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ABSTRACT

The object of the upcoming article is to characterize paracontact metric manifolds admitting m-
quasi Einstein metric. First we establish that if the metric g in a K-paracontact manifold is the
m-quasi Einstein metric, then the manifold is of constant scalar curvature. Furthermore, we classify
(k, µ)-paracontact metric manifolds whose metric is m-quasi Einstein metric. Finally, we construct
a non-trivial example of such a manifold.
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1. Introduction

Kaneyuki and Williams [14] introduced a new subclass of contact metric manifolds called paracontact metric
manifolds, in 1985. Several authors researched and generalized the manifold after that. Many geometers
considered the manifold to be an interesting topic (see, [1], [2], [9], [10], [11],[15]and references therein).
Many relationships exist between paracontact geometry and various disciplines of mathematics, mathematical
physics, and material sciences. It became popular among notable geometers due to its wide range of uses.

The study of Einstein metric in Riemannian and contact geometry play a significant role in recent geometrical
research. Several generalizations of Einstein manifolds have recently been researched, including Ricci solitons,
gradient Ricci solitons, generalized quasi-Einstein solitons, and so on. Catino [8] introduced the fascinating
concept of generalized quasi-Einstein metric for investigating harmonic Weyl tensor, which is defined as
follows (see [8]):

If a C∞ manifold Mn, n > 2, admits a Riemannian metric g satisfying

S +∇2δ = αdδ ⊗ dδ + γg,

for some smooth functions α, δ and γ, is called a generalized quasi-Einstein metric. Here, S denotes the Ricci
tensor, d indicates the exterior derivative of g, ∇2 being the Hessian operator and ⊗ is the tensor product,
respectively. If α = 1

m and γ ∈ R, where m is an integer, then the above metric reduces to a m-quasi Einstein
metric. Analogous to the definition in [13], a Riemannian metric g is called a m-quasi Einstein metric if there
exists a smooth function δ : Mn → R such that

S +∇2δ − 1

m
dδ ⊗ dδ = γg, (1.1)

where γ is a constant.
The m-Bakry-Emery Ricci tensor, which is proportional to the metric g and γ = constant [17], is expressed

as S +∇2δ − 1
mdδ ⊗ dδ. Here, g, the Riemannian metric with constant potential function δ is trivial and

therefore, the manifold becomes an Einstein manifold. Moreover, the previous equation produces the gradient
Ricci soliton for m = ∞. For m = 1, m-quasi Einstein metrics restore static metrics. These metrics have been
thoroughly examined in general relativity.

Received : 07–04–2022, Accepted : 22–05–2022
* Corresponding author

 https://doi.org/10.36890/iejg.1100147\ 


K.De, U.C.De & F. Mofarreh

In the year 2011, Case et al. [6] studied quasi-Einstein metrics and establish many rigidity results. In this
connection, we may mention the study of Case [5], where some non-existence outcomes were procured for
quasi-Einstein metric. Further, for a complete K-contact manifold, Ghosh [12] established that the manifold is
compact, Einstein, and Sasakian. Chen [7] has recently investigated quasi-Einstein structures in the setting of
almost Cosymplectic manifolds.

The above mentioned works inspire us to investigate a m-quasi Einstein metric in paracontact metric
manifolds. Especially, we characterize the m-quasi Einstein metric on K-paracontact metric manifolds and
(k, µ) -paracontact metric manifolds. Exactly, we prove the subsequent results:

Theorem 1.1. If the metric g is the m-quasi Einstein metric in a K-paracontact metric manifolds (M2n+1, g), then the
manifold is of constant scalar curvature.

Theorem 1.2. Let M2n+1 be a (k, µ)-paracontact metric manifolds with k ̸= −1. If the metric g is a m-quasi Einstein
metric, then either the manifold is locally isometric to a product of a flat manifold of dimension (n+ 1) and a manifold of
dimension n with negative constant curvature -4 or M2n+1 is Einstein.

Theorem 1.3. If the metric g in a (k, µ)-paracontact metric manifolds (M3, g) is the m-quasi Einstein metric, then either
the scalar curvature is constant or the potential function δ remains invariant under the Reeb vector field ξ.

2. Preliminaries

If a C∞ manifold M2n+1 is endowed with a Reeb vector field ξ , a (1, 1)tensor ϕ, and a 1-form η fulfilling the
following conditions

ϕ2 = −I + η ⊗ ξ, (2.1)

ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (2.2)

then it has an almost paracontact metric structure (ϕ, ξ, η) (see [4], [14] and the tensor field ϕ induces an almost
paracomplex structure on each fibre of D = ker η.

