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The linear structure of the Lorentz-Minkowski plane is almost the same as Euclidean plane. But, there is one
different aspect. These planes have different distance functions. So, it can be interesting to study the Lorentz
analogues of topics that include the distance concept in the Euclidean plane. Thus, in this study, we show that
the relationship between Euclidean and Lorentz distances is given depending on the slope of the line segment.

Following, we investigate Lorentz analogues of Thales’ theorem, Angle Bisector theorems, Menelaus’ theorem

and Ceva’s theorem.
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Introduction

Lorentz-Minkowski geometry is created by taking the
Lorentz distance function instead of the Euclidean
distance function. The basic notions, inner product, metric
and vector classification in Lorentz space are given in [1,
3,5, 6]

Lorentz-Minkowski plane (L?) is the vector space R?
provided with Lorentz inner product

(X, V), = X1)1 — X2¥2

where  x = (x1,x;) ER? y=(y,y,) ER%  The
arbitrary vector x = (xq,x,) € L? is classified according
to the sign of (x, x), as follows:

(i)  xistimelike vector if (x,x), <O,
(i)  xis spacelike vector if (x,x), > 0and x =0,
(iii)  x is lightlike vector if {x,x), = 0 ve x # 0.

Let e = (0,1). A timelike vector x = (x4, x,) is future-
pointing (past-pointing) if (x,e), <0 ({x,e), > 0). The
norm ||. || of any x = (x,x,) € L? is defined by ||x]||;, =

[{x,x)| [1]. Then the distance function between two
points is defined by

diCe,y) =llx—yll, = \/|(x1 —y1)% = (%3 — ¥2)?|
where x = (x1,%,) € L2, y = (y,,y,) € L%

The Lorentz-Minkowski plane is almost the same as
the Euclidean plane since the points and the lines are the
same. The angles are measured in the same way. But, the
distance function is different. Since the distance function
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is different, the properties in the Euclidean plane can be
reproduced faithfully in L. A few such topics have been
studied by some authors [1, 2, 4, 7, 8] in this plane. So, in
this study we show that the relationship between
Euclidean and Lorentz distances is given depending on the
slope of the line segment. Following, we investigate
Lorentz analogues of Thales’ theorem, Angle Bisector
theorems, Menelaus’ theorem and Ceva’s theorem

Materials and Methods

In this section, we mention the basic concepts that
would be the basis of our study.

Proposition 2.1 Let d; denote the Euclidean distance
function and P = (x4, x,) and Q = (y4,y,) be two points
in the analytical plane and the slope of the line <P_Q) be m.
Then

1+m?

—'dL(Pr Q)I

[1-m?|

i) dg(P,Q) = if [/m| # 1 and

meE R,
ii) dE(Pl Q) = dL(Pl Q)I

if m=0orm — co.
Proof:

i) LetP = (x,x,)and Q = (y;,y,) be two points
in the analytical plane and the slope of the line

ﬁj be m, (Jm| # 1). We will show that

dg(P,Q) = p(m).d,(P,Q)

2
where p(m) = ’|1J—r22| . We can write
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Definition 2.1 Let d; [AB] denote the Lorentz directed

de(P,Q) = |x; — | [1+m? distance from A to B along the line [ in L?. We define
and Lorentz directed distance of the segment [AB] as follows:
d,[AB]
= - MM — m2 L
4P,Q) = I = yalVIL —m?. d,(A,B), if AB and [ have same direction,

From above equations, we obtain that {—dL(A, B), if AB and [ have opposite direction.

If K,L, M are points on the same directed line and M

ds(P,Q) _ I —yV1+m? is between points K and L, they are denoted KML. If KML
d,(P,Q) lx; — y11/11 — m?| then the point M divides the line segment [KL] internally
14 m2 and becomes d, [KM]/d,[ML] =p > 0. If KLM and
dg(P,Q) = m.dL(P,Q) MKL then the point M divides the line segment [KL]
externally and becomes d, [KM]/d, [ML] = p < 0 [9].
dx(P,Q) = p(m).dy (P, Q). @ o :

ii) If m =0o0orm — oo, itis clear that ° dL[KM]/dL[ML].=P<O
dE(P'Q) = dL(P.Q)- K M
d,[KM]/d,[ML]=p >0

@
L

Corollary 2.1 Let P, Q and X be three collinear points
in analytical plane. Then, d; (P, X) = dz(Q, X) if and only
ifd, (P, X) = d,(Q,X).

