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different metric spaces. In this paper, we have
generalizations of F-contraction, (¢,F)-contraction as well as (,$)-contractions.
some unique common fixed point results for a sequence of mappings for (b,d)- weak contractions in 2-Banach

- weak contractions, which is the
Then we have established

generalized (,0)

spaces. Some basic definitions, properties and examples are given in the introduction and preliminaries part.
Some corollaries are also given on the basis on the results.
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Introduction and Preliminaries

In 1922, S. Banach first established the Banach
contraction principle (BCP) and proved fixed point results
in complete metric spaces. Since then lots of fixed point
results have been proved in many contractive conditions
on various spaces. In 2011, Mujahid Abbas, Talat Nazir and
Stojan Radenovic [1] established some common fixed
point results for four maps in partially ordered metric
spaces. Also in 2018, Seonghoon Cho [2] obtained some
fixed point theorems for generalized weakly contractive
mappings in metric spaces.

In this paper we have established a unique common
fixed point theorem on generalized ({,p)- weak
contractions for a sequence of mappings in 2-Banach
spaces, which is a generalization of the results of
Seonghoon Cho [2].

The concept of 2- Banach space has been initiated by
S. Gahler [3] and then many authors established fixed
point results on this space under different contractive
conditions as in other spaces. In 2013, Liu and Chai [4]
established fixed point theorem for weakly contractive
mappings in generalized metric spaces. Later in 2021,
Zhiqun and Guiwen Lv [5] also developed some fixed
point results for generalized (U, ¢)-weak contraction in
Branciari- type generalized metric spaces.

We recall some basic definitions, properties and
conclusions which are as follows:
Definition 1 [2] Let X be a real linear space and ||.,. || be
a non-negative real valued function defined on X X X
satisfying the following conditions:

h‘f§surkarkrishnatﬂwn@gmail. com{® https.//orcid.org/0000-0001-6890-8427

llv,w|l =0, if and only if v and w are linearly
dependentin X ;

llv, wll = llw,vll, forallv,w € X;

v, kw|l = |klllv,wll,v,w € X; k €R;

lv,w + zl| < llv,wll + llw, zl|, forallv,w,z € X.

Then ||.,.|| is called a 2-norm on X and the pair
(X, []-,-1D) is called a linear 2-normed space.

Note: 2-Norm are non-negative and |lv,w + kv|l =
llv,wll, forallv,w € X;k €R.

Definition 2 [6,7] A sequence {v,} in a linear 2-normed
space (X, ||.,-|]) is called Cauchy sequence if

lim ||lv,, — v,,all =0, foralla € X.
mmn-—oo

Definition 3 [6] A sequence {v,} in a linear 2-normed

space (X, ||.,-|]) is said to be convergent in X, if there is

a pointv in X X X such that lim ||v, — v, al| = 0, for all
n—-oo

a € X.

Definition 4 [6] A linear 2-normed space X is said to be
complete with respect to the 2-norm ||.,.|| if every
Cauchy sequence is convergent to an element of X. Then
we call (X,][].,.]]) to be a 2- Banach space.

Definition 5 [6] Let X be a 2-Banach space and T be a self-
mapping on X. T is said to be continuous atx € X if for
every sequence {v,} in X , v, - v as n = o implies
T(xpy » T(x)asn - oo.
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Definition 6 [6] Let F and G be self maps on aset X (i.e,
F,G:X - X).Ifu=Fw = Gw for some € X, then wis
called a coincidence point of F and G; and u is called a
point of coincidence of F and G.

