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In this study, by using an integral identity, Holder integral inequality and modulus properties we obtain some
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new general inequalities of the Hermite-Hadamard and Bullen type for functions whose derivatives in absolute
value at certain power are arithmetically harmonically (AH) convex. In the last part of the article, applications
including arithmetic mean, geometric mean, harmonic mean, logarithmic mean and p-logarithmic mean, which

are some special means of real numbers, are given by using arithmetic harmonically convex functions.

Copyright

@O0
©2022 Faculty of Science,

Sivas Cumhuriyet University inequality.

a@huriyekadaka/@hol‘mail. com @https://orcid. 0rg/0000-0002-0304-7192

Introduction

Definition 1.1. A function R:I € R - R is said to be
convex if the inequality

R(tm + (1 —t)m) < tR(m) + (1 — t)R(m)

valid for all m,m € [ and t € [0,1]. If this inequality
reverses, then R is said to be concave on interval I # @.

Theorem 1.2. (Hermite-Hadamard integral inequality) Let
R:1 € R - R be a convex function defined on I of real
numbers and m,m € ] with m <m. The following
inequality

R(m)+R(m)

m+m 1 m
% (E0) < L [P R(x)dx < 1

2

Q)

holds.

Some of inequalities for means can be derived from
(1) for appropriate choices of R. See [1-4], for the results
of the generalization and improvement of (1).

Theorem 1.3. (Bullen’s inequality) Suppose that

R:[m, mn] - R is a convex function on [m, m]. Then we
get:

2(%57) =3[ e ()

1 m
< o mfm R(x)dx
1 m + m\ R(m) + R(m)
=2 [m( 2 ) * 2 ]
< R (m) ;r 9’1(1111)_ @

Keywords: Convex function, Arithmetic-harmonically convex function, Hermite-Hadamard and Bullen type

Definition 1.4. [5, 6] A function R:I € R — (0,0) is
said to be AH convex function if for all m,m € [ and t €
[0,1] the equality

R(m)R(m)

Rtm + (1= Om) <t T (1 = HRam

3)

holds.

For further details and proofs on both AH convex
functions and other kinds of convexity, we refer the
reader to [7-21] and references there in.

To derive main results for AH convex functions, we need
the following Lemma 1.5.

Lemma 1.5. Let R:I°c R—- R be a differentiable
function on I° where m,m € I° with m < m. If R’ €
L[a, b], then the following identity holds:

In (ml m; ]m)

n-1

m—m [ ! ,f (n—=i)m+ in
=Z_2n2 UO (1-20% (t—n

n ZO_ 0 n—i-— 1)11:1 +(i+ 1)]111) dt] "
where
I,(R, m,m) = nz_l % [f <(n—x)+m+um)
=
+f(("—i— 1)T+ (i + 1)]111)]

1 m
——f R(x)dx.
n—m)J,
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In this study, we use Holder integral inequality and (4) in order to provide inequality for functions whose first
derivatives in absolute value at certain power are AH-convex.
Throughout this paper, the following notations will be used for nonnegative numbers m, m (m > m):
1. A:= A(m, m) = me, m, m > 0, (arithmetic mean)
2.G:= G(m,m) = vVmmn, m,mn > 0, (geometric mean)
3.H:= H(m,m) = ﬁ m, m > 0, (harmonic mean)

0™ m#mn
4. L:= L(m,n) = {lnlm—lnmm’

m, m = m
1

; m, m > 0, (logarithmic mean)

( mPHl—mP+1\p

(p+1)(m_m))p. m # m,p € R\{=1,0}, m,m > 0 (p — logarithmic mean).
a, m = m
Ly, is monotonically increasing over p € R, denoting Ly = I and L_; = L. In addition,