Theorem 2.1 Let K = (kq, k;) and L = (I, ;) be any two different points in the analytical plane. If M = (x,y) is a
point on the line passing through K and L, then we can write

dg(K,M) _d,(K,M)
dz(M,L)  d,(M,L)’

That is, the ratios of the Euclidean and Lorentz directed lengths are the same [9].

Proof:

® L L]
K = (ky,k;) M=(xy) L=(4,1)

If K = M then both ratios are equal to 0. Therefore without loss of generality, let K #+= M # L. It is enough to show that

|(ky = )% = (kp = 9?1 _ (kg — %)% + (ky — )?
|(x =12 = (= 0L)? (=12 + (-2

Let examine the cases of the line KL be spacelike, timelike and lightlike separately.
Case 1: If the line KL is spacelike, since |k, — x| > |k, — y| and |x — I;| > |y — L,|, we obtain

(ky — x)? = (ky — ¥)? _ (ky — x)% + (ky — ¥)?
(x = 1) = (y — [)? (x=1)*+ (y — [p)?
> (ky — )2 (x = 1)? + (kg = 0)?(y = 1)? = (ky = y)?(x — 1)) = (ky — ¥)* (¥ — 15)?
= (ks —0)?(x = 1)? = (ky = x)? (v — L)* + (ky = ¥)?(x — 1)? — (ky — ¥)? (v — L)?
= (ki =) — 1) = (ky —y)(x — 1)
Sk =)y —L)— (k=) —-14)=0 (1)
Sky—kil,—xy+xl, —k,x+ ki +yx—yl; =0
= (ky — 1Dy = (ky = L)x + kylp — kply

k,—1, kil, —kyl;
R T T

(2)

Thus, from equation (2), the point M is on the line KL. Using this value of y in the equation (1) we get
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kox — lLx + kql, — kyl kox — Lx + kil, — kyl
(kl—x)<2 2 1t2 21—12)—<k2— 2 2 1t2 21>(x—l1)=0
kl_ll k _ll
(kl_x)[kzx_l2x+kllz_kzll lzk1+lzll] [k kl_kll_kzx‘l'lzx_kllz‘l'kzll (x_ll)zo
ki =1 ky =1
) x(ky — 1) = Li(ky — 1) =1 kq(ky — 2) x(kz_lz)
kl_ll _ll
1
P CEDICEIRICEYAEYCEINCERICE N R
1

Thus, the equation (1) is satisfied.
Case 2: If the line KL is timelike, since |k; — x| < |k, — y| and |x — I;| < |y — L, |, we obtain

(k2 —y)* = Uy —x)* _ (ks = %) + (kp — y)°
-0LP-C-04)? -0+ -1L)?
= (ky = )20 = 1)? + (e = )2 (v — 1p)? = (kg —x)?(x — 1)? = (ky — 0)*(y — Ip)?
= (ks =0 (y = p)? = (kg = )% (x = 1))* + (hky = ¥)? (v — 1p)* — (kp = »)?(x — 1))?
> U= —1) =0k -0 1)
=k =y)x—1) =k —x)(y - 1) =0 (3)
= kyx —kyly —yx+yly, —kiy+kilb, +xy—xl, =0
=yl — ki) =x(U; — k) + koly — Kyl

lp—ky  kyly —kily
Sk R

4

Thus, from equation (4), the point M is on the line KL. Using this value of y in the equation (3) we get

Lx —kyx + k,l; — k4l Lx —kox + kol, —k,l
(x—ll)<k2—2x z;C_k21 12)—(k1—x)(2x Z;C_kz1 12_12)=0
1 1 1 1
(x—1) [kzl1 —kyky — Lx + kyx — kyly + k1l2] ~ (ky = x) [lzx —kox + kyly — ki, — L, + Ky, “ o
b=k Lk
(x—1,) [k1(lz kz)_ x(l; — 2)] ~ (ks —x) [X(lz k,) — - ll(lz 2)] —o

L~k [Gr = 1) (kg = 0) (L — k) — (kg =) (x = L)L, — k)] =0

Thus, the equation (3) is satisfied.
Case 3: If the line KL is lightlike, then |k, — x| = |ky; —yland |x — l;| = |y — L;]. Thus, it is obvious.

