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ABSTRACT

The Lie group over the hyper-dual matrices and its corresponding Lie algebra are first introduced
in this study. One of Euler’s strategies called the Euler-Rodrigues formula is applied to the matrices
of hyper-dual rotations. The fundamental relationship between the hyper-dual numbers and the
dual numbers allows us to apply the formula on dual lines and two intersecting real lines in the
three dimensional dual and Euclidean spaces, respectively.
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1. Introduction

The theory of numbers was an isolated serial despite the achieved brilliant results up to the nineteenth
century. Gauss’s Disquisitiones Arithmeticae initiated a new era, but over the years scientists have agreed that
the structure of the real number system must be probed deeper and clarified on behalf of analysis. Moreover,
considering the needs of natural and computer sciences, the necessity of developing the system has emerged.
After some knowledge explosions occurred about the extension of the real number system, we were introduced
with dual numbers by Clifford in the late nineteenth century [5].

A dual number (DN) is expressed in the form

â = a+ εa∗; a, a∗ ∈ R

where the dual unit ε satisfies the condition ε2 = 0 and lies outside the domain of real numbers, namely ε ̸= 0.
Since a pure dual number has no inverse, dual numbers not a field. However, their algebra is a commutative
ring which allows the computation of derivatives. The common practice of dual numbers arises in automatic
differentiation which is a technique to implement the chain rule for computing derivatives [3, 13, 25, 28]. On
the other hand, since Study’s theorem leads the one-to-one correspondence between a unit dual vector and a
line in 3-dimensional Euclidean space, the main contribution of dual numbers is originally demonstrated in
kinematics by the operator of point-line displacements [27, 29]. When the geometric problems are studied
in physics, quantum mechanics, robotics, computing or visualization, line geometry occurs naturally and
provides the most elegant and efficient solutions [2, 14, 18, 19, 23, 26].

Recently, dual numbers were extended to the hyper-dual numbers by Fike and Alonso within the context
of the second-order numerical differentiation, principally due to reduced computational time and errors
[11]. Furthermore, the matrix representation of them is constructed to obtain higher-order derivatives [16].
A hyper dual number (HDN) ã is determined by two distinct non-real components with the properties
ε21 = ε22 = (ε1ε2)

2
= 0 and takes the form

ã = a0 + ε1a1 + ε2a2 + ε1ε2a3; ai ∈ R.

Received : 07–06–2022, Accepted : 16–09–2022
* Corresponding author

 https://doi.org/10.36890/iejg.1127216\ 


Ç. Ramis, Y. Yaylı & İ. Zengin

The representation of the HDN is obtained as a combination of two dual numbers by Cohen and Shoham and
this leads to arrive the meaning of HDN for physical systems [6]. By defining the hyper-dual velocity, the hyper-
dual momentum and the hyper dual inertia operator, the first applications of HDN to rigid body motions are
obtained by utilizing of the automatic differentiation feature of DN [7]. Other mathematical systems are built
in connection with the hyper-dual quaternions and the hyper-dual split quaternions to represent rigid body’s
kinematics in three-dimensional Euclidean and Lorentzian spaces [1, 8].

The geometric interpretations of rigid body dynamics lead naturally to the study of Lie algebras and their
corresponding Lie groups. Specifically, the sentence of fixed points has been investigated since the late of
eighteenth century. Leonhard Euler realized that any displacement of a rigid body such that a point on the
rigid body remains fixed in the three dimensional space [10, 21]. This stated theorem, named after Euler, tells
us the existence of the axis of rotation. Finding the orthogonal matrix corresponded to a rotation about its axis
was solved by Cayley’s formula, and what’s more following this method the matrix representation of a rotation
was endowed with respect to the rotation angle and axis which is referred to as Euler-Rodrigues formula [9, 19].
In point-line geometry, the applications of Euler-Rodrigues formula were expanded with the dual axis and the
dual rotation angle and called the dual Euler-Rodrigues formula by Kahveci et al. [17].

