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Introduction 

Modeling of wireless channels is crucial in many 
applied sciences such as engineering, medicine, and 
hydrology. In wireless communications, signals usually do 
not reach the receiver directly during transmission, and 
degradation of signal quality known as fading occurs. In 
the literature, various models such as Rayleigh, Rician, 
Nakagami, and K-models are used to model the fading in 
wireless channels. Since the modeling of the statistical 
properties of the fading channels is flexible, differences 
arise among these models. These models also differ in 
terms of parameter numbers. Among these models, the 
Nakagami model can model fading of signals reasonably 
well.  The Generalized Nakagami distribution (GND) is 
produced by adding a new parameter that takes into 
account the tails of the density function of the Nakagami 
distribution [1]. The probability density function (pdf) of 
the GND is given as follows: 
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where  0.5m  and  0s are shape parameters and 

  0  is scale parameter. Note that the GND is related to 

the generalized gamma distribution introduced by Stacy 
[2]. It can be noted that the Generalized Nakagami 
random variable is generated by taking the square root of 
the generalized gamma random variable.  

The probability densities of GND are plotted for 
various parameter combinations in Figure 1. 

The GND converts to some special distributions such 
as when =1s , the GND becomes the ND; when = =1m s

the GND reduces to the Rayleigh distribution and when 

= =1, 1 2m s  the GND reverts to exponential 

distribution. 
 

 

 

Figure 1. Generalized Nakagami densities for various 
parameter combinations. 
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It is essential to identify an appropriate distribution to 
be fitted for a given data. Increasing of number of 
parameters can cause some complications such as 
estimations of parameters depend on each other. In real 
applications, distributions with fewer parameters may be 
sufficient to describe data or provide better fit than 
distribution which have more parameters or complete 
opposite of this situation may occur. For example, Shankar 
[1] has reported that the GND is likely to match ultrasound 
data much better than the ND.  Hence, in this study the 
ND is considered as a special case of the GND, and some 
goodness of fit tests are constructed to decide which 
distribution will have better fitting. 

The ND was proposed by Nakagami to model fading of 
radio signals [3]. Although many statistical distributions 
describe the fading of signals such as Weibull, Rician, 
Rayleigh, and lognormal distributions, the ND matches 
some empirical data better than the other distributions 
[4]. 

Applications of the ND have been carried out in many 
scientific fields such as modelling of high-frequency 
seismogram envelopes, communications engineering, 
medical imaging studies etc. The usefulness of ND for 
dealing with high frequency seismogram envelopes has 
been demonstrated [5]. Sarkar et al. [6, 7] have examined 
performance of the ND to derivation of unit hydrographs 
in hydrology. Datta et al. [8] have modelled ultrasound 
kidney images with the ND. Alavi et al. [9] have analyzed 
performance of the ND for wind speed data. Since the ND 
has memoryless property, Ahmad et al. [10] have used the 
distribution to model hazard rate in reliability studies. 
Ramos et al. [11,12] have proposed new estimator for the 
ND and presented Bayesian inference considering 
objective priors for the ND parameters. Kumar et al. [13] 
have used the ND as a lifetime model. Ozonur et al. [14] 
have adapted some tests to evaluate Rayleigh distribution 
against the ND. Ozonur and Paul [15] have developed tests 
of fit of the generalized gamma distribution. 

Goodness of fit tests are statistical tools evaluating 
adequacy of a distribution. Although goodness of fit of the 
ND is examined in the literature, asymptotically optimal 

goodness of fit tests such as the Neyman’s ( )C , Rao’s 

score and likelihood ratio tests are firstly developed in this 

study to check whether the GND is statistically superior to 
the ND for a given data set. In order to decide whether a 
random sample has been taken from the ND or GND, null 
and alternative hypotheses can be constructed as below: 
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The Neyman’s ( )C α , Rao’s score and likelihood ratio 

tests are asymptotically optimal, and they provide tests 
with good properties in large samples [16]. Although there 
are various studies including these goodness of fit tests 
[17,18], these tests have not been taken into 
consideration for the GND. Goodness of fit problem of the 
distribution is considered in the study due to pervasive 
usage in many scientific areas. In this context, the main 
focus of this study is to test goodness of fit of the ND 
against the GND. 

