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Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey.

Received: 05-06-2022 • Accepted: 08-09-2023

Abstract. In this paper, we obtain explicit formulae for homogenous Ricci solitons on three-dimensional
Lorentzian Bianchi-Cartan-Vranceanu spaces. We also give a result about Ricci solitons on a three dimensional
Minkowski space.
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1. Introduction

A Ricci soliton metric on a manifold M is defined by the condition

LXg + ρ = γg, (1.1)

where X is a smooth vector field on M, LXg is Lie derivative in the direction of X and γ is a real constant. A Ricci
soliton is called shrinking if γ > 0, steady if γ = 0 and expanding if γ < 0. Ricci soliton metrics are a generalization of
Einstein metrics.

Ricci solitons and their generalizations have been extensively studied in many works from many points of view, so
we may refer [4–6, 11] for more information about geometry of Ricci solitons.

Many researchers have been particularly interested in Ricci solitons on three-dimensional homogenous spaces, such
as the Lie group S L(2,R), Heisenberg group Nil3,Berger spheres S 3

Berger, S
2×R, H2×R and the Lorentzian-Heisenberg

group (see [1, 3, 7, 10, 12]).
Bianchi-Cartan-Vranceanu spaces are three-dimensional homogenous spaces with four dimensional isometry group.

Ricci solitons on Bianchi-Cartan-Vranceanu spaces were studied by Batat et al. in [2].
Lorentzian Bianchi-Cartan-Vranceanu spaces (briefly LBCV-spaces) are considered by several authors in very re-

cent papers, especially when investigating some special curves such as slant, Legendre and biharmonic etc. on it
(see [8, 9, 13]).

As we mentioned above, although the subject of Ricci solitons is well-studied on homogenous manifolds, we give a
classification of Ricci solitons by obtaining explicit formulae on LBCV-spaces in this paper. In fact, we will prove the
following theorem:
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Theorem 1.1. Let LBCV-spaces with the metric in (2.1) are given. Then, the following statements are true:
(i) LBCV-spaces do not admit homogenous Ricci solitons when λ , 0 and µ > 0.
(ii) LBCV-spaces admit shrinking homogenous Ricci solitons when λ , 0 and µ = 0.
(iii) LBCV-spaces admit expanding homogenous Ricci solitons when λ , 0 and µ < 0.
(iv) LBCV-spaces admit shrinking homogenous Ricci solitons when λ = 0 and µ > 0.
(v) LBCV-spaces admit expanding homogenous Ricci solitons when λ = 0 and µ < 0.

2. Lorentzian Bianchi-Cartan-Vranceanu Spaces (LBCV-Spaces)

In this section, we will recall some fundamental properties of LBCV-spaces (see [8, 13]).
Let λ, µ ∈ R. An open subset of R3 is given by

D = {(x, y, z) ∈ R3 : 1 + µ(x2 + y2) > 0}.

The Lorentzian metric is equipped as following:

gλ,µ =
dx2 + dy2

(1 + µ(x2 + y2))2 −

(
dz +

λ

2
ydx − xdy

1 + µ(x2 + y2)

)2

. (2.1)

The pair (D, gλ,µ) is called Lorentzian Bianchi-Cartan-Vranceanu spaces and it is denoted by Mλ,µ.
An orthonormal frame field is given by

E1 = δ
∂

∂x
−
λy
2
∂

∂z
, E2 = δ

∂

∂y
+
λx
2
∂

∂z
, E3 =

∂

∂z
, (2.2)

where we write δ = 1 + µ(x2 + y2).
Therefore, the Lie brackets are obtained as

[E1, E2] = −2µyE1 + 2µxE2 + λE3, [E1, E3] = [E2, E3] = 0.

Let ∇ and R denote the Levi-Civita connection and the curvature tensor of Mλ,µ, respectively. We have

∇E1 E1 = 2µyE2, ∇E1 E2 = −2µyE1 +
λ

2
E3, ∇E1 E3 =

λ

2
E2,

∇E2 E1 = −2µxE2 −
λ

2
E3, ∇E2 E2 = 2µxE1, ∇E2 E3 = −

λ

2
E1,

∇E3 E1 =
λ

2
E2, ∇E3 E2 = −

λ

2
E1, ∇E3 E3 = 0.

The components of the curvature tensor Rl
i jk are given by [14]

R1
121 = 0, R1

313 =
λ2

4
, R1

323 = 0, R1
221 = −4µ −

3
4
λ2, R1

331 = −
λ2

4
,

R1
112 = 0, R1

223 = 0, R1
212 = 4µ +

3
4
λ2, R1

332 = 0, R1
113 = 0,

R2
121 = 4µ +

3
4
λ2, R2

313 = 0, R2
323 =

λ2

4
, R2

221 = 0, R2
331 = 0,

R2
112 = −4µ −

3
4
λ2, R2

223 = 0, R2
212 = 0, R2

332 = −
λ2

4
, R2

113 = 0,

R3
121 = 0, R3

313 = 0, R3
323 = 0, R3

221 = 0, R3
331 = 0,

R3
112 = 0, R3

223 = −
λ2

4
, R3

212 = 0, R3
332 = 0, R3

113 = −
λ2

4
.

