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Model Based Demand Order Estimation by Using Optimal Architecture Artificial Neural 

Network with Metaheuristic Optimizations  

Özlem IMİK SİMŞEK1*, Barış Baykant ALAGÖZ2 

ABSTRACT: With the increase of e-commerce volumes in recent years, it is useful to estimate daily 

demand order numbers in order to improve the demand forecasts, production-distribution planning and 

sales services. In this manner, data-driven modeling and machine learning tools have been preferred to 

enhance demand order predictions, timely delivery, incomes and customer satisfaction in electronic 

trading because real-time data collection is possible in e-commerce platforms. Artificial Neural 

Networks (ANNs) are widely used for data-driven modeling and prediction problems. Since affecting 

the approximation performance of neural network function, the modeling performance of ANNs 

strongly depends on the architecture of neural networks, and architectural optimization of ANN 

models has become a main topic in the neuroevolution field. This study presents an architecture 

optimization method that implements Particle Swarm Optimization (PSO) and Differential Evolution 

(DE) algorithms to optimize ANN model architecture for the estimation of total demand order numbers 

from the sparse demand order data. In this approach, PSO and DE algorithm only optimizes neural 

model architecture according to an effective network search policy and the training of ANN models is 

carried out by using backpropagation algorithm. This neural architecture model optimization approach 

considers generalization of data, reducing neuron and training epoch numbers and it can yield an 

optimal architecture data-driven neural model for estimation of the daily total orders. In the 

experimental study, optimal architecture ANN models are obtained according to the daily order 

forecasting dataset. 

Keywords: Neural network model, hyper-parameter optimization, orders demand forecasting, particle 

swarm optimization, differential evolution 
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INTRODUCTION 

Today, with the increase of e-commerce and global trading, the uncertainty in demand and 

distribution side increases, and this uncertainty makes planning of production and logistic stages 

difficult and negatively affects trading. Also, there is a growing tendency in the diversity of the 

demands. Such diversity and increase in uncertainty in the demand orders increase workload of the 

companies due to the poor planning and latencies in order responses. Particularly, uncertainty in order 

requests complicates management of orders and decision making processes in logistics. Consistent 

estimation of order volumes can contribute to production, transportation and distribution planning of 

companies and support efficiency in decision-making stages. These improvements can serve for 

producer and consumer satisfaction.  

Artificial Neural Networks (ANNs) have been widely used in prediction problems (Aminian and 

Shahhosseini, 2008). Estimation performance of ANNs depends on hyper-parameters such as network 

architecture, training algorithms, type of activation function (Carvalho et al., 2011; Akay et al., 2021). 

Network architectures were commonly selected by trial and error method and it can negatively affect 

the training and test performance (Kapanova et al., 2018). Optimal ANN architecture also depends on 

the content of the training datasets. Deep learning and deep neural network are very advantageous 

when learning high-level features and it is very effective in feature extraction in large and difficult 

dataset (Pacal et al., 2020), and applications of deep learning algorithms in detection and classification 

systems such as in medical systems (Pacal and Karaboga, 2021; Pacal ae al., 2022 ), remote sensing 

systems (Jeppesen et al., 2019), production and quality monitoring systems (Zhao et al., 2021) have 

been demonstrated. Deep neural networks can be effectively utilized in many areas. Size of training 

data can significantly affect accuracy of classification performance of Convolutional Neural Networks 

(Cho et al., 2015). Depth of neural network and hyper-parameters should be optimal according to 

dataset content (Kaya et al.,2019; Akay et al., 2021), an optimal network depth and neural complexity 

is useful to improve the learning performance of the neural networks according to datasets Use of a 

metaheuristic method for the architecture optimization of ANNs enables automatic-determination of 

optimal neural architectures according to the dataset (Carvalho et al., 2011; Kapanova et al., 2018; 

Ettaouil and Ghanou, 2009; Akay et al., 2021) An up-to-date review study for optimizing deep 

learning models by using metaheuristics has been presented by Akay et al.  

