obtain
n∑

k=0

|λ|n−k ∥u(x, λ)∥q,k ≤ C(ε)

∥ f ∥q,n−2 + |λ|
n−2 ∥ f ∥q,0 +

6∑
j=1

|λ|n−m j−
1
q
∣∣∣h j

∣∣∣
+

(
C(ε)M(r) + T (r, ε) |λ|−

1
q

) n∑
k=0

|λ|n−k ∥u∥q,k .

For a fixed ε > 0 we can choose r > 0 so small, and |λ| so large that C(ε)M(r) + T (r, ε) |λ|−
1
q < 1. Thus, for λ ∈ D(ε, λ)

sufficiently large in modulus, we acquire a priori estimate (5.1). From this estimate, the uniqueness property of the
solution of problem (1.1)- (1.4) is obtained, i.e. the operator L is one-to-one. Moreover, by Theorem 2 the operator L
from Wn

q (−1, d1)+̇Wn
q (d1, d2) +̇Wn

q (d2, 1) onto Wn−2
q (−1, d1)+̇Wn−2

q (d1, d2)+̇Wn−2
q (d2, 1)+̇C6 is Fredholm. Consequently,

the existence of a solution results in its uniqueness. This completes the proof. □
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