The historical process of rigid body transformations is motivated us to study on the Lie group S̃O(3)

consisting of 3× 3 hyper-dual matrices satisfying the properties X̃T X̃ = X̃X̃T = I3 and det X̃ = 1. By defining
hyper-dual Euler-Rodrigues formula, we obtain the hyper-dual rotation matrices in terms of the hyper-dual
angle and the hyper-dual axis. The fundamental relationship between HDN and the two DNs of order 1 allows
us to interpret a hyper-dual rotation be a screw motion in three dimensional dual space. Later, we shall use one
to one correspondence between a hyper-dual vector and a dual line and also two real lines, then the hyper-dual
rotations act to rotate dual lines and the double real lines at the same time. This means further explaining the
efficacy of hyper-dual rotations in the point-line geometry. For a regular matrix representation of hyper-dual
rotations, we essentially prove the Euler’s theorem for them and this naturally yields a method to obtain the
rotation axis.

2. Basic Concepts and Notions

In this section we give a brief summary on dual numbers, hyper-dual numbers (HDN) and their vectors of
order 3. The following list could provide us suitable mathematical tools for the whole study.

Nomenclature

a, a Scalar, Vector ε Dual unit
â Dual number δ Hyper-dual unit
Â Dual vector θ Angle
ã Hyper-dual number θ̂ Dual angle
Ã Hyper-dual vector θ̃ Hyper-dual angle

The set of dual numbers, denoted by D, is given as follows:

D=
{
â = a0 + εa1 | a0,a1 ∈ R, ε2 = 0, ε ̸= 0

}
. (2.1)

The operations on the dual numbers are defined by

â+ b̂ = (a0 + b0) + ε (a1 + b1) , (2.2)

âb̂ = a0b0 + ε (a0b1 + a1b0) ,

where â = a0 + εa1 and b̂ = b0 + εb1.

The set of dual vectors, denoted by D3,

D3=
{
Â = a+ εa∗ | a, a∗ ∈ R3

}
(2.3)
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has a module structure on the ringD. The dot product⊙d : D3 ×D3 → D and the cross product⊗d : D3 ×D3 →
D3 of the dual vectors Â = a+ εa∗ and B̂ = b+ εb∗ are defined by

Â⊙d B̂ = a · b+ ε (a · b∗ + a∗ · b) (2.4)
Â⊗d B̂ = a× b+ ε (a× b∗ + a∗ × b)

where "·” and "×” denote the usual scalar and vector products on R3, respectively.
The triple product expansion on dual vectors holds

Â⊗d (B̂ ⊗d Ĉ) =
(
Â⊙d Ĉ

)
B̂ −

(
Â⊙d B̂

)
Ĉ. (2.5)

Hence the modulus of Â is given by∣∣∣Â∣∣∣
d
=

√
Â⊙d Â = |a|+ ε

a · a∗

|a|
, |a| ≠ 0, (2.6)

where "|, | ” denotes the modulus in R3. If
∣∣∣Â∣∣∣

d
= 1, Â is called a unit dual vector. The set of all unit dual vectors

yields the unit dual sphere Sd as follows:

Sd=
{
Â = a+ εa∗ |

∣∣∣Â∣∣∣
d
= 1, Â ∈ D3

}
. (2.7)

Theorem 2.1. Each point of Sd corresponds to a directed line in R3 [27].

Lemma 2.1. Let Â, B̂ ∈ Sd and θ̂ = θ + εθ∗ be a dual angle between them, the followings are true:

i. Â⊙d B̂ = cos θ̂ = cos θ − εθ∗ sin θ,

ii.
∣∣∣Â⊗d B̂

∣∣∣ = sin θ̂ = sin θ + εθ∗ cos θ.

Definition 2.1 (Dual line). Let Û and P̂ be a unit dual vector and a point in D3, respectively, then a dual line L̂
in D3 is described by a linear equation of the form

L̂ = P̂ + t̂Û

where the parameter t̂ ∈ D.

For more properties of the theory of dual numbers, the reader is referred to [12, 19, 20].

Now we observe the properties of the dual numbers of order 2, briefly called the hyper-dual numbers. Let
a0,a1,a2,a3 ∈ R and ε1, ε2 be two dual units with the multiplication rules:

ε21 = ε22 = (ε1ε2)
2
= 0,

ε1, ε2, ε1ε2 ̸= 0,
(2.8)

the hyper-dual numbers have the following form:

x̃ = a0 + ε1a1 + ε2a2 + ε1ε2a3. (2.9)

In order to facilitate the rest of the paper, we call that ε1 = ε (the dual unit) and ε2 = δ (the hyper-dual unit)
and then the set HD of all the hyper-dual numbers can be stated as follows:

HD=
{
x̃ = x̂0 + δx̂1 | x̂0, x̂1 ∈ D; ε2 = δ2 = 0; ε, δ, εδ ̸= 0

}
(2.10)

where x̂0 = a0 + εa1 and x̂1 = a2 + εa3 are called the dual part and the hyper part of x̃.
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Addition and multiplication in HD are defined by

x̃+ ỹ = (x̂0 + ŷ0) + δ (x̂1 + ŷ1) , (2.11)
x̃ỹ = x̂0ŷ0 + δ (x̂0ŷ1 + x̂1ŷ0) ,

where x̃ = x̂0 + δx̂1 and ỹ = ŷ0 + δŷ1, respectively.