Metaheuristic methods were also used in intelligent problem solving (Caserta and Voß, 2009). In 

recent years, it has been seen that data mining problems can be considered as optimization problems 

and metaheuristic methods can be used to solve them (Dhaenens and Jourdan, 2022). Combining ANN 

models with metaheuristic optimization allows intelligent problem solving based on data-driven 

learning models as shown in Figure 1. In this scheme, design of optimal ANN models requires 

neuroevolution (Floreano et al., 2008) according to content of data flow and metaheuristic 

optimization can effectively optimize configuration of ANN and automatically improve data-driven 

modeling skills of ANN models.  
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Figure 1. A block diagram for metaheuristic data analysis based on data-driven learning models for intelligent problem solving 

The first studies began with the first simple artificial neuron model proposed in 1943 by 

physiologist Warren McCulloch and mathematician Walter Pitts to mimic the functioning of biological 

neurons (McCulloch and Pitts, 2008). In 1961, Rosen Blatt came up with the idea of a backpropagation 

algorithm for training multilayer networks (Widrow and Lehr, 1990). In this way, the use of multi-

layer artificial neural networks in every field has become widespread in many areas in recent years. 

Artificial neural networks have evolved into a computational intelligence tool used in data science 

classification, identification, modeling and prediction problems (Çevik et al., 2014), applied to 

problems ranging from speech recognition to protein secondary structure prediction, classification of 

cancers and gene prediction (Krogh, 2008). If an example of application areas in this subject is given, 

in control (Hasanien, 2011), signal processing (Vijaya et al., 1998), prediction problems (Aminian and 

Shahhosseini, 2008), image processing (Egmont-Petersen et al., 2002)… etc. 

Metaheuristic algorithms can develop the solution by using trial and error techniques in order to 

solve complex and highly nonlinear optimization problems and they are widely used computation tools 

in applications such as adjusting system parameters to their optimal values according to simulation 

results or experimental data (Liu et al., 2021; Birs et al., 2020). Among population-based metaheuristic 

methods, Particle Swarm Optimization (PSO) has been used in a wide variety of applications. In 

current study, performance improvements of the PSO algorithm are demonstrated for architectural 

optimization of ANNs for data-driven modeling. Since PSO can provide satisfactory results in 

multimodal problems, there are a wide variety of areas where PSO were used (Poli et al., 2007). At the 

same time, another metaheuristic algorithm, which is tested in this study, is the Differential Evolution 

(DE) algorithm. The DE algorithm is an effective evolutionary search algorithm for optimization 

problems (Slowik and Bialko, 2008). The DE algorithm is preferred due to its potential in searching 

the global minimum of a multimodal function with few parameters to adjust in the algorithm compared 

to Genetic Algorithm (GA) (Landa Becerra and Coello, 2006). PSO and DE algorithms have been used 

to improve performance of ANNs. In the architecture optimization problem, two PSO algorithms have 

been used hierarchically for both weight coefficient and architecture optimization (Carvalho and 

Ludermir, 2008). In another study, the PSO algorithm was used for the weight and structure 

optimization of three layer ANNs (Yu et al., 2008). On the other hand, the performance of the DE 

algorithm was demonstrated for the training of radial based neural networks (Oh et al., 2012), feed-

forward neural networks (Ilonen et al., 2003). Recently, hyperparameters of Long Short-term Memory 

(LSTM) networks were optimized to automate LSTM configuration such as hidden neuron numbers 

and batch size (Nakisa et al., 2018).  Nakisa et al concluded that the DE and PSO algorithms could 
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improve the average accuracy of the optimized LSTM network in emotion classification problems. On 

the other hand, it is known a fact that when the number of optimization parameters highly increases, 

search performances of metaheuristic methods severely decrease. Therefore, the training of large ANN 

networks cannot be effectively performed by using metaheuristic methods so that there are a large 

number of weight coefficients to be optimized. The metaheuristic methods can be rather effective in 

architectural optimization of ANN models because the architectural optimization requires optimization 

of quite less parameters compared to weight coefficient numbers in training tasks of neural networks. 