The rest of the article is designed as follows. Firstly, the 
goodness of fit tests such as the likelihood ratio, score, 

and two ( )C  tests are proposed to test the null 

hypothesis against the alternative hypothesis. Secondly, 
simulation study is performed to evaluate the 
performance of the tests with regard to Type I errors and 
powers of tests. In the subsequent section, two real data 
sets are analyzed and finally, some conclusions are 
provided. 

 

Materials and Methods 
 

Goodness of Fit Tests 

1 , , nY Y  is a random sample from the GND with pdf 

given in Equation (1) with the parameter vector 

 = ( , )T Ts  where ( ) = ,
T

m . The aim of this study is to 

test the =0 : 1H s  against the 1 : 1H s   treating the 

( ) = ,
T

m  as nuisance parameter. 

 

Likelihood ratio test 
The log-likelihood function of the GND is given by
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The maximum likelihood estimate (MLE) of   under the full model, say ( ) = 
T

, ,s m , is a simultaneous solution of 

the following equations: 
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where ( ) m  is digamma function, i.e., 

( )
( ) 

 =


log m
m

m
. Similarly, the MLE of   under the 

reduced model, say ( ) = 
T

ˆˆˆ 1, ,m , can be obtained by 

solving the following equations : 
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Since the MLE equations of the full and reduced 

models have no direct solutions, iterative methods must 
be used to solve the equations. The MLEs of   under the 

full and reduced models are derived using the mle2 
function in R 3.4.1.   

The likelihood ratio test statistic ( )LR  is given as 

follows: 
 

( ) ( )( )ˆ2 ; ; ,LR l Y l Y=  −                                                                               

  

where ( ) = 
T

, ,s m and ( ) = 
T

ˆˆˆ 1, ,m  are the MLEs 

of   under the full model and reduced model, 

respectively. Then the statistic LR  asymptotically follows 

2
1  under the null hypothesis. 

 

C(α) and score tests 
Rao proposed the score test as an alternative to the 

likelihood ratio test and Neyman introduced the ( )C  

test as a generalization of the Rao’s score test [19, 20]. The 

( )C  and score test statistics are based on score 

functions. The score functions are the partial derivatives 
of the log-likelihood function with respect to the 
parameter of interest and nuisance parameter evaluated 
under the null hypothesis.  

Consider testing =0 : 1H s  against 1 : 1H s  where the 

parameter vector  = ( , )T Ts  is partitioned into the 

parameter of interest s  and nuisance parameter 

( ) = , .
T

m  Similarly, score vector and information 

matrix can be partitioned as 
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respectively. Under the null hypothesis, we obtained 
elements of the U  and I  as follows: 
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where trigamma function ( )' m  is derivative of the 

digamma function ( ) m . 

Define adjusted score as = −sR U BU , where B  is the 

matrix of partial regression coefficients. Bartlett [21] 

showed that 


−

= 1
sB I I  and variance covariance matrix of 

R  is −

   = − 1
.ss ss s sI I I I I . The Neyman’s ( )C  statistic is 

given by 
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The main advantage of the ( )C   test is that it only 

requires the estimates under the null hypothesis. Hence, 

estimate of the nuisance parameter ( ), Tm=  is only 

required and if the nuisance parameter is replaced by n

-consistent estimate, then the ( )C   statistic is 

asymptotically distributed as 
2
1  under the null 

hypothesis. In addition, if the nuisance parameter 
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( ),
T

m =   is replaced by its MLE ( )ˆ ˆˆ ,
T

m =  , then the 

( )C   statistic becomes the Rao’s score test statistic ( )S  

which is given as follows:  



=
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ss

U
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Under the null hypothesis, the MLE ( ) = ˆ ˆˆ ,
T

m  can be 

obtained as mentioned in the reduced model of the 

likelihood ratio test. In order to calculate the ( )C  

statistic, two different moment based estimates of the 

nuisance parameter, say ( ) = 1 ,
T

AKm and 

( ) = 2 ,
T

CBm , are used. Under the null hypothesis .k  

moment of the data is  
( )
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The moment estimate of   is obtained as =2
. 