Example 1 Let X = R3. Define 2-normon X as

||v,w|| =0, ifandif v,w arelinearly dependent;
wy
=|(v, v, v3) <W2>|, where, v = (v,,v,,v3),
W3
w = (wy, wy,w3) € R3,

Then (X, II., .l) is called a 2-Normed on X.
Example 2 [8]. Let @, denote the set of all real
polynomials of degree < n on the interval [0,1]. For usual

addition and scalar multiplication, Q,is a linear vector
space over the real numbers. Let v;,v,,v3,... be distinct

Main Results

fixed points in [0,1] and define the following 2-norm on
Q, as
|IF,Gl| = X3 |F (v4)|G(vy), whenever F and
G are linearly independent;
=0 ifand only if F and G are linearly
dependent.
Then (@, ]-,-1) is a2-Banach space.

In 2013, Liu and Chai [4] established some fixed point
theorems in generalized metric spaces and 2018,
Seonghoon Cho[2] obtained some fixed point results in a
metric space using a generalised weakly contractive
mapping.

Inspiring the results of Liu and Chai [4] and Seonghoon
Cho[2] (c.f. Theorem 2.2) we have established the
following results.

To establish our main results we introduce two classes of functions ¥ and @ which are given below:
Y ={: [0,00) - [0,00) satisfying the following conditions:

(i) ¥ is monotonic non-decreasing;
(ii) ltim Y(t) >0 for r>0 and tlir(}l Y)=0;
->T —

(ii)Y(t) =0 if and only if t = 0.}

@ = {¢:[0,0) = [0,00) satisfying the following conditions:

(i) ltim info(t)>0for r>0;
-r

(i) @(t,) » 0 implies t, — 0;
(iii) () = 0if and only if t = 0.

Theorem 1 Let (X, ||.,.||) bea2-Banachspace and {T; };2; be a sequence of self maps on X satisfying the

following conditions:

Y{|ITix— Ty, al| + ¢(Tix) + ¢(Tjy )} < v{ZP (2,3, T0Tj, )} - 0{ZP (%, T.Tj,9)}, Vx,y €X, eV, ped; (1)

where,

VAS) (x,y, T, T; ,d)) = max{llx —y,all + ¢p(x) + ¢), llx — Tix, all + ¢(x) + ¢(T;x), ||y —-T y,a” +o(y)+
$(T,y), ~{lx—Ty.al + @) + T+ lly - Tix,all + p() + $(Tix)} (2)

Z® (x,y,T,T;,¢) = max{llx — y,all + ¢(x) + o), lIx = T, all + ¢(x) + ¢(T0), ||y =Ty y,al| + o) +o(T;v) } (3)

And ¢: X - [0, ) is a lower semi continuous function.

Then there exists a unique z € X suchthatz =T,z Vi=12,3,... and ¢(z) = 0.
Proof: Let x, € X be a point and we define a sequence {x, }5-; € X by
Xpp1 =Tix, V1=1,23, ..

Consider two cases:
Case-l: Let { x,,} be periodic.

subcase-LI: If for somen € N, x, = x,,,1, thenx, =T;x, andhence x, is a fixed pointof T; Vi= 1,2,3,..

subcase-LII: If forsomen € N, x,,=x,.p,, forp=2,3, ., then
Forp = 2, x,= X,,,, thenT;x, is a fixed pointof T; i.e., T; (x,) =T; (T; (x,))), i.e.,

If not then, [Xps1 — Xnszoal| >0, V aeX.

From (2) we have,

z" (xn'xn+1: Ti: ’1}: ¢)

Tl.p_lxn is a fixed point of T;.

Xn+1 “Xn+2
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= max{ | | Xn — Xn+1 ,a| |+ ¢(xn) +¢(xn+1)' ||xn — Xn+1 all + ¢(xn) + ¢(xn+1)t ||xn+1 — Xn+2, a|| + ¢(xn+1) +
¢(xn+2)'%{| |xn - xn+1'a|| + ¢(xn) + ¢(xn+1)' ||xn+1 — Xn+1 all + ¢(xn+1) + ¢(xn+1)}}