In this study, architectural optimizations of ANN estimation models are performed using PSO 

and DE algorithms by employing Carvalho et al.'s neural architecture objectives (Carvalho et al., 

2011). Carvalho et al.'s objectives aim the improvement of generalization, reducing neuron numbers in 

the network and number of training epochs for faster training of networks. The training and 

architectural optimization are performed separately by using different optimization techniques. This 

hybrid approach allows benefiting from advantages of relevant optimization algorithms in order to 

improve total daily demand order estimation results. In this hybrid optimization, the training of optimal 

ANNs is only performed by using Levenberg-Marquardt (LM) backpropagation method. Thus, 

training tasks are conducted separately by using an effective training algorithm in order to obtain an 

improved estimation model. Architectural optimization is only performed by using metaheuristic 

algorithms. This objective function was previously improved for the self-configuring of ANNs by 

using a multi-particle collision algorithm in (Anochi et al., 2016; Badr et al., 2019). In the current 

study, Carvalho et al.'s objective is enhanced to perform more effective heuristic search of neural 

architecture parameters. We applied the minimum value search policy on the Carvalho et al.'s objective 

by using several repeated training trails of the candidate neural architecture. In the experimental study, 

we used daily demand forecasting orders data set (UCI, 2007) which involves 60-day order data from a 

real database of a Brazilian company of large logistics. The mean square error performance of all ANN 

models is used to evaluate the architectural performance of ANNs in the PSO and DE optimization 

process. We observed satisfactory performance in daily order demand by using this architecture 

optimization approach. The results obtained were compared with other methods obtained from 

previous studies. 

MATERIALS AND METHODS 

Introduction of Particle Swarm Optimization Algorithm 

Particle swarm optimization has inspired the swarm behavior of living things. It is a population-

based metaheuristic optimization algorithm that employs the searching mechanism that aims to find 

the best solution by navigating swarm individuals representing the solution in the search space 

(Eberhart and Kennedy, 1995; Shi and Eberhart, 1998; Wang et al., 2018). One of the main advantages 

of PSO is that it uses collective intelligence that is called swarm intelligence (Eberhart and Kennedy, 

1995; Wang et al., 2018; Imik and Alagoz, 2017). The fact that the number of parameters that need to 

be adjusted according to the problem is relatively low compared to other classical metaheuristic 

methods provides ease of use (Eberhart and Kennedy, 1995). The PSO models the motion of particles 

representing the candidate solution towards the best solutions in the search space by including social 

swarm interactions (Wang et al., 2018; Clerc and Kennedy, 2002). The PSO algorithm was effectively 

used in several engineering problems (Çevik et al., 2014; Imik and Alagoz, 2017; İmik Şimşek, 2018). 

At the start of the PSO algorithm, the particles are randomly distributed over the search space 

(del Valle et al., 2008). In each iteration, the fitness value of each particle representing candidate 
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solutions is calculated. The local and global best particles of the swarm are determined according to 

the fitness value. In the next iteration, the motion of each particle is updated considering the positions 

of the obtained local and global best particle (Wang et al., 2018). This process continues until the last 

iteration is completed. Each particle tends to constantly move towards better solutions, guided by the 

local and global best particles. 

In the multidimensional search space, let the position of particle i be denoted by 𝑥𝑖[𝑡] and its 

velocity by  𝑣𝑖[𝑡]. The PSO algorithm updates the velocities of the particles according to the following 

equation (Eberhart and Kennedy, 1995; Shi and Eberhart, 1998; Wang et al., 2018). 

𝑉𝑖[𝑡 + 1] = 𝑤[𝑡] × 𝑉𝑖[𝑡] + 𝑐1𝑟1 × (𝑋𝐿[𝑡] − 𝑋𝑖[𝑡]) + 𝑐2𝑟2(𝑋𝐺[𝑡] − 𝑋𝑖[𝑡])             (1) 

In response to this new velocity of the particle, the new position of the particle is updated with 

𝑋𝑖[𝑡 + 1] = 𝑋𝑖[𝑡] + 𝑉𝑖[𝑡 + 1].                                                                        (2) 