The set of hyper-dual vectors, denoted by HD3, is given by

HD3=
{
X̃ = X̂0 + δX̂1 | X̂0, X̂1 ∈ D3

}
. (2.12)

The scalar product ⊙h : HD3 ×HD3 → HD and the vector product ⊗h : HD3 ×HD3 → HD3 of any two hyper-
dual vectors X̃ = X̂0 + δX̂1 and Ỹ = Ŷ0 + δŶ1 are defined by

X̃ ⊙h Ỹ = X̂0 ⊙d Ŷ0 + δ
(
X̂0 ⊙d Ŷ1 + X̂1 ⊙d Ŷ0

)
, (2.13)

X̃ ⊗h Ỹ = X̂0 ⊗d Ŷ0 + δ
(
X̂0 ⊗d Ŷ1 + X̂1 ⊗d Ŷ0

)
,

respectively. Furthermore, the Lagrange’s formula holds

X̃ ⊗h (Ỹ ⊗h Z̃) =
(
X̃ ⊙h Z̃

)
Ỹ −

(
X̃ ⊙h Ỹ

)
Z̃. (2.14)

and the modulus of X̃ can be expressed by

∣∣X̃∣∣
h
=

√
X̃ ⊙h X̃ =

∣∣∣X̂0

∣∣∣
d
+ δ

X̂0 ⊙d X̂1∣∣∣X̂0

∣∣∣
d

(2.15)

where
∣∣∣X̂0

∣∣∣
d
̸= 0. If X̂0 is a unit dual vector and X̂0 ⊙d X̂1 = 0, then

∣∣X̃∣∣
h
= 1 meaning that X̃ is a unit hyper-

dual vector. The set Sh of all unit hyper-dual vectors,

Sh=
{
X̃ = X̂0 + δX̂1 |

∣∣X̃∣∣
h
= 1, X̃ ∈ HD3

}
(2.16)

is defined as the unit hyper-dual sphere.

Theorem 2.2. Each point of Sh corresponds to a directed dual line in D3 [1].

Theorem 2.3. Let Sh ⊂ Sh be a subset whose elements are unit hyper-dual vectors with the unit hyper parts(
i.e.

∣∣X̃∣∣
h
=

∣∣∣X̂1

∣∣∣
d
= 1

)
. Then the points of Sh correspond to two intersecting perpendicular directed lines in R3 [1].

Lemma 2.2. Let X̃, Ỹ ∈ Sh and θ̃ = θ̂0 + δθ̂1 be a hyper-dual angle between them, the followings are stated:

i. X̃ ⊙h Ỹ = cos θ̃ = cos θ̂0 − δθ̂1 sin θ̂0,

ii.
∣∣X̃ ⊗h Ỹ

∣∣ = sin θ̃ = sin θ̂0 + δθ̂1 cos θ̂0.

3. Hyper Dual Euler-Rodrigues Formula and Its Application

We consider that a hyper-dual matrix X̃ =
[
X̃ij

]
; X̃ij = X̂ij + δX̂ij ∈ HD can be written as X̃ = X̂ + δX̂

where X̂, X̂ are dual matrices. Let Õ(3) denote the set of all hyper-dual orthogonal matrices of the form

Õ(3) =
{
X̃ ∈ HD3

3 | X̃T X̃ = X̃X̃T = I3

}
. (3.1)
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If the hyper-dual orthogonal matrix X̃ satisfies the property det X̃ = 1, then Õ(3) becomes a Lie group called
special hyper-dual orthogonal group and denoted by S̃O(3). Hence the Lie algebras along with the bracket
operation over matrices is obtained

s̃o(3) =
{
Ω̃ ∈ HD3

3 | Ω̃T = −Ω̃
}

(3.2)

which consists of hyper-dual skew symmetric matrices (see [15]).

