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A relatively new sub-area within this is the statistical analysis of point processes on linear networks, that is, 
processes of events occurring randomly in space but with locations constrained to lie on a linear network. For 
example, traffic accidents occur at random locations constrained to lie on a network of streets. In this case, the 
network is idealized as a network of line segments in the plane or three-dimensional space. The development of 
statistical techniques for the analysis of point processes on linear networks is still in its infancy. Many standard 
statistical techniques for analyzing point processes cannot be directly applied to data arising from linear 
networks and require suitable modification. Test of Complete Spatial Randomness (CSR) for point processes on 
the plane based on quadrat counts or nearest neighbors cannot be applied to point processes on linear 
networks. This paper defines a Voronoi tessellation of the linear network which uses the shortest path distance 
along the network instead of Euclidean distance, and then develops a chi-square test of CSR for linear networks 
based on the event counts in the tiles of this tessellation. This test is applied to data on traffic accidents in Leon 
County, Florida, USA. 
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Introduction 

Point processes are used as models for “events” or 
“points” occurring randomly in some space. As defined in [1] a 
point process X on ℝ𝑑𝑑  is a random countable subset of a 
region S ⊆ ℝ𝑑𝑑, and a realization of such a process is a point 
pattern 𝑥𝑥 =  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} 𝑜𝑜𝑜𝑜 𝑛𝑛 ≥  0 points contained in S. 
For any set 𝑥𝑥, let 𝑛𝑛(𝑥𝑥) denote the cardinality of 𝑥𝑥. Point 
processes X used in applications are usually assumed to be 
simple and locally finite. In a simple point process, no two 
points coincide, that is, no two “events” occur in the same 
position in ℝ𝑑𝑑. A locally finite point process X has only finitely 
many points in any bounded set. Stated more precisely, all 
realizations 𝑥𝑥 are locally finite subsets of S, meaning that 
𝑛𝑛(𝑥𝑥𝐴𝐴) < ∞ for all bounded sets 𝐴𝐴 ⊆ 𝑆𝑆 where 𝑥𝑥𝐴𝐴 = 𝑥𝑥 ∩ 𝐴𝐴 is 
the restriction of the realization 𝑥𝑥 to 𝐴𝐴. 

The terms “point pattern” and “point process” are used 
interchangeably in most sources [2]. The purpose of a point 
process is to serve as a model for the pattern of “things” and 
their distributions. The things have locations in one, two, or 
three-dimensional spaces. Examples of things are tree 
locations in a forest, cancer cells in a tissue, bird migration 
routes, and tornado paths. The things are constructed using 
points and marks. Points are the locations of things, and marks 
are additional information associated with the points [2]. The 
general theory of point processes has been developed for 
arbitrary dimensions. 

The methods suggested for determining randomness can 
be roughly separated into two types, which are referred to as 
quadrant methods and distance approaches, respectively [3].  
The article [4] has investigated the efficacy of randomness 

tests, in particular tests based on nearest-neighbor distance, 
inter-point distances, and estimators of moment measures. In 
addition to using distances and quadrants, alternative 
approaches have also been developed in several studies. The 
author of article [5] proposed assessing spatial randomness 
using angles between vectors connecting each sample location 
to its nearest neighbors. Additionally, [6] also mentioned a way 
of defining spatial patterns in which sample points travel in a 
regular arrangement that resembles a hexagonal lattice. 
However, none of the tests were developed for the test of 
Complete Spatial Randomness (CSR) on linear networks. The 
only method developed for the linear network was proposed 
by [7], which is a distance-based approach for testing CSR on a 
linear network, however, she advises conditioning on the 
positions of two arbitrary points to get the cumulative 
distribution function (CDF) of inter-event distance for 
complete spatial random (CSR) point pattern on the 𝑚𝑚𝑥𝑥𝑛𝑛 grid 
network. Finally, to test two CSR test methods she suggested 
are based on inter-event distance and nearest-neighbor 
distance, respectively are based on Monte Carlo simulations.  
The method is based on simulation and depends on writing the 
CDF of the function which is not always straightforward to 
write CDF of a function. In this paper, we first define linear 
networks and spatial point process on liner networks, then we 
review complete spatial randomness on both planar space and 
linear networks then we define a Voronoi tessellation of the 
linear network which uses the shortest path distance along the 
network instead of Euclidean distance, and finally, we 
developed a chi-square test of CSR for linear networks based 
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on the event counts in the tiles of this tessellation. This test is 
applied to data on traffic accidents in Leon County, Florida, 
USA. 