In this structure, each particle's position and velocity in an n-dimensional search space are 

represented by an n-dimensional vector. In Figure 2, the determination of the direction of motion of a 

particle according to the local and global best particle is shown as a representation. In equation 1, the 

local best solution is expressed as 𝑋𝐿[𝑡] and the global best solution as  𝑋𝐺[𝑡]. The coefficient 𝑐1 is the 

local learning coefficient and it adjusts motions of particles towards the local best particle. The 

coefficient 𝑐2  is the global learning coefficient and it adjusts motions of particles towards the global 

best particle  (Imik and Alagoz, 2017). Parameters  𝑟1  and 𝑟2 are random numbers and allow random 

movement in particle motions. This freedom degree in particle motion enriches the possibility of 

searching different regions of search space and this enables finding different optimal points at several 

runs of the algorithm. The acceleration parameter 𝑤[𝑡] causes  particles to slow down according to 

𝑤[𝑡 + 1] = 𝜉𝑤[𝑡], 0 < 𝜉 ≤ 1 at each iteration step (Shi and Eberhart, 1998). The acceleration 𝑤[𝑡]  

decreases as the iterations progress, allowing the particles to settle into the good solutions they find 

(Imik and Alagoz, 2017). 

 

 

 

 

 

 

Figure 2. The effects of local and global values on particle motion in the PSO algorithm  (İmik Şimşek, 2018) 

Introduction of Differential Optimization Algorithm 

The DE algorithm is one of popular evolutionary optimization methods. The DE algorithm uses 

essential genetic processes (mutation, crossover and selection) and implements relatively simple 

formulas in order to generate a new generation of candidate solutions. It maintains the best candidates 

through generations by selecting them according to their fitness performance. (Storn and Price 1997; 

Qin et al. 2009). A candidate solution of the DE algorithm is expressed for a D-dimensional parameter 

space as  

𝑋𝑖,𝐺 = {𝑥𝑖,𝐺
1  𝑥𝑖,𝐺

2  𝑥𝑖,𝐺
3 … 𝑥𝑖,𝐺

𝐷  }, 𝑖 = 1,2,3, ⋯ , 𝑁𝑝  ,                                              (3) 
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where the subscript 𝐺 denotes the generation number and the parameter 𝑁𝑝  represents the population 

size of the candidate solution set (Qin et al. 2009). To form an initial population of candidate solutions, 

candidate solutions are distributed uniformly into the entire search space by using uniform random 

numbers. In the current study, the following formulations of DE algorithm are implemented for the 

genetic processing (Qin et al. 2009):  

(i) Mutation Process: The mutation process enriches the genetic properties of the population in the 

search space. The new candidate solutions are represented by the vector set 𝑽𝒊,𝑮 = {𝒗𝒊,𝑮
𝟏 , 𝒗𝒊,𝑮

𝟐 , 𝒗𝒊,𝑮
𝟑 ,

⋯ 𝒗𝒊,𝑮
𝑫 }. In this study, the “DE/rand/1” mutation strategy is used (Qin et al. 2009).  

𝑉𝑖,𝐺 = 𝑋𝑟1
𝑖 ,𝐺 + 𝑆. (𝑋𝑟2

𝑖 ,𝐺 − 𝑋𝑟3
𝑖 ,𝐺)                                                                       (4) 

where the subscripts 𝑟1
𝑖, 𝑟2

𝑖, 𝑟3
𝑖

 
are randomly selected numbers of individuals from the population in the 

range of [1, 𝑁𝑝]. The parameter 𝑆 is the scale factor that is used to adjust length of the difference 

vector (𝑋𝑟2
𝑖 ,𝐺 − 𝑋𝑟3

𝑖 ,𝐺)(Qin et al. 2009). 

(ii) Crossover Process: A crossover operation is used with a crossover rate of 𝑪𝒓 to form new 

individuals of the population. The new candidate solution of the crossover process are represented by 

the vector set 𝑼𝒊,𝑮 = {𝒖𝒊,𝑮
𝟏 , 𝒖𝒊,𝑮

𝟐 , 𝒖𝒊,𝑮
𝟑 , ⋯ , 𝒖𝒊,𝑮

𝑫 }. New individuals are formed by randomly selected part 

from mutated solutions 𝑽𝒊,𝑮 
(Qin et al. 2009): 

𝑢𝑖,𝐺
𝑗

= {
𝑣𝑖,𝐺

𝑗
 

𝑥𝑖,𝐺
𝑗

 

(𝑟𝑎𝑛𝑑𝑗[0,1) ≤ 𝐶𝑟)𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑒𝑙𝑠𝑒
, 𝑗 = 1,2,3, ⋯ , 𝐷                                        (5) 

(iii) Selection Process: The selection process is very essential process of differential evolution that 

allows the maintenance of good candidate solutions through generations of evolution process. The 

objective function value of new individuals and old individuals are denoted by 𝒇(𝑼𝒊,𝑮) and 𝒇(𝑿𝒊,𝑮) 

respectively. The best fitting individuals for a minimization problem are selected according to the the 

objective function values of them as follows (Qin et al. 2009). 