Therefore, for the Ricci tensor ρ(X,Y) = tr{Z → R(X,Z)Y} with respect to orthonormal basis (2.2), we obtain

ρ11 = ρ22 = 4µ + λ2, ρ33 =
λ2

2
, (2.3)

where we set ρi j = ρ(Ei, E j).
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3. Ricci Solitons on Lorentzian Bianchi-Cartan-Vranceanu Spaces

In this section, we deal with the Ricci solitons on LBCV-space Mλ,µ = (D, gλ,µ). Let X = X1E1 + X2E2 + X3E3 be an
arbitrary vector field on Mλ,µ, where X1, X2, X3 are smooth functions of the variables x, y, z. Then, the Lie derivative of
the metric (2.1) satisfies the following relations:

LXgλ,µ(E1, E1) = 2(E1(X1) − 2µyX2), (3.1)
LXgλ,µ(E1, E2) = 2µxX2 + 2µyX1 + E1(X2) + E2(X1),
LXgλ,µ(E1, E3) = E3(X1) − E1(X3) − λX2,

LXgλ,µ(E2, E2) = 2(E2(X2) − 2µxX1),
LXgλ,µ(E2, E3) = λX1 − E2(X3) + E3(X2),
LXgλ,µ(E3, E3) = −2E3(X3).

Therefore, if we use (2.1), (2.3) and (3.1) in (1.1) and have in mind (2.2), with a standard calculation, we see that a
LBCV space is a Ricci soliton if and only if the following system is satisfied:

2µyX2 − δ∂xX1 +
λ
2 y∂zX1 =

ρ11−γ
2 ,

2µxX2 + 2µyX1 + δ∂xX2 −
λ
2 y∂zX2 + δ∂yX1 +

λ
2 x∂zX1 = 0,

−λX2 − δ∂xX3 +
λ
2 y∂zX3 + ∂zX1 = 0,

2µxX1 − δ∂yX2 −
λ
2 x∂zX2 =

ρ11−γ
2 ,

λX1 − δ∂yX3 −
λ
2 x∂zX3 + ∂zX2 = 0,

∂zX3 =
γ+ρ33

2 ,

(3.2)

where we set ∂x =
∂
∂x , ∂y =

∂
∂y , ∂z =

∂
∂z .

Equation (3.2)6 implies that

X3 = (
γ + ρ33

2
)z + A(x, y), A ∈ C∞(M), (3.3)

for an arbitrary smooth function A = A(x, y).
Case 1: λ , 0

From (3.2)5 and using (3.3), we get

X1 =
1
λ

(
δ∂yA − ∂zX2 + λ(

γ + ρ33

4
)x

)
. (3.4)

Substituting (3.3) and (3.4) in (3.2)3, we occur

λ2X2 + ∂
2
z X2 = λ

(
λ(
γ + ρ33

4
)y − δ∂xA

)
.

Solution of the above equation gives us

X2 = −
δ

λ
∂xA + (

γ + ρ33

4
)y +C1(x, y) cos(λz) +C2(x, y) sin(λz), (3.5)

where C1 and C2 are arbitrary smooth functions of the variables x and y.
It follows that

X1 =
δ

λ
∂yA + (

γ + ρ33

4
)x +C1(x, y) sin(λz) −C2(x, y) cos(λz). (3.6)

By substituting (3.5) and (3.6) in (3.2)1, we see that

∂xC1 =
(
2µ + λ

2

2

)
yC2
δ
,

∂xC2 = −
(
2µ + λ

2

2

)
yC1
δ
,

(1 + µ(x2 − y2))( γ+ρ33
4 ) + δ

λ

(
2µ(x∂yA + y∂xA) + δ∂x∂yA

)
=
γ−ρ11

2 .