 
Spatial Point Processes on Linear Networks 
Although spatial point processes on the line and plane 

have been studied since at least the 1950s, work on spatial 
point processes on linear networks is a recent development. 
There are important differences between the analysis of point 
processes on Euclidean spaces (e.g., the line or plane) and 
point processes on a linear network. For example, the 
Euclidean distance metric figures prominently in the 
development of point processes on the plane but may be an 
insufficient or misleading distance metric for spatial point 
patterns on linear networks, such as those arising in the study 
of the locations of traffic accidents, crime on sidewalks, road-
kill, the population distribution of dendrites, or the 
heterogeneity of tree species along a river. For point processes 
on a linear network, it is usually more appropriate to define the 
distance between two points on the linear network to be the 
length of the shortest path between these two points traveling 
along the linear network. Another important difference 
between point processes on the plane and on a linear network 
is illustrated in Figure 1. When one looks at Figure 1(a), one 
may not think the points are randomly distributed, but Figure 
1(b) clearly shows that the points are randomly distributed [8] 
on a linear network. The notions of “randomness” or 
“uniformity” are very different on the plane and on a linear 
network. 

 

 

 
Figure 1: Points on a planar and linear network (Note: (a) and 

(b) are the same data points 

Definitions Relating to Linear Networks  
The line segment l on the plane with endpoints 𝑢𝑢, 𝑣𝑣 ∈

 𝑅𝑅2 ,𝑢𝑢 ≠  𝑣𝑣, can be written in any of the following ways: 
𝑙𝑙 =  𝑙𝑙𝑢𝑢,𝑣𝑣  =  [𝑢𝑢, 𝑣𝑣]  =  { 𝑡𝑡𝑢𝑢 +  (1 −  𝑡𝑡)𝑣𝑣 ∶  0 ≤  𝑡𝑡 ≤  1 } 

 
The length of this segment can be written as 
 
| 𝑙𝑙 |=|𝑙𝑙𝑢𝑢,𝑣𝑣| =  ‖𝑢𝑢  −  𝑣𝑣‖, 
 
where ‖. ‖is the usual Euclidean norm in R2 which for  
 
𝑧𝑧 =  (𝑧𝑧1, 𝑧𝑧2) is defined by ‖𝑧𝑧‖ = �𝑧𝑧12 + 𝑧𝑧22,[9,10].  
 
A linear network L is a combination of line segments 

(edges) 𝑙𝑙𝑖𝑖: 

𝐿𝐿 = �𝑙𝑙𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 
The total length of the linear network L is defined by 
 

|𝐿𝐿| = � |𝑙𝑙𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

 
According to [8], the endpoints of segments are called 

nodes or vertices, and the degree of a node u, written as 
d(u), is the number of segments that are connected to the 
node. When d(u) = 1, then u is called a terminal node [11]. 

A path between u and v in a linear network L is a 
sequence 𝑥𝑥0, 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚  of points in L such that 𝑥𝑥0  =
 𝑢𝑢, 𝑥𝑥𝑚𝑚  =  𝑣𝑣,and [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] ⊂  𝐿𝐿 for each 𝑖𝑖 =  0, … ,𝑚𝑚 −
 1. This path is denoted by 𝑃𝑃(𝑢𝑢, 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚−1, 𝑣𝑣). The 
length of a path 𝑃𝑃(𝑢𝑢, 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚−1, 𝑣𝑣) on L is defined to be 

‖𝑢𝑢 −  𝑥𝑥1 ‖ + ‖ 𝑥𝑥1 −  𝑥𝑥2‖  +  … + ‖ 𝑥𝑥𝑚𝑚−1  −  𝑣𝑣‖. 

The shortest-path distance between two points u and v in 
a linear network L is the length of the shortest path in L 
between u and v; this distance is denoted by 𝑑𝑑𝐿𝐿(𝑢𝑢, 𝑣𝑣). 