By appealing to the matrix geometric algebra, we could obtain an isomorphism between s̃o(3) and HD3

given by
f : s̃o(3)→ HD3

S̃ =

 0 −s̃z s̃y
s̃z 0 −s̃x
−s̃y s̃x 0

→ f(S̃) = S̃ = (s̃x, s̃y, s̃z)
(3.3)

where for any X̃ ∈ HD3 the following is true:

S̃X̃ = S̃ ⊗h X̃. (3.4)

Let us now see how to define a hyper-dual rotation R̃ through the hyper-dual angle θ̃ and the non-pure
hyper-dual unit axis S̃. If we illustrate the method used in [17] to get "hyper-dual Euler-Rodrigues formula"
for the hyper-dual matrix R̃∈S̃O(3), then we obtain

R̃=I3 + sin θ̃ S̃+ (1− cos θ̃)S̃2 (3.5)

where S̃ is the corresponding skew symmetric matrix of the axis S̃ = (s̃x, s̃y, s̃z) defined by (3.3). Thus we have

R̃ =

 1− Cθ(s̃
2
y + s̃2z) Cθ s̃xs̃y − Sθ s̃z Cθ s̃xs̃z + Sθ s̃y

Cθ s̃xs̃y + Sθ s̃z 1− Cθ(s̃
2
x + s̃2z) Cθ s̃y s̃z − Sθ s̃x

Cθ s̃xs̃z − Sθ s̃y Cθ s̃y s̃z + Sθ s̃x 1− Cθ(s̃
2
x + s̃2y)

 (3.6)

where Sθ = sin θ̃ and Cθ = 1− cos θ̃.

Theorem 3.1. Let the hyper-dual angle and the hyper-dual vector be θ̃ = θ̂0 + δθ̂1 ∈ HD and S̃ = Ŝ0 + δŜ1 ∈ Sh,

respectively, the hyper-dual rotation R̃ is expressed in the form

R̃ = Â+δB̂ (3.7)

where the dual part of R̃ is a dual rotation through the dual angle θ̂0 and the dual axis Ŝ0, and the hyper part of R̃ is
defined by a dual skew-symmetric matrix Ŵ as B̂ = ŴÂ.

Proof. Under the isomorphism f, we have f(S̃) = S̃ which implies that f(Ŝ0) = Ŝ0, f(Ŝ1) = Ŝ1 and S̃ = Ŝ0 +

δŜ1. Consider the equations of trigonometric functions of θ̃ given in lemma 2.2. Applying the equalities of θ̃
and S̃ in (3.6), it is clear that R̃ is written the sum of two dual matrices in the form Â+δB̂. The property of
R̃∈S̃O(3) gives

ÂÂ
T
+δ

(
ÂB̂

T
+ B̂Â

T
)
= I3. (3.8)

It follows that
ÂÂ

T
= I3 and ÂB̂

T
+ B̂Â

T
= 0. (3.9)

This implies that Â is a dual orthogonal matrix and (3.5) also gives that

Â =I3 + sin θ̂0 Ŝ0 + (1− cos θ̂0)Ŝ
2
0

which defines a rotation through the angle θ̂0 and the axis Ŝ0.

Suppose that B̂Â
T
= Ŵ, then the second equality of (3.9) holds Ŵ = −Ŵ

T
which completes the proof.
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Remark 3.1. If θ̂1 and Ŝ1 are zero, then we have dual Euler-Rodrigues formula. After this if we further restrict θ̃
and S̃ with real parts, (3.5) gives the formula in Euclidean space (see [9, 17]).

Note that R̃ inherits the property that R̃(X̃) =Ỹ where X̃ and Ỹ are any two hyper-dual vectors inHD3 such
that

∣∣X̃∣∣
h
=

∣∣Ỹ ∣∣
h
. Then we can give the following.

Lemma 3.1. If X̃ is a hyper-dual unit vector, then the hyper-dual rotation R̃(X̃) =Ỹ means the transforming of the
corresponding dual line of X̃ to the corresponding dual line of Ỹ .

Proof. Theorem 2.2 gives that if X̃ is a hyper-dual unit vector, then corresponds to a directed dual line. Then
R̃(X̃) =Ỹ is a dual line under the condition that

∣∣X̃∣∣
h
=

∣∣Ỹ ∣∣
h
= 1. That proves the idea.