(3.7)

Again, by substituting (3.5) and (3.6) in (3.2)4, we obtain

∂yC1 = −
(
2µ + λ

2

2

)
xC2
δ
,

∂yC2 =
(
2µ + λ

2

2

)
xC1
δ
,

(1 − µ(x2 − y2))( γ+ρ33
4 ) − δ

λ

(
2µ(x∂yA + y∂xA) + δ∂x∂yA

)
=
γ−ρ11

2 .

(3.8)
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The last equations in (3.7) and (3.8) show that

γ = 2ρ11 + ρ33

γ = 8µ +
3λ2

2
.

Therefore, (3.7) and (3.8) turn to be

λµ

(
2µ +

λ2

2

)
(x2 − y2) + δ

(
2µ(x∂yA + y∂xA) + δ∂x∂yA

)
= 0. (3.9)

Taking derivative with respect to y in the first equation of (3.7) and with respect to x in the first equation of (3.8), and
having in mind ∂xC2 and ∂yC2, we see that C2 = 0 (when λ2 , −4µ) or C2 ∈ R (when λ2 = −4µ). Similarly, C1 is zero
or constant.

Let the inequality λ2 , −4µ holds. Equation (3.2)2 leads to

2λµ
(
4µ + λ2

)
xy + δ[

(
4µ(y∂yA − x∂xA) + δ(∂2

y A − ∂2
xA

)
] = 0. (3.10)

So, the vector field X = X1E1 + X2E2 + X3E3 fulfils (3.2) if and only if

X1 =
δ
λ
∂yA +

(
4µ+λ2

2

)
x,

X2 = −
δ
λ
∂xA +

(
4µ+λ2

2

)
y,

X3 = (4µ + λ2)z + A.

Here, the function A satisfies (3.9) and (3.10).
Now, suppose that λ2 = −4µ. In this case, Equations (3.9) and (3.10) remain valid, but the vector field X reduces to

X1 =
δ
λ
∂yA +C1 sin(λz) −C2 cos(λz),

X2 = −
δ
λ
∂xA +C1 cos(λz) +C2 sin(λz),

X3 = A,
(3.11)

C1,C2 ∈ R and γ = 2µ.
(a) If µ = 0, Equations (3.9) and (3.10) turn in to be

∂x∂yA = 0 and ∂2
y A = ∂2

xA.

So, we have
A = a1(x2 + y2) + a2x + a3y + a4, a1, ..., a4 ∈ R.

As a result, when µ = 0, the vector field X = X1E1 + X2E2 + X3E3 satisfy the soliton equation (1.1) if and only if

X1 =
1
λ
(2a1y + a3) − λ

2

4 x,
X2 = −

1
λ
(2a1x + a2) − λ

2

4 y,
X3 = −

λ2

2 z + a1(x2 + y2) + a2x + a3y + a4,

where a1, ..., a4 ∈ R and γ = 3λ2

2 > 0. Thus, we proved Theorem 1.1 (ii).
(b) Now, suppose that µ , 0. Set f = δA and ∆ = λµ

(
2µ + λ

2

2

)
. Then, Equations (3.9) and (3.10) imply

∂x∂y f =
∆(y2 − x2)

1 + µ(x2 + y2)
, (3.12)

∂2
x f − ∂2

y f =
4∆xy

1 + µ(x2 + y2)
. (3.13)

If we integrate (3.12) with respect to y, we get

∂x f = ∆

 y
µ
−

(1 + 2µx2)

|µ|3/2
√

1 + µx2
arctan

 √
|µ| y√

1 + µx2

 + α(x), (3.14)

and if we integrate (3.12) with respect to x, we obtain

∂y f = ∆

− x
µ
+

(1 + 2µy2)

|µ|3/2
√

1 + µy2
arctan

 √
|µ| x√

1 + µy2

 + β(y), (3.15)
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where α and β are smooth functions. Remark that if µ < 0, we have arctanh instead of arctan. Differentiating
(3.14) by x and (3.15) by y, replacing into (3.13), we deduce that there is a solution if and only if ∆ = 0, that is, if
µ = − λ

2

4 < 0. This shows that when µ > 0 the solution does not exist which proves the statement Theorem 1.1 (i).
Moreover, we occur that

f = a1(x2 + y2) + a2x + a3y + a4,

and A(x, y) =
a1(x2 + y2) + a2x + a3y + a4

1 + µ(x2 + y2)
.