[9] notes that a point process X on a linear network L 
is a special case of a point process on a planar space. We 
assume that X is simple, meaning that it does not have any 
coincident points. Each realization of X is a finite set 𝑥𝑥 =
 {𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛} of distinct points xi ∈ L, where n ≥ 0 is 
(typically) random and not fixed in advance. 

When analyzing point patterns on the plane (e.g., the 
locations of crimes, stores, tree species, etc.), the ordinary 
Euclidean distance is usually the most appropriate measure of 
the distance between events. However, when it is known that 
the events of interest occur on a street network, this is often 
not a proper choice. In many cities’ streets are arranged (at 
least roughly) in a rectangular grid and the Euclidean distance 
can sometimes differ substantially from the true street 
distance (the shortest-path distance along the network) as is 
illustrated in Figure 2(a). For this reason (as noted by [7]) some 
researchers began using the “grid distance” (also known as the 
taxi-cab distance or the L1 distance) in their analyses, such as 
the crime pattern along network analysis in [8]. For two points 
with x-y coordinates (x1,y1) and (x2,y2), the grid distance 
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between them is |𝑥𝑥1  −  𝑥𝑥2|  + |𝑦𝑦1  −  𝑦𝑦2|. The grid distance 
between two points P1 and P2 is illustrated in Figure 2(b); it is 
computed as the summation of the horizontal length x and the 
vertical length h. However, [12] observe that grid distance is 
not ideal for two reasons: first, not every city uses grid roads, 
and many cities are using a circle-radial system. Second, even 
when a city uses a grid-style network, using grid distance to 
compute true street distance can be inaccurate. For example, 
in Figure 2(c), the grid distance between P1 and P2 is x + h but 
the shortest-path distance between P1 and P2 is substantially 
greater than this. Therefore, neither Euclidean distance nor 
grid distance is an appropriate distance metric to use while 
analyzing events on a linear network. The shortest-path 
distance or true street distance is the proper distance [12]. 

 

 

 

 
 
Figure 2: (a) Situation in which Euclidean distance differs 

greatly from shortest-path distance. (b) Illustration of grid 
distance between P1 and P2. (c) The situation in which grid 
distance differs greatly from shortest-path distance. 
(Note: Solid lines are streets.) 

 

Complete Spatial Randomness  
 

Point pattern analysis differs from other spatial 
processes in that the number of events and their locations 
occur randomly. Point pattern analysis has been studied 
since the early 1920s in the fields of ecology and forestry. 
The simplest point patterns are those which exhibit 
Complete Spatial Randomness (CSR), which is (roughly 
speaking) the absence of structure [14]. Mathematically, 
CSR is equivalent to a point process being a homogeneous 
Poisson process. Checking for CSR is of paramount 
importance for point pattern analysis. The lack of 
sufficient evidence for rejecting CSR implies that events 
can be modeled with a uniform distribution and hence 
there is no spatial dependence. Therefore, there is no 
further reason to carry out a spatial analysis because there 
will be no or limited gain. Secondly, CSR analysis carries a 
fundamental role in exploring and learning about the data 
[15]. 

Many methods have been developed for testing CSR 
for point patterns in the plane, for example, the quadrat 
method is commonly used (although [14] notes that this 
method is not powerful enough to catch characteristics of 
the pattern on multiple scales). However, CSR on a linear 
network has not been widely studied. In this paper, we will 
explore the use of the Voronoi diagram to test CSR on a 
linear network.  

 
Complete Spatial Randomness on 𝑹𝑹𝟐𝟐 
CSR is synonymous with a homogeneous Poisson 

process. For such a process, the points (events) which 
occur in any bounded region B ⊂ R2 are uniformly 
distributed over this region and are independent and do 
not interact with each other. Let N(B) denote the number 
of events of the process in B. Given that N(B) = n, the 
ordered n-tuple of events (𝑢𝑢1,𝑢𝑢2, . . . ,𝑢𝑢𝑛𝑛)  ∈  𝐵𝐵𝑛𝑛  satisfies 
𝑃𝑃(𝑢𝑢1 ∈ 𝐴𝐴1, … ,𝑢𝑢𝑛𝑛 ∈  𝐴𝐴𝑛𝑛)

= ��
|𝐴𝐴𝑖𝑖|
|𝐵𝐵|�

𝑛𝑛

𝑖𝑖=1

,      𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 ⊂  𝐵𝐵, 

where |𝐴𝐴| ≡ ∫ 𝑑𝑑𝑢𝑢 
𝐴𝐴 . This implies the events have the 

same probability to occur anywhere within B with no 
interaction between them, either repulsively or 
attractively. 