The previous lemma naturally leads to the interpretation of hyper-dual rotation in the dual 3-space. To
accomplish this we firstly define a screw motion as a hyper-dual displacement about a hyper-dual axis. The
hyper-dual displacement consists of a dual rotation by the dual part of the hyper-dual angle about the hyper-
dual axis and a translation by the hyper part of the hyper-dual angle along the hyper-dual axis.

Assume that X̃ = X̂0 + δX̂1 and Ỹ = Ỹ0 + δỸ1 are hyper-dual unit vectors satisfying R̃(X̃) =Ỹ with the
hyper dual rotation R̃ through θ̃ = θ̂0 + δθ̂1 the hyper-dual angle and the hyper-dual unit axis S̃ = (s̃x, s̃y, s̃z).

If L̂x and L̂y are the corresponding dual lines to X̃ and Ỹ , respectively in D3, then we conclude that θ̂0 is the
dual angle between the dual vectors X̂0 and Ỹ0, and θ̂1 is the closest distance between L̂x and L̂y by lemma 2.2.

Now we are ready to state the following theorem:

Theorem 3.2. The hyper-dual rotation R̃ composed by the hyper-dual angle θ̃ = θ̂0 + δθ̂1 and the unit hyper-dual axis
S̃ is associated with a screw motion which is the composition of a dual rotation by angle θ̂0 about L̂s and a translation by
θ̂1 along L̂s which L̂s is the dual line corresponding of the hyper-dual unit axis of R̃ in D3.

Consider X̃ = X̂0 + δX̂1 is a unit hyper-dual vector with
∣∣∣X̂1

∣∣∣
d
= 1, thus we could see X̃ as two intersecting

perpendicular directed lines in R3 from theorem 2.3. If we have a unit hyper-dual vector Ỹ with unit hyper
part through the hyper-dual rotation R̃(X̃) =Ỹ , then we can identify R̃ in Euclidean 3-space by composing
theorem 2.3 and theorem 3.2 and state the following result:

Theorem 3.3. The hyper-dual rotation R̃ transforms any two intersecting perpendicular directed lines to two
intersecting perpendicular directed lines in R3.

The following examples depict the idea of rotation in HD3 and its geometric reflections in D3 and R3.

Example 3.1. Let us find a hyper-dual rotation R̃ with the property that R̃(X̃) = Ỹ where the hyper-dual
vectors are X̃ = (1− δε, ε− δε, ε+ δ) and Ỹ = (ε+ δ,−1 + δε,−ε).

First, the rotation axis S̃ = Ŝ0 + δŜ1 is calculated by the theory of [29]

S̃ = X̃ ⊗h Ỹ

= (ε+ δ, ε+ 2δε, − 1 + δε)

where Ŝ0 = (ε, ε,−1) and Ŝ1 = (1, 2ε, ε).
By applying (3.3), its corresponding skew symmetric matrix is obtained

S̃ =

 0 1− δε ε+ 2δε
−1 + δε 0 −ε− δ
−ε− 2δε ε+ δ 0


so that

S̃2 =

 −1 + 2δε δε −ε− δ
δε −1 −ε− 2δε
−ε− δ −ε− 2δε −2δε

 .
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Use the properties of lemma 2.2 to compute the hyper-dual angle θ̃ = θ̂0 + δθ̂1 between X̃ and Ỹ such that

cos θ̃ = δ and sin θ̃ = 1.

Applying the hyper-dual Euler-Rodrigues formula, we could construct the desired rotation as follows:

R̃ = I3 + S̃+ (1− δ)S̃2

R̃ =

 δ (1 + 2ε) 1 δ(−1 + 3ε)
−1 + 2δε δ −2ε− δ (1 + ε)

−2ε− δ(1 + ε) δ(1− ε) 1− 2δε


and its two dual components are

Â =

 0 1 0
−1 0 −2ε
−2ε 0 1

 and B̂ =

 1 + 2ε 0 −1 + 3ε
2ε 1 −(1 + ε)

−(1 + ε) 1− ε −2ε


where R̃ = Â+δB̂.

Remark here that R̃(S̃) = S̃; Â(Ŝ0) =Ŝ0 and the dual rotation angle of Â is θ̂0 =
π

2
; B̂ = ŴÂ is composed by

the skew symmetric matrix

Ŵ =

 0 −1 −1 + ε
1 0 −(1 + ε)

1− ε 1 + ε 0

 .

