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Introduction 

Quantum similarity measure (QSM) was firstly introduced in 
early 1980s as a quantitative comparison tool between molecules 
via their electron density functions [1]. Nowadays, QSM has a 
wide range of application area in quantitative structure-
activity/property relationship (QSAR and QSPR) problems. The 
main idea of the QSM concept is that molecular electron density 
distribution can be used as a descriptor to compare molecular 
structures. Further details and extensive bibliography can be 
found in refs. [2-6]. The QSM is also extended to atomic [7] and 
nuclear [8] systems to analyze periodicity of the properties of 
them. 

Electron density is used as information carrier of the system in 
QSM approach. Hence, description of the electron density is 
important subject to obtain reliable results. In most of the ab initio 
methods, density is defined by means of one-particle wave 
functions of investigated system and therefore used basis 
functions have significance. Gaussian type functions are the most 
popular basis functions and the first choice in QSM calculations 
due to their computational simplicity. Molecular electronic 
densities are modeled by spherical Gaussians with the help of 
atomic shell approximation [9, 10]. However, it is well known that 
the electronic wave function of atomic or molecular systems can 
be better represented with exponential type functions (ETFs) [11]. 
For this reason, the simplest form of ETFs called Slater type 
functions (STFs) were tested in atomic QSM studies. Larger 

electron charge concentration was obtained near the nuclei with 
STFs, and this led to better description of atomic overlap self-
similarities [12]. Molecular overlap-like quantum similarity (OLQS) 
integrals of STFs were also investigated by using one-center two-
range expansion [13] and Fourier transform [14-17] methods.  The 
accuracy in Fourier transform method was improved through the 
convergence acceleration techniques such as epsilon algorithm of 
Wynn [14], nonlinear D̅ transformation [15, 16] and nonlinear SD̅ 
transformation [17]. 

In the present work, we use 𝜓(𝛼) functions [18, 19] as basis 
function to express electron density in molecular QSM 
calculations. These functions collect a large class of ETFs. Each 
value of the α parameter in the range −∞ < 𝛼 < 3 corresponds 
to a different complete orthonormal set of ETFs. For instance, 
Coulomb-Sturmian and Lambda functions can be obtained from 

𝜓(𝛼) functions for 𝛼 = 1 and 𝛼 = 0 cases, respectively. The 

𝜓(𝛼) functions play a significant role in different topics of atomic 
and molecular physics such as electronic structure studies, 
momentum and four-dimensional space representations of ETFs, 
and molecular integral solutions of STFs [20]. The aim of this study 

is to perform one- and two-center OLQS integrals of 𝝍(𝜶) 
functions. This can be considered as a first step for the usage of 
these functions in QSMs. 
 

 
General Definitions and Properties 
 

𝝍(𝜶) Complete Orthonormal Sets of Exponential Type Functions 
In this study, we have used standard definition of 𝜓(𝛼) ETFs for integer values of α parameter (𝛼 = 2, 1, 0, −1, … ) 

given by [18]: 
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where 𝜁 and 𝑆𝑙𝑚(𝜃, 𝜑) stand for orbital parameter and real spherical harmonics, respectively. Here 𝑁𝑛𝑙
𝛼 (𝜁) and 𝐿𝑞

𝑝(𝑥) 

refer to the normalization constant and generalized Laguerre polynomials, respectively, and they are given by 
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Orthonormality condition satisfied with the weight function (𝑛 𝜁𝑟⁄ )𝛼: 
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The products of the 𝜓(𝛼) functions at the same center can be expressed by linear combinations with the help of 
expansion theorem of them [21]: 
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where 𝑧 = 𝜁 + 𝜁′. The analytical expression of 𝐵𝑛𝑙𝑚,𝑛′𝑙′𝑚′
𝛼 𝑁𝐿𝑀  coefficients is given in ref. [21]. 

STFs defined by 
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are written as finite linear combinations of 𝜓(𝛼) functions [18]: 
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see ref. [18] for the definition of 𝜔𝑛𝑛′
𝛼𝑙

 coefficients. Using eq. (7), molecular integrals of STFs can be obtained as finite 

linear combinations of integrals with 𝜓(𝛼) functions. 
 