It is difficult to identify whether points are distributed 
randomly through visual methods. Figure 3 shows three-
point patterns, each containing 39 points in the same 
study area but generated by different methods. For 
example, Figure 3(c) shows 39 points created by a CSR 
process. Intuition can be misleading. People frequently do 
not expect a homogeneous Poisson process to display the 
apparent clustering and gaps observed in Figure 3(c); they 
expect the Poisson process to look more like Figure 3(c) 
which in fact is a process exhibiting fairly strong repulsion 
between the points leading to the more regular spacing 
between them. Formal statistical methods are needed to 
test for complete spatial randomness on R2. Some 
commonly used tests are based on quadrat analysis, the 
nearest neighbor distance, and the K function. 
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Figure 3: Three-point patterns produced by different 

processes, each with 39 points. 
 
The current focus is on quadrat analysis because 

quadrat analysis and a test for CSR based on Voronoi 
diagrams will be compared in the next subsection. Details 
about the nearest neighbor distance and K function 

methods can be found in many books, including [16], [14], 
and [15]). 

 
Quadrat Analysis  
Quadrats are defined as unions of regular sub-regions 

[17]. The name quadrat comes from dividing the study 
area in R2 into small sub-regions of equal areas, preferably 
square or rectangular, and counting the number of events 
in each sub-region. The intensity of events in each quadrat 
is the ratio of the number of events it contains to the area. 

Two main assumptions about quadrat methods are: 
 
1. The study area is represented by the Euclidean 

space. 
2. The events in the study area are homogeneous, 

which implies that the probability of a random 
event happening in any part of the study area is 
constant despite the location of the event. 
 

Testing the randomness assumes the event counts in 
each quadrat follow a Poisson distribution. If there are n 
quadrats with equal areas having events counts 
𝑥𝑥!, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, the test statistics will be  

 
 

𝑋𝑋2 =
(𝑛𝑛 − 1)𝑆𝑆𝑥𝑥2

�̅�𝑥
=
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1

�̅�𝑥
, (1) 

 

where, �̅�𝑥 is the mean of observed counts and 𝑆𝑆𝑥𝑥2 is the 
variance of observed counts. Under the null hypothesis of 
CSR, the statistic 𝑋𝑋2 has approximately a chi-square 
distribution with 𝑛𝑛 − 1 degrees of freedom so long as  �̅�𝑥 
is not too small. 
       When χ2 is too big, it is a sign of clustering. When χ2 is 
too small, it may indicate regularity. In [16], the index of 

dispersion is computed by 𝑆𝑆𝑥𝑥
2

�̅�𝑥
 , and 𝑆𝑆𝑥𝑥

2

�̅�𝑥
− 1 is defined as the 

index of cluster size(ICS). Based on the expected value of 
ICS one can conclude whether or not the events follow 
CSR; 
 

�
𝐸𝐸(𝐼𝐼𝐶𝐶𝑆𝑆) > 0, 𝐶𝐶𝑙𝑙𝑢𝑢𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑
𝐸𝐸(𝐼𝐼𝐶𝐶𝑆𝑆) = 0,                     𝐶𝐶𝑆𝑆𝑅𝑅
𝐸𝐸(𝐼𝐼𝐶𝐶𝑆𝑆) < 0,       𝑅𝑅𝐶𝐶𝑅𝑅𝑢𝑢𝑙𝑙𝑅𝑅𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦

 

 
 