Noting that

X̃ = X̂0 + δX̂1 with X̂0 = (1, ε, ε), X̂1 = (−ε,−ε, 1) ∈ D3

Ỹ = Ŷ0 + δŶ1 with Ỹ0 = (ε,−1,−ε), Ỹ1 = (1, ε, 0) ∈ D3

S̃ = Ŝ0 + δŜ1 with Ŝ0 = (ε, ε,−1), Ŝ1 = (1, 2ε, ε) ∈ D3

where
∣∣∣X̂0

∣∣∣
d
=

∣∣∣Ŷ0

∣∣∣
d
=

∣∣∣Ŝ0

∣∣∣
d
= 1, X̂0 ⊙d X̂1 = 0, Ŷ0 ⊙d Ŷ1 = 0 and Ŝ0 ⊙d Ŝ1 = 0. This means X̃, Ỹ , S̃ ∈ Sh so that

they each have the concept of a directed line in D3 given as follows:

X̃ ←→ L̂X̃ = (ε,−1,−ε) + t̂x(1, ε, ε),

Ỹ ←→ L̂Ỹ = (0,−ε, 1) + t̂y(ε,−1,−ε),
S̃ ←→ L̂S̃ = (2ε,−1,−ε) + t̂s(ε, ε,−1),

where t̂x, t̂y, t̂s ∈ D.

Conclude that R̃ turns the directed line L̂X̃ to L̂Ỹ with respect to the rotation by the angle θ̂0 about L̂S̃ and a
translation by θ̂1 = −1 along L̂S̃ in dual 3-space.

For a further discussion of R̃, notice that
∣∣∣X̂1

∣∣∣
d
=

∣∣∣Ŷ1

∣∣∣
d
= 1, then X̃, Ỹ ∈ Sh and we have their correspondents

as two intersecting perpendicular directed lines in R3 given by

X̃ ←→
{

d
X̂0

= (0,−1, 1) + λ0(1, 0, 0)

d
X̂1

= (1,−1, 0) + λ1(0, 0, 1)

Ỹ ←→
{

d
Ŷ0

= (1, 0, 1) + µ0(0,−1, 0)
d

Ŷ1
= (0, 0, 1) + µ1(1, 0, 0)

where λ0, λ1, µ0, µ1 ∈ R. Thus we could clearly see that the mapping R̃(X̃) sends the two intersecting
perpendicular directed lines

{
d

X̂0
, d

X̂1

}
to

{
d

Ŷ0
, d

Ŷ1

}
in Euclidean 3-space.
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Example 3.2. Let the dual orthogonal matrix Â be a rotation by the angle θ =
π

2
about the Oz−axis and a

translation by θ∗ = 1 along the axis, then we have

Â =

 −ε −1 0
1 −ε 0
0 0 1

 .

Applying the motion Â over the two intersecting perpendicular directed lines composed by the Ox−axis
and the Oy−axis where the axes are thought as l̂x = (1, 0, 0) + ε0 and l̂y = (0, 1, 0) + ε0, we obtain their images
by

k̂x = (−1,−ε, 0) and k̂y = (−ε, 1, 0),

respectively.

Indeed, the dual motion Â allows us to utilize itself on the hyper-dual vector l̂x + δl̂y as follows: −ε −1 0
1 −ε 0
0 0 1

 1
δ
0

 =

 −ε− δ
1− δε

0

=k̂x + δk̂y.

Thus, we may well think that the dual orthogonal matrices can play the role by rotating the hyper-dual vectors.

4. Hyper-Dual Euler’s Theorem

In spherical geometry, Euler’s fixed point theorem states that if a sphere is moved around its centre, then it is
always possible to find a diameter which remains fixed. Since there is a one to one correspondence between a
spatial rotation and a 3× 3 rotation matrix R given with RRT = RTR = I3 and detR = 1, the matrix expression
of this theorem proves the existence of a non-zero vector s satisfying Rs = s. Now let us state the theorem in
terms of hyper-dual rotation matrices which is called hyper-dual Euler’s theorem and prove the only theorem
of this section.

Theorem 4.1. For any hyper-dual rotation matrix R̃ ∈ S̃O(3) there exists a non-zero hyper-dual vector S̃ ∈ HD3, such
that R̃S̃ = S̃.