= {”xn - xn+1'a” + ¢(xn) + ¢(xn+1)}' [ as xn, = xn+2]
and

Z(Z)(xnlxn+1lTil Tj' ¢)= max{ | | Xn 'Xn+1 Ial | + ¢(xn) + ¢(xn+1)' ||xn - xn+1t a|| + ¢(xn) + ¢(xn+1)'
||xn+1 - xn+2'a|| + ¢(xn+1) + ¢(xn+2)'}

={||xn - xn+1' all + ¢(xn) + ¢(xn+1)} [aS xn = xn+2]
Therefore, by (1) we obtain

Yillxnt1 — Xngz all + ¢ Oepi1) + Ploni2)}
=Y {||Tixn — Tixper, all + ¢(Tixy,) + ¢ (Tixni1)}
< LIJ{“xn - xn+1'a|| + ¢(xn) + ¢(xn+1)} - d){“xn ~ Xn+1s a|| + ¢(xn) + ¢(xn+1)}'

which gives 1/){| [%p1 — xn,a|| + (X)) + O I< Y {||xn — Xpi1r a|| + ¢ (x,) + Pp(x,41)}, whichis a
contradiction.

Hence, T;(Tix,)=T;x, ie., Tix, is a fixedpointof T;, Vi = 1,2,3........
Therefore the statement is true forp = 2.
Assume that the statementis trueforp =m, m > 2, i.e., Tim‘lxn is a fixed point of T;.
Then  TMx, =T™ 'x, (4)
Applying T; on both sides of (4), we get
T,(TMx,) = T,(T"™ 'x,) ie., T(T"x,)= TMx,.
Hence, T™x, isa fixed pointof T;. Therefore the statementistruefor p=m+1.
Thus by the Principle of Mathematical Induction if x, = Xnip s then x,, is a fixed pointof T;, for p =1,2,3,...

Case-ll: Assume x, # x,,,, forall n € N.Nowfrom (2) we have

Z(l) Xn-1,Xn, Ti' Tj' d))
= max{llxn—l - xn'all + d) (xn—l) + d)(xn): ”xn—l - xniall + ¢(xn—1)+ ¢(xn)l ”xn — Xn+1s a” + ¢(xn)+ ¢(xn+1):

o1 = X al 1+ ¢y + G + |12, — 20, al [+ )+ ()}
=max {”xn—l - xn'all + d) (xn—l) + d)(xn): ”xn - xn+1la|| + ¢(xn) +

¢ (xn+1)} (5)

And from (3) we

z? (Xp-1, %0, Tp) Tj: P)=max{||x,_1 — xp,a|| +¢ (xn—l) + ¢(xn)v len—l — X a” + ¢ (X )+
¢(xn)l Hxn — Xn+1» a“ + ¢(xn)+ ¢(xn+1)}

=max{||x,-1 — xp,al| + @ (en_g) + A, 2 — xppp,al] + PCen)+ P (ox41)}

If |[xn_1 — Xn,all +¢ 1) + d(xn) < %y — Xnyq,all + GO0+ P (Xnsa),

Then from (1) we get

WlI%n = Xnar, all + P (n) + ¢ Knr1)} < Y{lIxn — Xnar, all + P(xn) + d(Xns1)} — @10 — Xnep,al] + P(xn) + d(xnr1)},

Which gives  ¢{llx, — xn41, all + ¢ () + d(xp41)} = 0.
By definition of ¢ function we have
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||xn - xn+1'a|| + ¢(xn) + ¢(xn+1) =0.

Hence x,,; = x, and ¢(x,,1) = d(x,) =0, which is a contradiction.