(n—i)m + im

5. Lp:= L,(m,m) = [

An,i = An,i(m’ 1]11) = n

Main results

Theorem 2.1. Let R: 1 c (0,0) — (0, ) be a differentiable mapping on I°, and m, m € [° with m < m. If |R’| is an
AH convex function on [m, m], then the following inequalities hold:

i) If |R' (Aniee)| — | (Any)| # 0, then

n-1
- (A, )R (A, A(|R (4, (A,
I1,(R, m, m)| SE {]m ;nm R (A, [|R' (Aniv)] _In (|€R’( m+1)|,|5R’( ni)|) (5)
S 020 (19 (Aniaa)| = (R (40 )])° HOR ()] 9 (40)])
i) If |R'(Ani41)| — |R'(An;)| = 0, then )
n—
m— m
|, (R, m, m)| < Z e IR (45)|- (6)
i=0
Proof. i) Let |2R’(An,i+1)| — |€R’(An,i)| # 0. From the properties of modulus and the Lemma 1.5, we write
n-—1
m—m| ! ,
CESEY Z—nz[ f (1 -20% (tAn,i+(1—t)An,i+1)dt] @)
— 0
nl:loml —ml[?
< > U (1 -20R (tA,; + (1 - t)AnHl)dt]
L 2n 0 ’ ’
ni m—m/ !
< Z 5z U 11— 2¢||R(tAn; + (1 — t)An,i+1)|] dt.
= " 0

Since |R’| is an AH convex function on [m, m], then we have

R (4n )[R (Anis)|
(R (Anisr)| + (1 — D[R (Any)]

R (tAn; + (1 — ) Anis1)| <

If we use the inequality in (7), we obtain

n-1 _ 1 14 X ! i
< n ;nmJ- |1 _ Ztl |m (An:l)”m (Anr"+1)| dt
0 t{R (Anisa)| + (1 = D[R (40|
[1— 2t|
dt
t{R (Anisa)| + (1 = O[R (40|

n-1 o —m 1
=3 R IR (AR ()| |
0

i=0
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n—-1

1
m

fz 1-2t dt+f1 2t—1 dt] ®
o R (Apiea)| + @ - DR (4n,)] 1R (Apipd) | + (L= 0)|R (4n0)] |

—m, )
2n2 |SR (An,i)”iR (An,i+1)|

i=0

By changing variable as u = t|iR’(An,i+1)| +(1-1¢) |iR’(An,i)| in the last two integrals, it is easily seen that

1

z 1-12t 1
j dt = 7 (1% (Aniea)| = [%'(An1)|
0

9 (Anisa) [ + = O (A (1R (An)] = [ (40)])
|3 (Anien)| + [R (Ans)|

! A . ! Ay 1
I i)+ I (An ) Din == 2]

€))

jl 2t—1 dt = 1
3 U (Ane) |+ A= OB (A (90 ()] - R (400)])°

I ’ |m’(An:i+1)| + |m’(An:i)| ’ ’
X [(lER (An,i+1)| + |SR (An.i)Dln 2|§R’(An,i+1)| —(liR (An,i+1)| - |SR (Ant)D] (10)

By substituting the equalities (9) and (10) in (8), we have

n—1
nom WAIR A AGR (i)l 19 (40)])
ITl SR, ) S 2 l ]
n G 1) ZU (R (is) — [ (@) R (i) 1 (A )

i=0
which is the desired result.

i) Let |R'(Api+1)| — |R'(An;)| = 0. Then, substituting |R'(Ap;41)| = |R'(A4n;)| in the inequality (8), we obtain
n-1

]In f—
(R, m] < > = (R (A
i=0

Remark 2.2. Using the arithmetic harmonically convexity of the function |R’| in the Theorem 2.1, we get

i) If |R' (Ani1)| — | (Ang)| # 0, then

m—m[(n — i — DIR @) + (i + VIR @][(r — D)IR (m)| + IR (m)]]
2n? (R )] + [%' (m)])2
[(2n — 20 = DIR )] + (20 + DIR (m)|]?
= DR @] + (IR @[ — i — DIR @] + G + DIR @]