Proof. Let R̃ be the hyper-dual rotation matrix satisfying R̃R̃T = R̃T R̃ = I3, det R̃ = 1. R̃ can be expressed by
the sum of a symmetric matrix and a skew-symmetric matrix as follows:

R̃ =
R̃+ R̃T

2
+

R̃− R̃T

2
(4.1)

Let the skew-symmetric part of R̃ be S̃, then we can see that the following is true

R̃S̃R̃T = S̃. (4.2)

If we apply the isomorphism f given by (3.3) for S̃, there exists a corresponding hyper-dual vector S̃ ∈ HD3

such that f(S̃) = S̃. Thus we have S̃ = f−1

S̃
and f−1

S̃
(α̃) = S̃ ⊗h α̃ for all α̃ ∈ HD3. The property of cross product

yields that
R̃(S̃ ⊗h α̃) = R̃S̃ ⊗h R̃α̃ (4.3)

which means R̃f−1

S̃
= f−1

R̃S̃
R̃.

By using the property of R̃, we have
R̃f−1

S̃
R̃T = f−1

R̃S̃
(4.4)

Combining (4.2) and (4.4), we can state
f−1

R̃S̃
= S̃ (4.5)
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which illuminates R̃S̃ = S̃.

Note that if R̃ = R̃T , then S̃ = 0 so that R̃2 = I3 and we can clearly see that R̃
(
I3 + R̃

)
= I3 + R̃. This means

that each column of I3 + R̃ remains fixed and the non-zero of them becomes as the fixed vector in this case.

This completes the proof.

Although the previous proof is given for the hyper-dual Euler’s theorem, we actually obtain a method to
calculate the axis of any hyper-dual rotation. Let us see how the method works on hyper-dual orthogonal
matrices.

Example 4.1. Consider the hyper-dual matrix

R̃ =

 2ε −1 δ(4ε− 2)
1 2ε 2δε
2δε δ(4ε− 2) 1

 ∈ S̃O(3).

The skew-symmetric part of R̃ is

S̃ =

 0 −1 δ(ε− 1)
1 0 δ(1− ε)

δ(1− ε) δ(ε− 1) 0


and the corresponding vector of S̃ is

S̃ = (δ(ε− 1), δ(ε− 1), 1)

where see that R̃S̃ = S̃.

Example 4.2. Consider the hyper-dual orthogonal matrix R̃ =

 −ε 1 0
1 ε 0
0 0 −1

 satisfying R̃ = R̃T . Then

the fixed vector S̃ will be obtained by the non-zero column of I3 + R̃ which is S̃ = (1− ε, 1, 0).

5. Conclusion

Several methods have been developed to describe dynamics of a rigid body in three dimensions. The
calculation techniques have been also changed for past 20 or 30 years. The innovations, especially in the digital
platforms, compel us to comply with mathematics in the new systems. In 2011, one of them introduced by
Fike et al. and called the hyper-dual numbers (HDN) [11]. The highlights of HDN are observed in applied
mathematics for numerical derivatives, in robotics for rigid body motions, etc. [1, 6, 7, 8, 28]. To contribute
to the HDN theory in a geometric sense, we examine the rigid body transformations in terms of orthogonal
matrices in this study. We firstly define the hyper-dual Euler-Rodrigues formula and build the algorithm to
obtain a rotation through the hyper-dual angle and the hyper-dual vector. Since a hyper-dual number can be
explained by two dual numbers, this means what is done in hyper-dual space should have a meaning in dual
space. This question leads to discuss the geometric meaning of the hyper-dual rotation in dual space, then
we see that it implies a dual screw motion. Moreover, one-to-one correspondence between the elements of
unit hyper-dual sphere and a dual line, and also two real lines illuminate the geometric effects of hyper dual
rotations in dual and Euclidean spaces.

In this paper, hyper-dual Euler-Rodrigues formula is given as a generalization of Euler-Rodrigues formulas
over dual matrices and real matrices. The formula yields rotation matrices with specified rotation axes and
rotation angles depending on the vector space. The inverse problem is that if a rotation matrix is given, then
the rotation axis and the rotation angle can be found? We answered this in the last section by proving the
Euler’s theorem for the hyper-dual rotation matrices. For a further discussion, notice that a hyper-dual rotation
corresponds a spatial displacement in dual space and screw motions of Euclidean space are represented by
dual orthogonal matrices. Consequently, we naturally obtain the screw axis and prove the Chasles’ theorem in
section four that plays exactly the same role in theory of given by [4, 22, 24].
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