Since the moment estimate of m  cannot be obtained 
from first moment equation, Abdi and Kaveh [22] have 
suggested a moment-based estimator for the m  fading 

parameter as 


=
 −

2
2

2
4 2

AKm . In addition, Cheng and 

Beaulieu [23] have reported the estimator of m  as 

( )

 
=

 − 

1 2

3 1 22
CBm . In this study, we have used both 

estimators of m  and we have denoted the ( )C  statistics 

by 
CBC  and 

AKC  using the estimators of m  as 
CBm  and 

AKm , respectively. 

Asymptotically, it has been shown in the literature that 

the likelihood ratio test is equivalent to the ( )C  or score 

test and the test statistics 
CBC , 

AKC  and S  are 

asymptotically follow 2
1  under the null hypothesis [24, 

25]. 

 
Simulation Study 

 
Monte Carlo simulation study is performed to 

demonstrate quality of the proposed tests LR , CCB , CAK  

and S  in terms of Type I errors and powers of tests by 
using statistical software R 3.4.1. In the simulation study, 
critical values of the goodness of fit tests are obtained by 
simulating 10000 samples of size n  from the GND with 

=1s . Using the critical values, the Type I errors are 

calculated by generating 5000 random samples from the 
GND with =1s  for various combinations of levels 

( )0.10,0.05,0.01= , sample sizes ( )20,30,50n=  and 

parameters ( )0.75, 1m= . The Type I errors and powers of 

the tests are not affected as the value of    changes. So, 

all simulation results are obtained based on 1=  . The 
Type I errors of the tests are summarized in Table 1. In 
addition, we have obtained the powers of the tests under 
the GND using various combinations of sample sizes n  

and parameters ( )0.75, 1; 1,3,5,7,9,11,13,15 .m s= =  The 

power study is performed with 5000 iterations and 
nominal level of 0.05 . The powers of the tests are 

presented in Table 2. 
 

Table 1. Type I errors of the tests for different m  
parameters, nominal levels and sample sizes. 

Sa
m

p
le

 

Si
ze

s 

Level m  CBC              
AKC             S                  LR  

20 0.10 0.75 0.0970 0.0970 0.0978 0.0954 

  1 0.1026 0.1026 0.1070 0.1082 

 0.05 0.75 0.0476 0.0450 0.0504 0.0482 

  1 0.0524 0.0510 0.0590 0.0546 

 0.01 0.75 0.0102 0.0106 0.0100 0.0122 

  1 0.0124 0.0122 0.0118 0.0112 

30 0.10 0.75 0.1008 0.1026 0.1050 0.1068 

  1 0.1038 0.1042 0.0964 0.0960 

 0.05 0.75 0.0494 0.0518 0.0518 0.0518 

  1 0.0516 0.0530 0.0478 0.0520 

 0.01 0.75 0.0082 0.0082 0.0092 0.0104 

  1 0.0116 0.0128 0.0060 0.0098 

50 0.10 0.75 0.0984 0.0966 0.0928 0.0948 

  1 0.0920 0.0936 0.0912 0.0980 

 0.05 0.75 0.0462 0.0454 0.0514 0.0484 

  1 0.0426 0.0430 0.0442 0.0472 

 0.01 0.75 0.0102 0.0110 0.0108 0.0098 

  1 0.0056 0.0054 0.0092 0.0052 

 
As shown in Table 1, Type I errors of all the four tests 

close to nominal levels irrespective of values of 
parameters and sample sizes. As shown in Table 2, as the 
sample size increases powers of all the tests increase. 
Also, powers of the tests increase as the s  moves away 

from the null. It can be stated that when s  is smaller than 

7 , the LR  is the most powerful test and S  provides 

slightly lower power than the LR . However, the score test 
S  shows better performance among the four tests when 