If the point M divides the line segment [KL] externally, the proof is similar.

Conclusion and Discussion

In this section, we give Lorentz versions of some Euclidean theorems.
Theorem 3.1 (Thales’ Theorem) In the Lorentz-Minkowski plane, if we have three or more parallel lines, and they cut
the other two lines, then they produce proportional segments.
Proof:
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ks ky
G E L
A
B D .
C E I,

Figure 1. The parallel lines and two other lines intersecting these lines.

Let the lines [y, L,, l5 are parallel and the lines ky, k, cut of them like in the above figure. Since the lines [, [,, 15 are
parallel, the slopes of this lines are same. Thus, let the slopes of the lines [, [,, 3 be m; and the slope of the lines k4, k,
be m,, m, respectively. Then, from Proposition 2.1, we can write that

1+ m,?
m-dL(A.B)
dg(A,B) 2 _d,(A,B)
dg(4,0) Cd,(A,C)
1+ m,?
Il _ 22| dL(A'C)
1+m
mdL(A,D)
dg(A,D) 3 _d (A D)
dp(A,E) Cd(AE)
1+ mj?
Tz A4, )
1+
T 748, D)
dg(B,D) 1 _dy(B,D)
dg(C,E) L+tm d,(C,E)
11— 12| d,(C,E)
Since

dg(A,B) _dg(A,D) dg(B,D)
d;(4,¢)  dg(AE)  dg(CE)

we can obtain as follows

d,(A,B) d,(A,D) d,(B,D)
d;(A,C)  d,(AE) d,(CE)

Theorem 3.2 (Interior Angle Bisector Theorem) Let interior angle bisector of vertex A of the triangle AABC
intersects side [BC] at point D, a;, = d,(B,C), b, = d, (C,A), ¢, =d,(A,B), p, =d,(B,D), q, =d,(D,C) and
slopes of sides [AB], [BC], [AC] be m,, m,, m,, respectively, in the Lorentz-Minkowski plane. Then we can write as
follows:
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i) pL_ cL [1+mc2 |1—mb2|]
ar by L1-mc?|" 1+mp?

- c, [1+m] .
i) 2L=-L [—CZ], if m, = 0 orm;, - oo,
qr by l1-mc?|

oo PL _ CL |1—mb2| . _
iii) pal bL'[ Trmg? | ifm,=0o0orm, - o,
where m., m,, m;, # 1. Here, sides of the triangle AABC must be same kinds. That is, three sides of the triangle

AABC are either spacelike lines or timelike lines.
Proof.

Pr n qr

ar

Figure 2. AD is the internal bisector of the angle ZBAC which
meets BC at point D, for the triangle AABC

i) Letslopes of sides [AB], [BC], [AC] be m,, m,, m,, respectively. It is clear that,

dp(4,B) _dg(B,D)

= 5
dg(A,C) dg(D,0) ®)
is satisfied in the Euclidean plane. According to Proposition 2.1, we obtain that,
’ 1+ mc 14+ m,?
d-(4,B dg(A,C) = |———.b,,
E( ) E( ) |1 _mb2| L
dg(B,D) = , pL' dg(D,0) = |7—— 4
If the above values are substituted in the equation (5), we get
1+m2 c 1+ ma
T=m2 % ([TT=m P
1+m,? 1+ ma
T-m, P [T=m %
1+m2 |1 —my?
CZ (6)
11 —=m2|" 1+ my?

ii) Itis clear that, for m;, = 0 or m; — oo, the equation (6) is obtained that
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pL _ cy [14+mc?

qr by L1-m2|l

iii) Itis clear that, for m, = 0 or m, — o, the equation (6) is obtained that

PL_CL ll-mbzl]
qL bL' 1+mb2 ’

Theorem 3.3 (Exterior Angle Bisector Theorem) Let exterior angle bisector of vertex A of the triangle AABC
intersects side BC at point D, a, =d,(B,C), by =d,(C,A), ¢, =d,(A,B), p, =d,(B,D), q, =d,(D,C) and
slopes of sides [AB], [BC], [AC] be m,, m,, m,, respectively, in the Lorentz-Minkowski plane. Then we can write as
follows:

I) PL _ CL [1+mc2 |1—mb2|]
a b’ ’

[1-mc2| " 1+mp?