Therefore,

Iy — Xps1all + dxp) + dXKns1) < %ot — xpall + @ (xpey) + P(x,), V1= 1,23,... (7)
and

ZO (o1, 20, T Ty, ) = 121 = 2,2l | + P (1) + P () (8)
and
ZO (ot X1, T Ty, @) = |11 = 2,al| + (1) + 0 ) (9)

From (1) we have

lp“xn - xn+1'a|| + ¢(xn) + ¢(xn+1) S 7*/}{“xn—l - xn'a” + ¢(Xn_1) + ¢(Xn)} (10)
_(p{“xn—l - xn'a” + ¢(xn—1) + ¢(xn)}

From (7) thesequence {|lx,_; — X, al| + $(xn_1) + P(x,)} is monotonic decreasing and bounded below and

hence convergent.
Let

1{%{|Ixn_1 —xpal| + p(xn_y) + p(x))=7
and lim 1/J{||xn_1 - xn,a|| + d(x,-_1) + ¢(xn)} =r*, where, r,r*=0.
r—00

Claim: r=0.
If r > 0, then taking lower limit asn — oo on both sides of (10), we have
i%lp{”xn — Xn+1 a” + ¢(xn) + ¢xn+1}

< lim o, — %0 all + Btu—y) + Bt} -
7{11{)10 inf {llx,_; —x,,, all + ¢(x,_y) + P (x,)}
or, liminf p{llx,_; — x,, all + ¢(x,_1) + ¢(x,)} < 0, which is a contradiction as
n—-oo
ilzg’o{"xn—l —xpal+¢Go_q) +d()}=r>0= rlll_ﬁlo inf {llx,—1 — xp,all + p(xp_1) +

¢(x)} < 0.
Therefore lim {llx,_; — x,,all + ¢ (x,_1) + d(x,,)} = 0, which gives
n—-oo

I2y—1 — Xp,all =0, and lim ¢(x,) = 0.
n—-oo

Now we prove that the sequence {x,,} is Cauchy in X.
If {x,,} is not Cauchy, then there exist € > 0 and two subsequences {x,,()} and {x;,;)} of {x,} with m(k) isthe
smallest index such that m(k) > n(k) > k, implies

1Xma0-1 = Xn@e all 2 €,
and
”xm(k)—l = Xn(k) all <e.
Now,
& < [Xmao = Xnao.all + ¢ (tmao) + ¢ (xna))
< ”xm(k) — Xmk)-1- a” + ”xm(k)—l - xn(k),a" + ¢(xm(k)) + ¢(xn(k))
< Xy = Xm@o-1,all + e + ¢(xm(k)) + ¢(xn(k))

Limiting as k — oo we have

,fifg{llxm(k) — Xn(k) all + ¢(xm(k)) + ¢(xn(k))} =é&
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From (2) we have,

ZD (xngey, Xmi T Ty d)

= max{llXngey = *maoy, all + (Xngey) + (tmao), [Xnaioy = Texnge all

D (%nii) + @ (Tixnao)s Wmaey = T X all + @ (Xmaio) + S (TiXmao ),

> U = Txmao, all + ¢ (ngo) + S (Ti%me): [1Xmao = Texnaor all +
P (Xmair) + ¢ (Tixnaio)}

= max{[|[Xnge) = Xmaiy all + S(Xni) + & (Fmo)s Xy = Xnao+1r all +
d)(xn(k)) + ¢(xn(k)+1)' 1%y = Xmao+1, all + S (Xmae) + & (Emao+1)s
%{”xn(k) — Xm@o+1, &l + ¢ (ngo)) + O (TXmaoe1), X = Xngo v, all +
P(Xmao) + ¢ (xnaos1)}

Taking limit as k — co on both sides of (15) and using (11) and (14) we have

limZ® (xn(k)' Xm(k) T;, ’1}' ¢) =&

k— oo

Also it follows from (3) that
Z® (x, (1), X iy, Tin Ty, )
= max{llxn (k) - xm(k): a” + (p(xn (k)) + (l)(xm(k)), "xn(k) - Tixn(k)» a" +
¢ (%n0) + S (Tixngo): 1Xmaey = Ti¥maiy, all + @ (Xmao) + D(Tixmao)}

= max{||Xna) = Xmaoy all + (6 () + & (X)), 1%ni) — Xnay v all +
D (xni)) + B (Xnor+1): 1Xm) = Xmaoys1r all + S (xma) + S(Xman+1)}

Taking limitas k — oo on both sides of (17) and using (11) and (14) we have
1im Z® (g, Xmgi, Tio Ty, ) = €.