One drawback of this method is choosing the optimal 

number of quadrats. There is no agreed-upon number or 
a mechanism to check. Therefore, it is possible that some 
quadrat areas are too small or too big, and some quadrats 
might even be empty which will affect the number of 
observed events. That would make the interpretation 
difficult or misleading. Another weakness is that quadrat 
analysis is not actually a measure of pattern analysis 
because the test statistics in Equation (1), do not include 
the location or distance between points. Even though they 
are in the same quadrat, how many of the points are in 
particular quadrats is the only interest. 
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Figure 4: The location of 100 Leon County accidents 

occurring 
 
For illustration, Figure 4 shows 100 traffic accidents 

sampled in Leon County, Florida, between January 1, 
2008, and December 31, 2013. A quadrat analysis with 3x3 
and 6x7 quadrats was executed. Figure 5 shows an 
example of a quadrat analysis using a 3x3 quadrat setup. 
In each quadrat, the values represent observed, expected, 
and residuals. Where residuali = (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)/�𝐸𝐸𝑖𝑖. As seen 
in the 3x3 square quadrat analysis, the quadrat size affects 
the observed and expected counts and the residuals, 
which affects the test statistics. 

 
(2) 

Figure 6 shows a 6x7 quadrat analysis for the same 
study area with the same number of events. Increasing 
the number of quadrats can create smaller, possibly 
empty quadrats (right bottom of Figure 6) that will affect 
the test statistics. 

 

 
Figure 5: Quadrat analysis: equal-distance 3x3 square 

quadrats (Note: In each box, the top left is the number of 
observed points, the top right is the number of expected 
points and the bottom is the residual) 

 
Figure 6: Quadrat analysis: equal-distance 6x7 square 

quadrats (In each box, the top left number is the 
observed value, the right top is the number of 
expected value and the bottom number is residual) 

 
Voronoi tessellation  
An alternative method for testing CSR on planar spaces 

is Voronoi tessellation, also known as Voronoi diagrams or 
Dirichlet tessellation. 

Suppose n distinct points 𝑧𝑧1, 𝑧𝑧2, . . . , 𝑧𝑧𝑛𝑛 (with n ≥ 2) are 
chosen in planar space. The Voronoi tessellation 
determined by these points (which are called generator or 
seed points) is a subdivision of the planar space into n 
regions (known as tiles, cells, or polygons) denoted 
𝛷𝛷(𝑧𝑧1),𝛷𝛷(𝑧𝑧2), . . . ,𝛷𝛷(𝑧𝑧𝑛𝑛). Each of these tiles surrounds one 
of the generator points. The tile 𝛷𝛷(𝑧𝑧𝑖𝑖) consists of all points 
in the space that are closer to 𝑧𝑧𝑖𝑖  then to any of the other 
generators 𝑧𝑧𝑗𝑗  , 𝑗𝑗 ≠ 𝑖𝑖. That is, 

𝛷𝛷(𝑧𝑧𝑖𝑖) = �𝑧𝑧�𝑑𝑑𝐸𝐸(𝑧𝑧, 𝑧𝑧𝑖𝑖) ≤ 𝑑𝑑𝐸𝐸�𝑧𝑧, 𝑧𝑧𝑗𝑗�, 𝑗𝑗 = 1, … ,𝑛𝑛� (3) 
where  𝑑𝑑𝐸𝐸(𝑧𝑧, 𝑧𝑧𝑖𝑖)   =  ∥ 𝑧𝑧 −  𝑧𝑧𝑖𝑖 ∥  is the Euclidean 

distance in 𝑅𝑅2  between 𝑧𝑧 and 𝑧𝑧𝑖𝑖.  (For information on 
Dirichlet tessellations see [18] and [19].) 

 
Complete spatial randomness on linear networks  
One of the assumptions for quadrat analysis is the 

study area is represented by Euclidean space. Some cases 
show this assumption holds, especially on planar space 
examples, but some cases show this assumption does not 
hold such as street crimes, store locations, or traffic 
accidents. These events are observed along a linear 
network. 

In Figure 8, a linear network is divided into 4x3 
quadrats, and the two events 𝑧𝑧1  and 𝑧𝑧2 are in the same 
quadrat. The shortest-path distance between these two 
events could be far because there may or may not be a 
direct connection between them. Therefore, even if these 
events are in the same quadrats, they may not be close. 
[12] noted that one needs to update these assumptions 
based on the problem; 

1. The study area is represented by a linear network. 
2. The events on the network are homogeneous, 

which implies the probability of a random event 
happening on any segment is constant despite the 
location of the segment. 
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Figure 7: Illustration of Voronoi tessellation in Leon County 

 
In Figure 8, a linear network is divided into 4x3 

quadrats, and the two events 𝑧𝑧1  and 𝑧𝑧2 are in the same 
quadrat. The shortest-path distance between these two 
events could be far because there may or may not be a 
direct connection between them. Therefore, even if these 
events are in the same quadrats, they may not be close. 
[12] noted that one needs to update these assumptions 
based on the problem; 

1. The study area is represented by a linear network. 
2.  The events on the network are homogeneous, 

which implies the probability of a random event 
happening on any segment is constant despite the 
location of the segment. 