.. c 1+mc?
i) PL=ZIL [ £

et |1—m52|]' if my = 0ormy, — oo,

1-mp?
iii) p—L_C—L[| e

- 1+mb2

Pt ,ifm,=00rm, - o,
L L

where m., m,, my, # +1. Here, sides of the triangle AABC must be same kinds. That is, three sides of the triangle AABC
are either spacelike lines or timelike lines.
Proof:

Pr

Figure 3. AD is the external bisector of the angle £BAC which meets
BC at point D, for the triangle AABC

i) Let slopes of the sides [AB], [BC], [AC] be m., m,, m,, respectively. It is clear that,

dg(4,B) _dg(B,D)
dg(4,C) ~ dg(C,D) (7)

is satisfied in the Euclidean plane. According to Proposition 2.1, we obtain that,
1+m.2 ’ 14+ m,?
dg(A,B) = |————=.¢,, dg(A,C) = |—.b,,
E( ) |1_mC2| L E( ) |1_mb2| L
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1+ ma ’ 14+ mg,?
dg(B,D) = pL' dg(C,D) = m-‘h-
If the above values are substituted in the equation (7), we get
1+m? c 1+ ma
T=m2l % [TT=m, P
1+my? 1+ ma
Mm% [T—m %

__L 1+m2 |1 —my?|
b, (|11 =m2|" 1+ m,?

q.

(8)

ii) Itis clear that, for m;, = 0 or m;, = oo, the equation (8) is obtained that

pL cL [1+mc ]
qL [1-m2|

iii) Itis clear that, for m, = 0 or m, — oo, the equation (8) is obtained that

PL _ L [_|1_m,,2|
qL by, 1+mb2

Theorem 3.4 (Menelaus’ Theorem) Let AABC be a triangle and P;, P,, P; be on the lines that contain the sides
BC, CA, AB, respectively, in the Lorentz-Minkowski plane. If P;, P,, P5 are collinear, then

dy[BP,] d,[CP,] d,[APs] _
d,[P,C] d,[P,A] d,[PsB] ~

where none of P;, P,, P; coincide with any of A, B, C. Here, the points P;, P,, P;,A, B,C must be same kinds. That is,
all of them are either spacelike or timelike.
Proof:

B C P,

Figure 4. Collinear points P;, P,, P; on the sides BC, CA, AB,
respectively.

Let slopes of the lines 14—3: (If: CA be m,;, m,, mg,respectively and my, m,, my # £1.Itis clear that

dg[BP,] dg[CP] dg[APs]
dg[P.C] dp[P,A] dg[PsB]

)

is satisfied in the Euclidean plane. According to Proposition 2.1, we obtain that
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52 2

2
I ——.d; (P, C
11 —my?| 11 —m,?| (P2, C)

dg(C,Py) = / s -y (C,Py), dg(Py A) = / s . dy (P, 4)
1+m1 1+m1
dE(A P3) = / dL(A P3) dE(PBvB) / dL(PS,B)

From Definition 2.1, |BP; | and |P; C| have opposite direction. If the above values are substituted in the equation (9), we
get

1+ m,? 1+m 1+m

|1_ 22| dL[Bpl 3 dL CP2 1 dL AP3
dg[BP.] dglCP,] dglAPs]
dg[P,C] dg[P,A] dg[PsB]

1+ m,? 1+m 1+m

11— 22| .d, [P, C] 3 dL [P,A] T=-m2 1 dL[P3

Theorem 3.5 (Ceva’s Theorem) Let AABC be a triangle and lines 1}, l,, I3 pass through the vertices 4, B, C,
respectively and intersect lines containing the opposite sides at points P;, P,, P, in the Lorentz-Minkowski plane. Then
the lines l;, 1,, l5 are concurrent if and only if

dE(B'Pl) = dL(B P1) dE(PpC) =

dy[BP,] d,[CP,] d,[APs] _
d,[P,C] d,[P,A] d,[PsB]

Here, none of P;, P,, P; areof A, B, C.The points P;, P,, P;, A, B, C must be same kinds. That is, all of them are either
spacelike or timelike.
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