Furthermore, if a semi-Riemannian metric g obeys

g(ξ, E) = η(E), g(E,F ) + g(ϕE, ϕF ) = η(E)η(F ), (2.3)

then (ϕ, ξ, η, g) is claimed to be an almost paracontact metric-structure and M an almost paracontact metric
manifolds [16], for any vector fields E and F ∈ χ(M), where χ(M) indicates the collection of all C∞ vector
fields of M .

The Nijenhuis torsion is defined by

[ϕ, ϕ](E,F ) = [ϕE, ϕF ] + ϕ2[E,F ]− ϕ[E, ϕF ]− ϕ[ϕE,F ]

for any E, F ∈ χ(M). If Nϕ = [ϕ, ϕ]− 2dη ⊗ ξ vanishes, then the almost paracontact metric manifolds is called
normal. Φ(E,F ) = g(E, ϕF ) is the fundamental 2-form of the almost paracontact metric manifolds and M
equipped with structure (ϕ, ξ, η, g) is known as a paracontact metric manifolds if dη(E,F ) = g(E, ϕF ).

Two trace-free operator h = 1
2£ξϕ and l = R(., ξ)ξ which are symmetric in a paracontact metric manifolds

satisfies hϕ = −ϕh, hξ = 0 = lξ, Trh = Trhϕ = 0 and

∇Eξ = −ϕE + ϕhE, ∇ξh = −ϕ+ ϕh2 − ϕl, (2.4)

for all E ∈ χ(M). It should be noticed that ξ being Killing is identical to the condition h = 0, and then
the manifold becomes a K-paracontact metric manifolds. A para-Sasakian manifold is one that satisfies the
normality criterion in a paracontact metric manifolds. All para-Sasakian manifold is necessarily K-paracontact
metric manifolds whereas the converse is not always true, but it holds in three dimension [2].

In a K-paracontact metric manifolds the following equations hold :

R(E, ξ)ξ = −E + η(E)ξ, (2.5)

∇Eξ = −ϕE, (2.6)

Qξ = −2nξ (2.7)
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(∇Eϕ)F = R(ξ, E)F, (2.8)

(∇ϕEϕ)ϕF − (∇Eϕ)F = 2g(E,F )ξ − {E + η(E)ξ}η(F ), (2.9)

for any E, F ∈ χ(M), where Ricci operator Q of M is given by g(QE,F ) = S(E,F ).
In [4], the authors presented the idea of (k, µ)-nullity distribution in a paracontact metric manifolds, where

k , µ ∈ R are constants. N(k, µ) is the (k, µ)-nullity distribution of M , which is defined by

N(k, µ) : p → Np(k, µ) = {Z ∈ TpM | R(E,F )Z = (µh+ kI)(g(F,Z)E − g(E,Z)F )},

for all vector fields E, F ∈ χ(M).

Definition 2.1. If R, the curvature tensor in a paracontact metric manifolds satisfies

R(E,F )ξ = k(η(F )E − η(E)F ) + µ(η(F )hE − η(E)hF ), (2.10)

then for any E,F ∈ χ(M), it is called a (k, µ)-paracontact metric manifolds. A (k, µ)-paracontact metric
manifolds is said to be proper if k ̸= 0 and µ ̸= 0.

It’s worth noting [3] that whereas k ≤ 1 is required in the contact case, there is no similar requirement for k
in the paracontact case. Furthermore, whereas k = 1 implies that the manifold is Sasakian in the contact case,
k = −1 does not imply that the manifold is para-Sasakian in the paracontact case.

Presently we recollect some lemmas:

Lemma 2.1. [4] The Ricci operator Q is written by

QE =[2− 2n+ nµ]E − [2− 2n− µ]hE

− [2− 2n− 2nk + nµ)]η(E)ξ,
(2.11)

for a (k, µ)-paracontact metric manifolds M2n+1 with k ̸= −1.

Lemma 2.2. [18, Theorem3.3] If a paracontact metric manifolds (M2n+1, g) n > 1 obeys R(E,F )ξ = 0, then M2n+1, is
locally isometric to a product of a flat manifold of dimension (n+ 1) and a manifold of dimension n with negative constant
curvature -4.