[17] notes that there have been some attempts to use 
quadrat analysis on a linear network such as a river 
network, or on a road network to identify zones with high 
concentrations of traffic accidents, but [17] uses a 
heuristic approach. Creating quadrats on a linear network 
is not as straightforward as in planar space. Therefore, this 
paper proposes to use Voronoi tessellation on a linear 
network to test complete spatial randomness. 

In Equation (3), [8] showed how to create Voronoi 
tessellation on planar networks using the Euclidean 
distance between two events. Therefore, 

Equation (3) is updated with the shortest path 
between 𝑧𝑧 and 𝑧𝑧𝑖𝑖  in Equation (4) for Network Voronoi 
diagram; 
𝛷𝛷(𝑧𝑧𝑖𝑖) = �𝑧𝑧�𝑑𝑑𝐿𝐿(𝑧𝑧, 𝑧𝑧𝑖𝑖) ≤ 𝑑𝑑𝐿𝐿�𝑧𝑧, 𝑧𝑧𝑗𝑗��, 𝑗𝑗 = 1, … ,𝑛𝑛   (4) 

 
Voronoi tessellation sets are shown as 𝛷𝛷(𝒁𝒁) =

{𝛷𝛷(𝑧𝑧1), …𝛷𝛷(𝑧𝑧𝑛𝑛)}. The configuration of the Voronoi 
tessellation is determined by the number and location of 
the generator points and the particular distance metric 
which is used [9]. Various numbers of tiles have been tried 
and finally, 15 tiles have been used. 

 

 
Figure 8: Illustration of quadrat analysis on a linear network 

in Leon County 
 
There is no a straightforward method to decide the 

number of tiles. In Figure 9, using Voronoi tessellation, 
Leon County’s Road network is divided into 15 tiles. 

 
Data Analysis  
 

There are two parts to this section. The first one is 
about how to obtain a linear network and the second part 
is about where to get the accident data. Road information 
of Leon County is downloaded from the Florida 
Department of Transportation (FDOT)’s website. More 
detail on how Leon County linear network was created is 
explained in [20]. The data set, which totals 59,773 
accident records, consists of accidents occurring from 
2013 through 2019 and was provided by the GeoPlan 
Center affiliated with the Department of Urban & Regional 
Planning at the University of Florida. 

The programming languages used in this paper are R 
4.02 and ArcMap [21, 22]. ArcMap has been used to read 
and manipulate shapefiles that contains road information 
from Leon County. It is the first step which is creating the 
linear network. R programming has been used for creating 
Voronoi tessellation on the linear network and analyzing 
it, mainly the package spatstat has been used [23]. 

The locations of reported traffic accidents between 
January 2013 and December 2019 are placed on this 
tessellation, and the number of accidents in each tile is 
counted. Figure 10 shows these events. A histogram in 
Figure 11 shows the number of events in each tile, and tile 
13 has the most events. Afterward, the observed number 
of events in each tile is counted, and a histogram is 
created for this tessellation. 
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Figure 9: Voronoi tessellation on a linear network in Leon 

County 
 

 
Figure 10: Voronoi tessellation of traffic accidents in Leon 

County 
 

To get the expected number of points in each tile, the total 
length of each tile is computed and shown in Table 2’s first 
row. Afterward, the homogeneous intensity is assumed 
and λ0 is estimated as the total number of points over the 
total length of the linear network 

 

 
Figure 11: Observed event counts 

 
(λ0=0.07585275). Finally, the expected value in each 

tile is computed as λ0 times the total length in each tile 
which is shown in the second row of Table 2. 