7s  in terms of powers of tests. For all sample sizes and 

parameter combinations, the 
AKC  is the least powerful 

test among all these tests. The 
CBC  has better 

performance than the 
AKC  between the Neyman ( )C  

tests using moment estimators. The score test S  shows 

generally better performance than the 
CBC  and 

AKC  tests 

in terms of powers of tests. It is pointed out that for all 
sample sizes, as m  parameter increases, powers of LR , 

CBC  and 
AKC  tests decrease. However, as m  parameter 

increases, the power of S  test decreases when 7s , and 

increases when 7s . 
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Table 2. Powers of the tests for nominal level 0.05, 0.75,1m =  and 20,30,50.n =  

n  m  Statistics 
s  

1 3 5 7 9 11 13 15 

20 0.75 CBC  0.0580 0.1540 0.1974 0.2114 0.2070 0.2226 0.2356 0.2256 

  AKC  0.0562 0.1198 0.1274 0.1298 0.1172 0.1182 0.1224 0.1110 

  S  0.0548 0.1712 0.2606 0.3238 0.3998 0.5688 0.7200 0.8230 

  LR  0.0544 0.2086 0.3064 0.3568 0.3808 0.4106 0.4216 0.4206 

 1 CBC  0.0580 0.1446 0.1674 0.1790 0.1818 0.1668 0.1830 0.1806 

  AKC  0.0560 0.1082 0.1126 0.1114 0.1026 0.0892 0.0904 0.0852 

  S  0.0504 0.1472 0.2118 0.3096 0.4884 0.6952 0.8102 0.8450 

  LR  0.0542 0.1798 0.2544 0.3186 0.3296 0.3268 0.3520 0.3646 

30 0.75 CBC  0.0544 0.2572 0.3156 0.3478 0.3660 0.3924 0.3874 0.3908 

  AKC  0.0540 0.2106 0.2340 0.2444 0.2486 0.2512 0.2458 0.2468 

  S  0.0572 0.2630 0.3674 0.4436 0.5438 0.6954 0.8442 0.9002 

  LR  0.0546 0.2794 0.3960 0.4586 0.5018 0.5214 0.5318 0.5508 

 1 CBC  0.0460 0.2188 0.2960 0.3114 0.3256 0.3368 0.3276 0.3444 

  AKC  0.0480 0.1774 0.2110 0.2182 0.2234 0.2208 0.2060 0.2188 

  S  0.0480 0.2100 0.3244 0.3974 0.6130 0.8144 0.8912 0.9372 

  LR  0.0468 0.2250 0.3466 0.3770 0.4128 0.4324 0.4358 0.4556 

60 0.75 CBC  0.0496 0.4334 0.5624 0.6050 0.6364 0.6462 0.6662 0.6666 

  AKC  0.0484 0.3728 0.4676 0.5002 0.5050 0.4986 0.5294 0.5276 

  S  0.0488 0.4110 0.5840 0.6508 0.7188 0.8412 0.9506 0.9604 

  LR  0.0488 0.4360 0.6136 0.6762 0.7106 0.7352 0.7554 0.7698 

 1 CBC  0.0536 0.4106 0.5114 0.5454 0.5874 0.6102 0.6070 0.6204 

  AKC  0.0532 0.3582 0.4294 0.4512 0.4804 0.4940 0.4960 0.4924 

  S  0.0514 0.3674 0.5096 0.5808 0.7774 0.9332 0.9606 0.9898 

  LR  0.0504 0.3670 0.5218 0.5836 0.6310 0.6542 0.6596 0.6780 

 

Real Data Examples 

Notice that all the tests discussed above 
asymptotically follow chi-square distribution. However, 
the asymptotic distribution may be poor for small or 
moderate sample sizes; hence, p -values based on the 

asymptotic distribution may not always be reliable. 
Therefore, we obtain parametric bootstrap p -values for 

the following real data examples. The parametric 
bootstrap procedure is performed as follows. 