Lemma 2.3. [12, Lemma 3.1 ] Every m-quasi Einstein metric satisfies the following:

R(E,F )Dδ = (∇FQ)E − (∇EQ)F +
γ

m
{(Fδ)E − (Eδ)F}

+
1

m
{(Eδ)QF − (Fδ)QE}, (2.12)

for all E, F ∈ χ(M).

Zamkovoi [18] proved the following proposition :
Proposition 2.1. In a para-Sasakian manifold M2n+1, we have

S(E, ϕF ) = −S(ϕE,F )− g(E, ϕF ). (2.13)

3. Proof of the main Theorems

3.1. Proof of Theorem 1.1

Here we first write the subsequent Lemma without proof (Since, in a K-paracontact metric manifolds ξ is
Killing, the result can be obtained using (2.6)):

Lemma 3.1. For a K-paracontact metric manifolds (M2n+1, g), we have

∇ξQ = Qϕ− ϕQ. (3.1)
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Hence, executing the inner product of (2.12) with the Reeb vector field ξ and using the above Lemma and
(2.8) we obtain

−g((∇Fϕ)E,Dδ) = g(ϕQF,E) + 2ng(ϕF,E) +
ξδ

m
g(QF,E)

− γ

m
(ξδ)g(E,F ) +

γ + 2n

m
(Fδ)η(E). (3.2)

Using (2.9) in (3.2), we get

2g(E,F )(ξδ)− [(Fδ) + η(F )(ξδ)]η(E)

= g((ϕQ+Qϕ)F,E) + 4ng(ϕF,E) +
ξδ

m
g(QF + ϕQϕF,E)

−2
γ

m
(ξδ)g(E,F ) +

γ + 2n

m
(Fδ)η(E) +

γ

m
(ξδ)η(E)η(F ). (3.3)

Anti-symmetrizing the previous equation gives

(Eδ)η(F )− (Fδ)η(E)

= 2g((ϕQ+Qϕ)F,E) + 8ng(ϕF,E)

+
γ + 2n

m
[(Fδ)η(E)− (Eδ)η(F )]. (3.4)

Replacing F by ξ and using Proposition 2.1 the foregoing equation provides

{γ + 2n

m
+ 1}[(ξδ)η(E)− (Eδ)] = 0. (3.5)

This shows that either γ + 2n+m ̸= 0 or γ + 2n+m = 0.
Case (i): If γ + 2n+m ̸= 0, then we have (Eδ) = (ξδ)η(E). From this we have dδ = (ξδ)η, where d indicates

the exterior differentiation. Again, exterior derivative of the last equation produces d2δ = d(ξδ) ∧ η + (ξδ)dη.
Applying Poincare lemma d2 ≡0 in the previous equation and then taking wedge product with η we get
(ξδ)η ∧ dη = 0. Therefore, ξδ = 0, since η ∧ dη ̸= 0 in M2n+1. Thus we conclude that dδ = 0 and hence δ is
constant. Then from equation (1.1) we infer that M2n+1 is Einstein which implies that the scalar curvature
is constant.

Case (ii): Now we consider the case γ + 2n+m = 0. Equation (1.1) can be written as

∇EDδ +QE =
1

m
(Eδ)Dδ + γE. (3.6)

Using (2.7) and (3.6), we can easily get

g(∇ξDδ, ξ) = 2n+
(ξδ)2

m
+ γ. (3.7)

Again, taking covariant differentiation of g(ξ,Dδ) = (ξδ) along ξ, we easily infer g(∇ξDδ, ξ) = ξ(ξδ), where we
have used ∇ξξ = 0. Therefore

ξ(ξδ) = 2n+
(ξδ)2

m
+ γ. (3.8)

Now contracting (2.12) over E, we get

S(F,Dδ) =
Fr

2
+

2nγ

m
(Fδ) +

1

m
((QF )δ)− r

m
(Fδ). (3.9)

Replacing F = ξ in the foregoing equation, we obtain

(2nγ + 2nm− 2n− r)(ξδ) = 0. (3.10)

Applying γ = −(m+ 2n), the previous equation reduces to [r + 2n(2n+ 1)](ξδ) = 0. If (ξδ) = 0, then from (3.8)
we have γ = −2n, which implies m = 0, a contradiction. Hence, we have r = −2n(2n+ 1) = constant.