 

 
(5) 

Table 1: Observed counts of events in Leon County 
Tile 1  2 3 4 5 6 7 8 9 10 11  12 13 14 15 

Observed 5126 42 280 373 1939 3308 336 254 9069 2301 5197 221 29528 348 1448 

 
Table 2: Total length and expected points in each tile in Leon County 

Tile 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Length 46113.4 10135.48 18208.63 46408.23 63609.3 32589 16190.31 56148.9 57209.4 28667.7 114416.5 52673.3 166410 56182.2 23011.64 

Expected 3497.83 768.8 1381.17 3520.19 4824.94 2471.96 1228.08 4259.05 4339.49 2174.52 8678.81 3995.41 12622.66 4261.57 1745.5 

 
The null hypothesis is whether these events follow 

complete spatial randomness. To test this hypothesis, 
Equation (5) is used to compute the χ2 test statistic as 
47969.96. There are 15 tiles and one unknown parameter 
to estimate. The degree of freedom for the χ2 test 
employed is 14. Therefore, the 0.05 critical value of χ2 

distribution is 𝑋𝑋142 = 23.69. The p-value for this test is 
computed as 𝑃𝑃(𝑋𝑋2 > 47969.96) = 0. The null 
hypothesis is rejected. This suggests that these events do 
not follow complete spatial randomness. 

In situations where the total length of each tile is 
difficult to compute, an approach to get the expected 
number of points is to use Monte Carlo Approximation. To 
create a long-run average for each tile to approximate the 
“expected’’ counts, n number of uniformly random points 
repeatedly generate M random uniform points on the 

linear network (where M is the total number of events we 
have in our data) and for each repetition count the 
number of events in each tile. Averaging the event counts 
in each tile over sufficiently many repetitions leads to 
estimates of Ei which may be used in equation (5) to 
compute χ2. Applying this procedure to our data (which 
has M = 59770 events on the network in Figure 9) and 
using 10000 repetitions leads to the estimates of 𝐸𝐸𝑖𝑖  given 
in Table 3. Using these values in equation (5) produces the 
test statistic χ2 = 47967.39, which is very close to the 
earlier value and leads to the same conclusion. 

Ten thousand simulations are executed for randomly 
generated 59770 uniform events on the linear network 
and the expected average number of points in each tile 
are shown in Table 3. 
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Table 3: Average expected counts of events in Leon County 

Tile 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Expected 3497.25 769.11 1381.5 3519.6 4825.29 2471.78 1227.95 4259.59 4340.39 2174.26 8678.78 3995.66 12622.75 4260.67 1745.41 

 
Equation (5) computes χ2 test statistic as 47967.39. 

There are 15 tiles and one unknown parameter to 
estimate. The degree of freedom for the χ2 test employed 
is 14. Therefore, the critical value of 𝜒𝜒2 distribution is 
𝜒𝜒2 = 23.69. Under a significance level of 0.05, the p-value 
for this test is computed as P(χ2 > 47967.39) = 0. The null 
hypothesis is rejected. This suggests that these events do 
not follow complete spatial randomness. 

 
Conclusion 
 
Spatial point processes are everywhere from gold 

mines to tree species and from river streams to road 
maps. Therefore, testing the randomness of events in 
these study areas is the first natural step. Quadrat 
analysis, the nearest neighbor distance, and the K function 
are common methods to test complete spatial 
randomness on plane spaces. However, when the study 
area is a linear network such as a fault line, river stream, 
and road map, Quadrat analysis is misleading. Therefore, 
in this paper, Voronoi tessellation is used for testing 
complete spatial randomness on a linear network.  

The proposed method is an upgrade to the quadrat 
analysis. The road map of Leon County, Florida, USA, has 
been used for a real data analysis purpose. As in quadrat 
analysis, a weakness of this approach is that there is not 
an optimal number of tiles. However, we have seen 
applied from 5 to 20 tiles and see no significant difference. 
Hence, 15 tiles have been used in this analysis, with the 
critical value of 𝜒𝜒2 distribution is 𝜒𝜒2 = 23.69 obtained. 
Based on a significance level of 0.05, the p-value for this 
test is computed as P(χ2 > 47967.39) = 0. It has been 
observed that there is no spatial randomness and can be 
further investigation of analysis of the data. The purpose 
of the paper is to find a quick randomness test on linear 
networks and the Voronoi tessellation is an easy and quick 
approach to test complete spatial randomness on linear 
networks.  
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