Thus, if µ > 0, Equation (1.1) has no solution and if µ < 0 it is satisfied only for µ = − λ
2

4 . Then, from (3.11), we obtain
the corresponding solutions as follows:

X1 =
−2a2µxy+a3(µ(x2−y2)+1)−2a4µy+2a1y

λ(1+µ(x2+y2))
+a5 sin(λz) − a6 cos(λz),

X2 =
2µx(a3y+a4)+a2(µ(x2−y2)−1)−2a1 x

λ(1+µ(x2+y2))
+a5 cos(λz) + a6 sin(λz),
X3 =

a1(x2+y2)+a2 x+a3y+a4
1+µ(x2+y2) ,

with a1, ..., a6 ∈ R and γ = − λ
2

2 < 0. This completes the proof of Theorem 1.1 (iii). Remark that in this case associated
the solitons are Killing vector fields also.
Case 2: λ = 0, µ , 0

In this case the system (3.2) reduces to

2µyX2 − δ∂xX1 =
4µ−γ

2 ,
2µxX2 + 2µyX1 + δ∂xX2 + δ∂yX1 = 0,

−δ∂xX3 + ∂zX1 = 0,
2µxX1 − δ∂yX2 =

4µ−γ
2 ,

−δ∂yX3 + ∂zX2 = 0,
∂zX3 =

γ
2 .

(3.16)

From the equations (3.16)3, (3.16)5 and (3.16)6, we obtain

X1 = δ(∂xA)z + F(x, y),
X2 = δ(∂yA)z + E(x, y),

X3 =
γ
2 z + A(x, y),

(3.17)

where A, E and F are smooth functions of x and y. Putting these expressions of X1 and X2 in (3.16)1 gives us

−δ[2µ(x∂xA − y∂yA) + δ∂2
xA]z + 2µyE − δ∂xF =

4µ − γ
2
.

Since this equation holds for all z, we have

2µ(x∂xA − y∂yA) + δ∂2
xA = 0, 2µyE − δ∂xF =

4µ − γ
2
. (3.18)

Again, substituting the expressions of X1 and X2 in (3.17) into (3.16)4 and (3.16)2 we obtain, respectively

2µ(y∂yA − x∂xA) + δ∂2
y A = 0, 2µxF − δ∂yE =

4µ − γ
2

(3.19)

and
2µ(x∂yA + y∂xA) + δ∂x∂yA = 0, 2µ(xE + yF) + δ(∂xE + ∂yF) = 0. (3.20)

Combining the first equations in (3.18) and (3.19), we get

∂2
xA + ∂2

y A = 0. (3.21)

If we derive the first equation in (3.18) with respect to x and the first equation with respect to y in (3.19), and have in
mind (3.21), we occur

2∂xA + x∂2
xA + y∂x∂yA = 0. (3.22)
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Now, if we derive the first equation in (3.18) with respect to y and the first equation with respect to x in (3.19), and by
virtue of (3.21), we deduce

2∂yA − y∂2
xA + x∂x∂yA = 0. (3.23)

Therefore, from (3.22) and (3.23), after using the first equation in (3.18), we obtain that ∂2
xA = ∂2

y A = 0. So, the first
equations in (3.18) and (3.19) become x∂xA − y∂yA = 0, which together with the first equation of (3.20) shows that A
is a constant function.

Similarly, by considering the second equations of (3.18), (3.19) and (3.20), we have

∂y(δE) − ∂x(δF) = 0, ∂x(δE) + ∂y(δF) = 0.

The solution of this system is δE = c1, δF = c2, where c1, c2 ∈ R. Putting this in (3.18), we obtain E = F = 0 with
γ = 4µ. So, by setting A = a ∈ R, the system (3.17) turns in to be

X1 = X2 = 0, X3 = 2µz + a.

This completes the proof of Theorem 1.1.
Case 3: λ = µ = 0

In this final case we deal with a Minkowski three-space. If λ = µ = 0, the system (3.17) becomes

δ∂xX1 =
γ
2 ,

∂xX2 + ∂yX1 = 0,
−∂xX3 + ∂zX1 = 0,
∂yX2 =

γ
2 ,

−∂yX3 + ∂zX2 = 0,
∂zX3 =

γ
2 .

By direct computation, we see that, for X = X1E1 + X2E2 + X3E3, the corresponding soliton has the following form:

X1 =
γ
2 x − a1y + a2z + a3,

X2 = a1x + γ2 y + a4z + a5,
X3 = a2x + a4y + γ2 z + a6,

for every γ ∈ R with a1, ..., a6 ∈ R.

4. Conclusion

In this work, we gave a classification for Ricci solitons on Lorentzian Bianchi-Cartan-Vranceanu spaces. We showed
that there exist significant differences from the Riemannian case, which is studied in the reference [2], when λ , 0.
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