Hence, the proof is finished.
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3.2. Proof of Theorem 1.2

First, from the equation (2.11) we obtain Qξ = 2nkξ. Using (2.4) and differentiating Qξ = 2nkξ along the
vector field E, we infer

(∇EQ)ξ = Q(ϕ− ϕh)E − 2nk(ϕ− ϕh)E. (3.11)

Executing inner product operation of (2.12) and applying Qξ = 2nkξ, we lead

g(R(E,F )Dδ, ξ) = g((∇FQ)E − (∇EQ)F, ξ)

+
γ − 2nk

m
{(Fδ)η(E)− (Eδ)η(F )}. (3.12)

Again, from (2.10), we get

g(R(E,F )Dδ, ξ) = −k{η(F )(Eδ)− η(E)(Fδ)} − µ{η(F )(hEδ)− η(E)(hFδ)}. (3.13)

Combining equation (3.12) and (3.13) reveal that

−k{η(F )(Eδ)− η(E)(Fδ)} − µ{η(F )((hE)δ)− η(E)((hF )δ)}
= g((∇FQ)E − (∇EQ)F, ξ)

+
γ − 2nk

m
{(Fδ)η(E)− (Eδ)η(F )}. (3.14)

Now from (3.11), we can easily get g((∇FQ)ξ, ξ) = 0 and g((∇ξQ)F, ξ) = 0. Using this and replacing F by ξ in
the preceding equation, we obtain

hEδ =
km− γ + 2nk

mµ
[η(E)(ξδ)− (Eδ)]. (3.15)

Differentiating the foregoing equation and applying (2.4), (3.6) and (3.15), we infer

(∇Eh)Dδ − hQE +
k1
m

(Eδ)(ξδ)ξ + γhE

= k1{(−ϕE + ϕhE)− γE +QE + (E(ξδ))ξ}, (3.16)

where k1 = km−γ+2nk
mµ = constant. Also, equation (3.6) reveals that

ξ(ξδ) + 2nk − (ξδ)2

m
− γ = 0, (3.17)

where we have used Qξ = 2nkξ.
Parallelly, from (2.10) we have l = kϕ2 + µh. Using this and h2 = (k + 1)ϕ2 in (2.4), we obtain ∇ξh = −µhϕ.

Putting E by ξ in (3.16) and using (3.17), Qξ = 2nkξ, ∇ξh = −µhϕ it readily follows µhDδ = 0. This shows that
either µ = 0 or µ ̸= 0.

Case (i): In this case µ = 0. Replacing E, F by ϕE and ϕF respectively in (3.12) and using (2.11), h2 = (k + 1)ϕ2

we easily get k = µ(n+1)
2−µ . Applying µ = 0, it readily follows k = 0. If k = 0, then the equation (2.10) yields

R(E,F )ξ = 0. Therefore, from Lemma 2.2 we state that M2n+1, n > 1 is locally isometric to a product of a
flat manifold of dimension (n+ 1) and a manifold of dimension n with negative constant curvature -4.

Case (ii): If µ ̸= 0, then hDδ = 0. Now, operating h and using h2 = (k + 1)ϕ2, we have (k + 1)ϕ2Dδ = 0. Since
k ̸= −1, we obtain dδ = (ξδ)ξ and hence δ is constant, following the proof of the previous theorem (in case (i)).
Hence the manifold is Einstein.

Thus the proof is completed.

3.3. Proof of Theorem 1.3

Let us consider M3, a (k, µ)-paracontact metric manifolds of dimension 3. In M3, the subsequent relations
hold [2]:

(∇ξh)E = µh(ϕE), (3.18)

(∇Eη)F = −g(ϕE,F ) + g(ϕhE,F ), (3.19)

ϕξ = 2kξ. (3.20)
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It is well known that in a Riemannian or a semi-Riemannian manifold of dimension 3, the curvature tensor
takes the form

R(E,F )Z = g(F,Z)QE − g(E,Z)QF + S(F,Z)E − S(E,Z)F

−r

2
[g(F,Z)E − g(E,Z)F ]. (3.21)

Replacing Z by ξ in (3.21) and using (2.10) we get

k(η(F )E − η(E)F ) + µ(η(F )hE − η(E)hF )

= η(F )QE − η(E)QF + (2k − r

2
)[η(F )E − η(E)F ]. (3.22)