Molecular Overlap-like Quantum Similarity Integrals 
The QSMs of molecules A and B require multicenter integrals involving molecular electron density functions 𝜌𝐴(𝑟) 

and 𝜌𝐵(𝑟), and a positive definite operator Ω(𝑟1, 𝑟2) as below: 

   1 1 2 2 1 2( ) ( , ) ( )AB A BZ r r r r dr dr .                                                                                                                                               (8) 

Various QSMs can be defined by selecting different Hermitian bielectronic operators [2-6]. The most common and 
simple choose of mentioned operator is Dirac’s delta function, Ω(𝑟1 , 𝑟2) = 𝛿(𝑟1 − 𝑟2), and then similarity integral in eq. 
(8) transforms into overlap-like QSM: 

   ( ) ( )AB A BZ r r dr .                                                                                                                                                                  (9) 

If compared molecules are the same, the self-similarity measure is obtained as 

  
2( )AA AZ r dr .                                                                                                                                                                       (10) 

ZAA is also used in general definition of the similarity indices called “Carbo index” [1]: 
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The Carbo index transforms QSM into a number in the interval (0,1] and allows the quantitative comparison of quantum 
systems. When CAB approaches 1, the compared systems can be considered as more similar. The exact unity value is 
only achieved in the case of A=B. 

In the Hartree-Fock-Roothaan or other linear combination of atomic orbitals (LCAO) based ab initio methods, the 
electron density of the molecular systems is expanded with appropriate basis functions and QSM integral in eq. (9) 
becomes a molecular integral up to four centers. The general form of OLQS integrals can be written as below: 

    
* *

1234 1 2 3 4( ) ( ) ( ) ( )abcd
a b c dZ r r r r dr .                                                                                                                                           (12) 

Here 𝜙𝑖(𝑟𝑥) represents the basis function centered at atom “x” with quantum numbers ni, li and mi. In this work, we 

have used 𝜓(𝛼) basis functions and calculated one- and two-center integrals. 
 

One-Center Overlap-Like Quantum Similarity Integrals 
 

One-center, atomic, OLQS integrals over 𝜓(𝛼) functions are given by using eq. (12) in the case of a=b=c=d: 
            1 1 1 2 2 2 3 3 3 4 4 4
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Using expansion formula in eq. (5), orthonormality of the spherical harmonics and auxiliary radial integrals [22] 
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one can express the one-center integrals as follow: 
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where 1 ≤ 𝑁 ≤ 𝑛1 + 𝑛2 − 1, 1 ≤ 𝑁′ ≤ 𝑛3 + 𝑛4 − 1, max(|𝑙1 − 𝑙2|, |𝑙3 − 𝑙4|) ≤ 𝐿 ≤ min(𝑙1 + 𝑙2, 𝑙3 + 𝑙4), −𝐿 ≤ 𝑀 ≤
𝐿, 0 ≤ 𝑖 ≤ 𝑁 − 𝐿 − 1, 0 ≤ 𝑖′ ≤ 𝑁′ − 𝐿 − 1, 𝑄 = 𝑁 + 𝐿 + 1 − 𝛼, 𝑄′ = 𝑁′ + 𝐿 + 1 − 𝛼 and 𝑃 = 2𝐿 + 2 − 𝛼. 

 

Two-Center Overlap-Like Quantum Similarity Integrals 
 

Two-center integrals are divided into two groups according to the number of basis functions found in the same atom. 

 Two-center integrals of the first kind: 

             1 1 1 2 2 2 3 3 3 4 4 4

_ ( ) ( ) ( ) ( )
123_4 1 2 3 4( , ) ( , ) ( , ) ( , )aaa b

n l m a n l m a n l m a n l m bZ r r r r dr .                                                                                         (16) 

 Two-center integrals of the second kind: 
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Now by using eq. (5), we can express two-center OLQS integrals in terms of usual overlap integrals as follow: 

 Two-center integrals of the first kind: 
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where 1 ≤ 𝑁 ≤ 𝑛1 + 𝑛2 − 1, |𝑙1 − 𝑙2| ≤ 𝐿 ≤ 𝑙1 + 𝑙2, −𝐿 ≤ 𝑀 ≤ 𝐿, 1 ≤ 𝑁′ ≤ 𝑁 + 𝑛3 − 1, |𝐿 − 𝑙3| ≤ 𝐿′ ≤ 𝐿 + 𝑙3 and 
−𝐿′ ≤ 𝑀′ ≤ 𝐿′. 