Also from (1) we have,
Y{Xnw+1 — Xmaor all + P(nge1) + O Cman+1)}
< PZD (X Xmaey oo 6)} — OAZP (i), Xy T )}

Taking lower limitas k — oo on both sides of (19) we have

lim,,_, o lp{iixn(k)+1 = Xmao+1,all + ¢(xn(k)+1) + ¢(xm(k)+1}}
< rlli_({}oll’{z(l) (%ngiy Xm@ey Tor Ty ?)} - rlli_f?oi"ffﬂ{z(z) (xn(k)lxm(k)l T, T, ¢)},

[using (14) and (16) ]
Which gives lim Z® (%000 Xmiey Tir Tj» ) < 0 which is a contradiction as

1im ZP (x4, X, T Ty, 6) = €.

Hence {x,} is a Cauchy in X.

Since X is complete, there exist z € X such that lim x,, = z.
n-—-oo

Since ¢ is lower semi-continuous, ¢(z) < lim inf(x,) < lim ¢(x,) =0, which gives ¢(z) = 0.
n—-oo n-—-oo

Claim: T;(z)=2z Vi=123,..
Now from (2) we have

Z® (X Xmaiy T Ty )
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= max{llx, — z,all + ¢(x,) + $@), llx, — Tixn, all + d(x,) +¢(Tixy), ||z — Tz, a|| + ¢ (@) + ¢(7}z),%{||xn -
Tz, al| + () + ¢(Ti2)+, |z — T, al| + ¢ (2) + p(Tix)}) (20)

Taking lower as n — oo on both side of (20) we have

lim ZW(x,,2,T,,T;, ¢) = ||z — Tjz, a|| + ¢(T;2) (21)

n—-oo

Also from (3)
Z®(x,2, Ty, T, $) = max{llxy — z,all + ¢p(xn) + $(2), | xn — iz, a|| + p(xn) + d(Txn), ||2 = Tjz al| + ¢ (Tj2) + ¢(2) } (22)
Limiting as n — oo on the both side of (22) we have

lim Z®(x,,2,T,,T;,¢) = ||z — Tjz, a|| + ¢(T;2) (23)

n—oo
Now from (1), we have
I/J{”xn+1 — Tz, a” + ¢ (xny1) + ¢(T]Z)}

Y{ITxn = T2, al| + ¢(Tixy) + ¢(T;2)} (24)
< Pz z T, 8)} - olZ® (0 2 T T, )]

Taking lower limit as n — oo on both side of (24) we have
Lim Y{[lan11 — Tz, al| + Cens1) + ¢ (T2)}

=lim p{[|Tox, — Tz, al| + (Tix,) + ¢(T;2)}
< lim Y{Z0 (2, 2T, T, ¢)} — lim inf o{Z2® (2,7, T;, )}

or, lim P{|[xns1 — Tz al| + ¢(nss) + ¢(Tj2)} < Uimp{Z O (x,,2,T,, T, )} = lim inf o{Z® (x,,2,T,, T, 4)},

[As lim ZO(xn,2, T, T;, @) = ||z — Tjz, a|| + ¢(T;2)= lim {||xps1 — Tz, a|| + p(xni1) + $(T;2)}]

n-oo

which gives lim inf w{Z(Z)(xn,z, T;, 7},(1))} <0 ,whichisa contradiction.
n—-oo

[As T{irgl[){Z(Z)(xn,z, Ti,Y},d))} > 0 implies Am.}o inf w{Z(Z)(xn,z, Tl-,Tj,qb)} > 0.]
Hence T;(z)=2z Vi=123,..