Putting F = ξ in (3.22) and applying (3.20) and hξ = 0, we obtain

QE = (
r

2
− k)E + (3k − r

2
)η(E)ξ + µhE, (3.23)

that is,
S(E,F ) = (

r

2
− k)g(E,F ) + (3k − r

2
)η(E)η(F ) + µg(hE,F ). (3.24)

Now we establish the following lemma:

Lemma 3.2. In M3(η, ξ, ϕ, g), we have

ξr = 0 (3.25)

Proof. Differentiating (3.23) covariantly in the direction of E and using (2.4) and (3.19), we infer

(∇EQ)F =
dr(E)

2
(F − η(F )ξ) (3.26)

(−r

2
+ 3k)[−g(ϕE,F )ξ + g(ϕhE,F )ξ

−η(F )ϕE + η(F )ϕhE] + µ(∇Eh)F.

From (3.26), we can write

g((∇EQ)F,Z) =
dr(E)

2
[g(F,Z)− η(F )η(Z)]

(−r

2
+ 3k)[−g(ϕE,F )η(Z) + g(ϕhE,F )η(Z)

−η(F )g(ϕE,Z) + η(F )g(ϕhE,Z)] + µg((∇Eh)F,Z).

Putting E = Z = ei in the foregoing equation and summing over i (1 ≤ i ≤ 2n+ 1) and using divQ = 1
2grad r

and (3.18), where {ei} is the orthonormal basis for the tangent space of M , we get ξr = 0, the required result.

Now contracting (2.12) over the vector field E, we obtain

S(F,Dδ) =
Fr

2
+

2γ

m
(Fδ) +

1

m
((QF )δ)− r

m
(Fδ). (3.27)

Again, from (3.24) we infer that

S(F,Dδ) = (
r

2
− k)(Fδ) + (3k − r

2
)η(F )(ξδ) + µ((hF )δ). (3.28)

Combining the previous two equations and putting F = ξ reveal that

(r + 2mk − 2k − 2γ)(ξδ) = 0. (3.29)
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This shows that either r = 2k(1−m) + 2γ or r ̸= 2k(1−m) + 2γ.
Case (i): If r = 2k(1−m) + 2γ, then M3 is of constant scalar curvature, since k,m, γ are constant.
Case (ii): If r ̸= 2k(1−m) + 2γ, then ξδ = 0.
This finishes the proof.
The m-quasi Einstein metric becomes gradient Ricci soliton when m = ∞, as we know. By putting m = ∞

into (3.27), we get

S(F,Dδ) =
Fr

2
. (3.30)

Combining the last equation with the equation (3.28) and replacing F = ξ infer that

k(ξδ) = 0. (3.31)

Hence, we state:

Corollary 3.1. If in a proper (k, µ)-paracontact metric manifolds (M3, g), the metric g be the gradient Ricci soliton, then
the potential function δ remains invariant under the Reeb vector field ξ.

4. Example of a proper (k, µ)-paracontact manifold

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3}. Let the three linearly independent vector fields
e1, e2 and e3 obeying

[e1, e2] = −2e3 , [e1, e3] = 2e2

and
[e2, e3] = 2e1,

generates M .
Let g be the semi-Riemannian metric defined by

g(e1, e1) = 1, g(e2, e2) = −1, g(e3, e3) = 1,

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Here, the 1-form η is defined by η(E) = g(E, e1) for any vector field E ∈ χ(M).
Let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = 0, ϕ(e2) = e3, ϕ(e3) = e2.

Then using the linearity of ϕ and g we obtain

η(e1) = 1,

ϕ2E = E − η(E)e1,

g(ϕE, ϕF ) = −g(E,F ) + η(E)η(F )

for any vector fields E,F ∈ χ(M).
Then for e1 = ξ , the structure (η, ξ, ϕ, g) defines a paracontact structure on M .
Let e1 = ξ and making use of Koszul’s formula, we calculate the following

∇e1e1 = 0, ∇e1e2 = −e3, ∇e1e3 = −e2,

∇e2e1 = e3, ∇e2e2 = 0, ∇e2e3 = −e1,

∇e3e1 = −3e2, ∇e3e2 = −3e1, ∇e3e3 = 0. (4.1)
Applying (2.4) from the above we get he1 = 0, he2 = 2e2 and he3 = −2e3.

With the help of the (4.1) it is simple to verify that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −7e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = −7e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

Using (2.10), from the above we easily infer that the constructed manifold is a (k, µ)-paracontact manifold
where k = 3 and µ = 2.
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