 Two-center integrals of the second kind: 
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where 1 ≤ 𝑁 ≤ 𝑛1 + 𝑛2 − 1, |𝑙1 − 𝑙2| ≤ 𝐿 ≤ 𝑙1 + 𝑙2, −𝐿 ≤ 𝑀 ≤ 𝐿, 1 ≤ 𝑁′ ≤ 𝑛3 + 𝑛4 − 1, |𝑙3 − 𝑙4| ≤ 𝐿′ ≤ 𝑙3 + 𝑙4 and 
−𝐿′ ≤ 𝑀′ ≤ 𝐿′. 

In the above equations (18) and (19), Sα stand for two-center overlap integrals over 𝜓(𝛼) functions which are given 
by the following expression: 
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where �⃗⃗�𝑎𝑏 = 𝑟𝑎 − 𝑟𝑏. With the help of Fourier transform method, analytic expressions of Sα were developed for 𝜁 = 𝜁′ 
case in ref. [21]. The more general solutions for 𝜁 = 𝜁′ or 𝜁 ≠ 𝜁′ were derived by using ellipsoidal coordinates [23]. 

All two-center OLQS integrals involving other combinations of functions can be expressed by eqs. (18) and (19) using 

symmetry properties. It should be noted that we have used real spherical harmonics in 𝜓(𝛼) functions for simplicity. If 
complex spherical harmonics are used in basis functions, symmetry properties of them must be considered according 
to eq. (12). 

 

Numerical Results and Discussion 

The algorithm for evaluating one- and two-center 

OLQS integrals over 𝜓(𝛼) functions was described. For this 
purpose, we have used one-center expansion of functions. 
For two-center cases, OLQS integrals are expressed in 
terms of the standard two-center overlap integrals which 
can be calculated accurately and efficiently [21, 23]. The 
algorithm was implemented in a computer program 
written in Mathematica 12 software that capable to 
perform calculations with a high pre-determined 
accuracy. 

Since there is not any calculation about OLQS integrals 

over 𝜓(𝛼) functions up to now, we have used STF results 
found in the literature to support the reliability of our 

procedures. We present numerical results for one- and 
two-center OLQS integrals over STFs obtained from those 

with 𝜓(𝛼) functions using eq. (7). Table 1 contains orbital 
parameters of STFs used for the calculations. In table 2, 
we listed values of one-center, atomic, OLQS integrals. 
Numerical results for two-center OLQS integrals of the 
first and second kind are given in tables 3 and 4, 
respectively. The numbers in parentheses in the tables 
show powers of 10. All values are given in atomic units. As 
can be seen from tables 2-4, our results for OLQS integrals 
are in good agreement with literature values [13, 16]. 
Accurate calculations of expansion coefficients and two-

center overlap integrals of 𝜓(𝛼) functions, and integral 

transformations from 𝜓(𝛼) functions to STFs are 
performed efficiently. 
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The accuracy of molecular quantum similarity 
measurements and the quantum similarity index are 
highly dependent on the description of the electron 
density of systems. Effective one-electron basis functions 
must be employed to construct reliable electron density. 
Asymptotic properties of the electronic wave functions 

are well represented by 𝜓(𝛼) functions. Therefore, the use 
of these functions in molecular similarity calculations 
were proposed in this work. We demonstrate that the 
algorithm constructed in this study could be useful when 

ETFs containing Laguerre functions are employed in the 
QSM of atoms and diatomic molecular systems. The 
expressions derived for one- and two-center OLQS 
integrals have no restrictions for the values of orbital 
parameters, quantum numbers and internuclear 
distances. Application of presented procedure to 
molecular systems using specific ETFs such as Coulomb -
Sturmian or Hydrogen-like functions, and evaluation of 
remaining three- and four-center integrals can be 
considered as the next step of this work. 

 
Table 1. Orbital parameters of Slater type functions 

Table 2. One-center integrals over Slater type functions. * 

* The values in the first line were calculated in this work using eqs. (7) and (15). The values in the second line were 
taken from ref. [13]. 

Table 3. Two-center integrals of the first kind 
_

123_4
aaa bZ  over Slater type functions. a and b denote carbon and nitrogen 

atoms, respectively. a = (0, 0, 0) and b = (0, 0, zb). 
 