Uniqueness: To prove the uniqueness, let us assume that u and z be two fixed points of T; i.e., T;z =z and
Tu = uwith ¢p(z) =0, ¢p(u) = 0suchthat z + u.
Then from (2) we have

ZV(z,u,T, Tj,¢)=max{llz —u,all + ¢(2) + Pp(w), ||z - T, a|| +¢p(u) +

BT, 2 (lu =Tl + 652 + @)
=llz —wall + $(2) + p(w)
=llz —u,all (25)

And from (3) we have

ZD(z,u, T, T, ¢)=max{llz —w,all + () + ¢(w), ||z — Tw,a|| + ¢ () +
$(Tu). [u = Tz, all + ¢(7;2) + p(w)}

=z —u,all + ¢(2) + p(w)
=llz —u, all (26)

681



Paul et al. / Cumhuriyet Sci. J., 43(4) (2022) 676-683

Also from (1) we have

Yillz —w,all + ¢(2) + pw)} = Y{||Tiz — T, al|} + p(T;2) + ¢(Tyu)}
<PZO(2u,T, T, ¢)} — p{ZP(2,u.T,T;, ¢)}
=Y{llz—u all} — ¢{llz —w all},

which gives  @{llz —u, al|l} <0, whichis a contradictionas ¢{|lz —u,all} > 0.
Hence z=wu.
This completes the proof.

Corollary 1 Let (X,|].,.||]) bea2-Banach space and {T; };2; be a sequence of self maps on X satisfying the
following conditions:
W{lTix =Ty ,al + ¢(Tx) + (T )}
<9p{Z® (xy, T,-k,T}-k,d))} —o{Z@ (x,y, Tl-k,T}k,qb)}, Vx,y €X,
YeW,¢EdD;
where,

70 (x,y,TETF, $)
= max{llx - y,all+ 600 + 90 [l = x| + 6 +9(TEx), |y = TF vl + 60

1
+ (1), Sllx-Tfy.al + oG +oTfy) + lly - Tix ol +¢0)

+ ¢)(Ti"x)}
Z® (x,y,TFTF,$)
= max{|lx —y,all + ¢(x) + p), ||x — TFx, a|| + ¢ (x)
+¢(TFx), |y —TFy.all + o) +o(TFy) }

and ¢ : X - [0,0) isalower semi continuous function.
Then there exists a unique z € X suchthat z=T;z, Vi=1,23,.. and ¢(z) = 0.

Proof: Let S; = T/. Then by Theorem 2.1, the sequence {S;}{2, have a unique fixed point, sayz € X. T}z = S;z =
z. Then ¢(z) = ¢(Tkz) = $(S;2z) = 0.

Since T}*'z=T;z, then S;(T;z) =TF(T;z), so T;z isa fixed point of S;.

By the uniqueness of the fixed pointof §;, T;z=2z, Vi=1,2,3,..

Corollary 2 Let (X,||.,.||) bea 2-Banach space and T;,T, betwo self maps on X satisfying the following
conditions:

YITx—T,y,all + (1) + (T y N} <P{ZD 0,9, T, Ty, 9} — 0{Z® (0,3, T, T, ¢)}, Vxy €X, Ppe
VY, 9 € D

where,
ZW (x,y, T, T, ,¢)

= max{llx = y,all + $() + ¢, llx = Tyx,all + $@) + $(Tyx), lly =T, y,all + (y) +
Py, 2lllx = Toy,all + GO +d(Ty) + lly — v all + () + p(T0))

Z® (x,y,Ty,T,,¢) = max{l|lx — y,all + p(x) + ¢, lIx = Tyx, all + ¢(x) + (T2, lly = Toy,all + d() + ¢(T2 ¥) 3

And ¢ : X - [0,0) is alower semi continuous function.
Then there exists a unique z € X such that T,z =T,z = z with ¢(z) =0.
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