IL, (mmn)|<z

X In

i) If |R' (Anis1)| — |R'(An)| = 0, then

e m 90 (a9 ()|
un(%m.mls; Zn = i= DRI+ G+ DI

Corollary 2.3. By choosing n = 1 in Remark 2.2, we obtain the following inequalities:
) If |R'(m)| — [R'(m)| # 0, then

|R@m) + Rm) 1 f””m(x)dx h-m [R' (m)[|R’ (m)| n[Iﬂ?’(m)l + |R'(m)]]?
| 2 n—mJ, T2 (I®m)|+ ®@mP2 T 4R (m)]|R (m)|
~ m—mH(R (m)], |R'(mn)]) A(Iiﬁ (m)], |R"(m)])
T8 AR R @) | HIR @], R @)’

i) If |R'(m)| — |R'(m)| = 0, then
R +R 1 m
(m)2 (nn)_m_mfmm(x)dx <

Corollary 2.4. By choosing n = 2 in Remark 2.2, we get the following Bullen type inequalities:

(m)][.

i) If |R'(Api41)| — |R'(Ani)| # 0 forall i = 0,1, then
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‘1 [m(m) + R(m) . (mm + ]I]l)] 1 f[miR(x)dx‘ pom %' (m) [H(|R (m)], |® (m)|)
2 m — m

, 2
: B L G O]
AH(R (m)], IR’ m)D, IR m)[]  m—m |R' ()| H(R' (m)], R’ m)]) A[H(R' (m)], R’ m)]), |R' (m)]]

A @D ve)  ° e (BT #( EE D)

i) If |f'(Anis1)| = |f'(An)| = 0 forall i = 0,1, then

‘% [m(m) ;r R(m) L% <m + nn)] - _1 mfm:m(x)dx <

2 2 AL (% G, [ @), 3% G|

Theorem 2.5. Let R:1 c (0,0) — (0, ) be a differentiable mapping on I°, and m, m € I° with m < m. If |R'|? is an
AH convex function on [m, m] for some fixed g > 1, then the following inequalities hold:

DI R (Apis)|" = R (4n)|" # 0, then

1
|1, (R, m, m)| < nz ( )5 [ (A3 (An )| (11)
n S +1) 1 '
=0 P LA(|R (A )| |9 (Anis0)]")
i) I |R (Anir1)|* = | (4n0)|" = 0, then
n-1 n—m 1
@ ml < ) D () IR () (12)

1 1 i=0
where =+ == 1.
P q

Proof. i) Let |SR’(An,i+1) |q — |€R’(An,i) |q # 0. From the properties of modulus and the Lemma 1.5, we write

~n-ml[?
|1n(m,m,m)|sz — U |1 = 2t]|R' (tAn,; + (1 = Ap00)| | dt. (13)
=0 0

Since |R'|9 is an AH convex function on [m, m], the following inequality

%' (4,)|"|%' (A

R'(tAp; + (1 — )An1)|" < 14
| (t ni ( t) n,L+1)| t|€R’(An,i+1)|q T (1 _ t)|§R’(An,i)|q ( )
holds. If we use the inequality in (13) and consider the Holder integral inequality, we get
Caom(p s :
|1, (R, m, m)| sz - ( j I1—2tlpdt> ( f If’(tAn.i+(1—t)An.z+1)|th)
i=0 0 0
1
n-1 1 ! qy q q
< ]IB—]II[]]( 1 )E(j‘l |f (An,i) |f (An,i+1)| dt) (15)
- 2 / q ' q
2 Y\t ()| + A -0 (An)
- 1
N rom 1y [P Al (Anisd)|
= (16)
: 2n? \p+1 1 , a i, a
=0 La(|f (A 1f (Anis)] )
where
' 1—2t|Pdt = L
| n-arpar =
J, — e = (9 (4], 19 (A )]
0o t|R (Anis)|” + @ = 0% (4n)|
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ii) Let |€R’(An,i+1)|q - |€R’(An,i)|q = 0. Then, substituting |‘.R’(An‘l-+1)|q = |€R’(An,i)|q in the inequality (15), we have

n-1 1
m— m

G m,m)] < ) W(p ) 19 ()]
0

i=

Remark 2.6. By using the arithmetic harmonically convexity of the function |R’|? in (16), we get the following for
! q ! q
| (Anisa) | = R (An)]" # 0,