Integrals zb Eqs. (7) and (18) Ref. [16] 

_
1 1 1 _1
aaa b
s s s sZ  

0.5 0.858 425 675 390 877( 0) 0.858 425 675 391( 0) 
1.0 0.347 537 588 662 945(-1) 0.347 537 588 663(-1) 
1.5 0.129 121 127 852 282(-2) 0.129 121 127 852(-2) 
2.0 0.469 994 519 132 161(-4) 0.469 994 519 132(-4) 

_
1 1 2 _2
aaa b
s s s sZ  

0.5 0.501 691 891 383 981(-1) 0.501 691 891 384(-1) 
1.0 0.390 207 911 608 111(-1) 0.390 207 911 608(-1) 
1.5 0.230 014 520 893 589(-1) 0.230 014 520 894(-1) 
2.0 0.119 332 536 416 542(-1) 0.119 332 536 417(-1) 

_
1 1 2 _2
aaa b
s s s zZ  

0.5 -0.737 349 020 140 985(-1) -0.737 349 020 141(-1) 
1.0 -0.646 924 813 965 509(-1) -0.646 924 813 966(-1) 
1.5 -0.391 558 341 502 100(-1) -0.391 558 341 502(-1) 
2.0 -0.205 470 626 696 680(-1) -0.205 470 626 697(-1) 

 

 

 

 

 

 

 

Orbitals Carbon Nitrogen 

1s 5.6727 6.6651 
2s 1.6083 1.9237 

2pz (2z) 1.5679 1.9170 

Integrals Carbon Nitrogen 

1 1 1 1
aaaa
s s s sZ  7.263 226 539 889 

7.263 226 534 
11.780 945 572 070 
11.780 945 572 

1 1 1 2
aaaa
s s s sZ  

0.296 453 696 849 
0.296 453 696 

0.499 679 084 708 
0.499 679 084 

1 1 2 2
aaaa
s s s sZ  

0.030 556 227 264 
0.030 556 227 

0.053 124 445 791 
0.053 124 445 

1 2 2 2
aaaa
s s s sZ  

0.010 478 691 378 
0.010 478 691 

0.018 493 682 096 
0.018 493 682 

2 2 2 2
aaaa
s s s sZ  

0.025 863 146 042 
0.025 863 146 

0.044 258 042 479 
0.044 258 042 

1 1 2 2
aaaa
s s z zZ  

0.027 665 504 721 
0.027 665 504 

0.052 409 841 641 
0.052 409 841 

2 2 2 2
aaaa
z z z zZ  

0.043 132 809 946 
0.043 132 809 

0.078 834 988 765 
0.078 834 988 
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Table 4. Two-center integrals of the second kind 
_

12_34
aa bbZ  over Slater type functions. a and b denote carbon and nitrogen 

atoms, respectively. a = (0, 0, 0) and b = (0, 0, zb). 
 

Integrals zb Eqs. (7) and (19) Ref. [16] 

_
1 1 _1 1
aa bb
s s s sZ  

0.5 0.392 518 041 234 902( 0) 0.392 518 041 235( 0) 
1.0 0.287 291 441 055 918(-2) 0.287 291 441 056(-2) 
1.5 0.142 141 502 024 259(-4) 0.142 141 502 024(-4) 
2.0 0.600 438 755 929 345(-7) 0.600 438 755 929(-7) 

_
1 2 _1 2
aa bb
s s s sZ  

0.5 0.185 319 053 139 597(-1) 0.185 319 053 140(-1) 
1.0 0.266 806 719 446 299(-2) 0.266 806 719 446(-2) 
1.5 0.206 888 508 259 901(-3) 0.206 888 508 260(-3) 
2.0 0.115 769 691 748 916(-4) 0.115 769 691 749(-4) 

_
1 2 _1 2
aa bb
s s s zZ  

0.5 -0.159 539 790 120 835(-1) -0.159 539 790 121(-1) 
1.0 -0.324 008 018 849 674(-2) -0.324 008 018 850(-2) 
1.5 -0.280 545 795 502 279(-3) -0.280 545 795 502(-3) 
2.0 -0.165 259 528 950 509(-4) -0.165 259 528 951(-4) 
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