 

Calculate the test statistic value 0T  from original data. 

Then generate a bootstrap sample according to the null 
hypothesis using the MLE and compute the test statistic 

0T  with this bootstrap sample and call it *
0T . Replicate this 

sampling a large number of times, say B times. Thus, the 
*

0T  values are * * *
01 02 0, ,..., BT T T . The bootstrap p -value of 0T  

is calculated as ( )  ( )= * *
0 0# ip T T B i = 1,2,…,B . Reject 

the null hypothesis if the bootstrap p -value is smaller 

than nominal level of test. In the real data examples, we 
have considered the nominal level  = 0.05  and the 

replication number =100000.B  

 
 
 
 

 Example 1 
 In the first example, we have considered daily wind 

speed data analyzed by [26]. This data is presented in 
Table 3. 

 
Table 3. Daily wind speed data 
5.5 4.0 5.3 5.7 4.1 6.7 5.4 3.9 2.8 3.7 2.9 4.7 3.8 3.4 2.5 

3.3 3.5 2.6 4.1 3.3 6.9 2.7 2.0 2.5 2.8 2.0 3.2 2.6 3.8 4.0 

 
The MLEs of the parameters for the data are obtained 

as =ˆ 2.516m  and =ˆ  15.973  under the null hypothesis 

and = 0.134s , =131.981m , =1.416  under the 

alternative hypothesis. We calculate values of the tests 
statistics =2.436LR  and =2.072S  with parametric 

bootstrap p -values 0.040  and 0.116,  respectively. 

Although the ND sufficiently fits the wind speed data 
according to the p -value of the S  statistic, the GND 

provides a better fit than the ND according to p -the value 

of the LR  statistic. 
 

Example 2 
As the second example, we have analyzed a real data 

of remission times (in months) of patients with bladder 
cancer [27]. The data is presented in Table 4. 
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Table 4. Remission times  
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 
6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 
9.74 14.76 6.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75 
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14 
79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 
11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 
8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69     

 
The MLEs of the parameters for the data are obtained 

as =ˆ 0.503m  and =ˆ 193.327  under the null hypothesis 

and = 0.257s , = 3.875m , =2.804  under the alternative 

hypothesis. We obtain values of the tests statistics 
=  42.485LR  and = 509.530S  with the bootstrap p -values 

0.000  and 0.000 , respectively. So, our conclusion is that 

the GND sufficiently fits the remission times data. 
 

Conclusion 
 

The Generalized Nakagami distribution is popular 
distribution in engineering, survival analysis, medical 
studies, and hydrology. The distribution contains the 
Nakagami distribution as a special case. When the 
reduced model may be adequate for the considered data, 
the Generalized Nakagami distribution may be a 
redundant and complex distribution. 

Since it is important to decide whether reduced 
distribution is sufficient to describe data, four goodness of 

fit tests, namely, the ( )C  tests 
CBC  and 

AKC ; score test 

S  and likelihood ratio test LR  are developed to test 

goodness of fit of the Nakagami distribution against the 
Generalized Nakagami distribution. These tests are then 
compared by a Monte Carlo simulation study for various 
sample size and parameter scenarios. Simulation study 
suggests that the LR  and S  tests provide better 

performance than the 
CBC  and 

AKC  tests. Although, the 

LR  is the most powerful test and the S  provides slightly 

lower power than the LR  for small values of m  and s , 

the score test S  is the most powerful test for large values 

of m  and s . So, our recommendation is to use the LR  

and S tests for small m and s values and the S  test for 

large m  and s values. 
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