Q=

- 1 In[(n = DIR' (M)]? + iR’ (m)|[7]

n—-m/ 1 \»,_, , —In[(n—i— DR (m)|?+ (@ + VIR (m)]9]
|In(€Rt m, H’Il)l < Z 2 <m) |m (An,l)”SR (An,i+1)| n |€R’(Hﬂ)|q _ |9¢{,(m)|q

i=0

Corollary 2.7. By choosing n = 1 in Remark 2.6, we obtain the following inequalities

) If |R'(m) |7 — |R'(m)[|? # 0, then

1
R(m) + R(m) 1 m n—m,; 1 \» G*(|R (m)],|R (m)])
| 2 _M—HHBJm Redx < 2 (P+ 1) L%(lm,(m)lq |§R’(1m)|q).
i) If |R' (m) |7 — |R'(m)|? = 0, then s
R(m) + R(m) 1 m —m/ 1
‘ e | weoar] <P () el

Corollary 2.8. By choosing n = 2 in Remark 2.6, we obtain the following Bullen type inequalities:

D) IF R (Agis1)|" = |R'(42)|" # 0 forall i = 0,1, then

‘l[m(m) +9(@m) | n(™ + ““)] _ ! fniR(x)dx

2 n—m)J

nom >% (e pr (B3 5)]) | o (b (B 5] ) |
8 p+1 <|§R (m+ml)| Iiﬁ'(m)l") L4(|ER (m+1m>| |§R’(nn)|q>

i) I | £ (Agie)|* = |/ (A2)|" = 0 forall i = 0,1, then

1

m — m 1 \» m +
S e Rl
4 p+1 2

‘l [m(m) ; LG R (m;’ m)] ! f]: R(x)dx

m — m

%) i),

Applications for special means

R(x) =xP,x >0 is an AH convex function for p € (—1,0) [5]. Using this function we have the following
propositions:

Proposition 3.1. Let 0 < a < b and p € (—1,0). Then we get:

n—

Z ()™ (i)™ - B3 m)| <

i=0

”Z‘l{rm—m (40 (Anisn)” | A(Anesn)", (400)")
2 [ty = @ T (G (a0

i=0

p+1
Proof. For p € (—1,0), the function f(x) = ,x >0 is AH convex. Therefore, the assertion follows from (5) in
p+1

Theorem 2.1, for R: (0,0) - R, R(x) =

p+1’
Corollary 3.2. If we take n = 1 in Proposition 3.1, we get:
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|A ((A1,o)p+1’ (Al,l)p+1) - LZﬁ (m, 11‘11)| <

that is,

1

-t T |A(ap+1' bp+1) _ LP+1

p+1

m — m (Al‘o)p(Al'l)p

WA ((411)",(410)")

2 () - (aro)] H (A1) (400)")

n-—

m mPmn? A(mP, mP)

(m,m)| < —

[m? — P2 H(mP, nP)

Proposition 3.3. Letm, m € (0, ) withm < m, g > 1 and m € (—1,0). Then, we have:

n—-1

q 1 _a_ _q_ T
|2 1A (a7 (de)™7) = L8 (1)

Proof. The assertion follows from (11) in Theorem 2.5. Let R(x) = mLJrqx a

convex on (0, ) and the result follows from Theorem

Corollary 3.4. Taking n = 1 in Proposition 3.3, we get:

q 4 4\ T4
A (am"q, bm+q) —LL (mm)| <
qg+m 7+1
(5]
Conclusion
(6]

2.5.

In this paper, by using the definition of arithmetically-
harmonically functions and some simple mathematical

inequalities, we obtained some new inequalities related

to Hermite-Hadamard and Bullen type.
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