𝑋𝑖,𝐺+1 = {
𝑈𝑖,𝐺 ,

𝑋𝑖,𝐺 ,
   𝑓(𝑈𝑖,𝐺) ≤ 𝑓(𝑋𝑖,𝐺) 

𝑒𝑙𝑠𝑒
                                                                                      (6) 

Design of Optimal Architecture Artificial Neural Network with Metaheuristic Optimizations 

This section demonstrates the realization of architectural optimization of neural networks by 

using metaheuristic optimization. The noise, linearity, and complexity of the data affect the 

performance of ANN models. In order to obtain an optimum training performance, a suitable 

configuration of the neural network model should be determined according to the training dataset. 

Therefore, data-driven ANN modeling requires architectural optimization to reach an optimal 

modeling performance in terms of generalization of data, neuron number and training speed. When 

architecture configuration that complies with these features is obtained, this ANN architecture is 

optimal for the training and test dataset and this enhances modeling performance. This effort is called 

self-configuration or architectural optimization of ANNs (Anochi et al., 2014; Carvalho et al., 2011). 

Manual determination of the optimal architecture according to trial and error method is time 

consuming (Kapanova et al., 2018), the automation of this process by using metaheuristic based 

architecture optimization is important for the data-driven ANN modeling efforts in order to obtain 
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satisfactory model performance. It is necessary in case of real-time intelligent system operation, where 

models should be updated continuously according to real-time data flow.   

To implement PSO and DE algorithms to optimize ANN architecture, the number of neurons in 

the layers of the ANN is considered as a candidate vector. Accordingly, the optimized parameter 

vectors of the PSO and DE algorithms define the number of neurons in each layer. This real number 

vector is represented as  HLMH and it is a raw description of the number of neurons in each layer 

because it is composed of noninteger numbers. Therefore, this vector is interpreted to a feasible 

description by applying a repairmen process. Figure 3 shows the steps of processing the HLMH vector 

to generate a feasible exposition for the neural architecture description HLvector from HLMH vector. 

There are two processes, namely integerization and neural repair processes. The candidate solution 

vector HLMH is first converted to the integer vector HLint. This operation is called integer enumeration. 

After this process, HLint vector is obtained. However, layers with zero neurons can be found in the 

HLint vector. This means that the network is cut off. For this reason, it is necessary to remove layers 

with zero neuron number. By removing the zero-valued layer from the network, the HLvector becomes 

ready to describe a feasible neural network. The architecture of ANN models is configured according 

to the HL vector. This architecture with  HL  is trained by using an ANN backpropagation algorithm. 

The architectural performance of this candidate solution is calculated according to the formulation 

given by Carvalho et al. (Carvalho et al., 2011). This architectural performance in the objective 

function is used by metaheuristic algorithms to develop the next-generation candidate solution  HLMH. 

The main purpose of automatically configuring an ANN model is the ability to obtain a near-

optimal ANN architecture without requiring the ANN approach and/or the knowledge of any expert in 

its implementation  (Anochi et al., 2014; Anochi et al., 2016). The results obtained in this way prevent 

unnecessary loss of time and effort. 

In this study, we implemented the objective function that was proposed by Carvalho et al. 

(Carvalho et al., 2011) and improved by Anochi et al. (Anochi et al., 2014). To enhance search of the 

optimal neural architecture by using metaheuristics, the minimum value of the cost function 𝐸𝑗 for N 

number of training trials was used for more opportunistic evaluation of performnce of the HL 

architecture.  The cost function for N trials was written according to Carvalho et al.’s formulation as 

𝐸𝑗 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑗  × (
𝜌1×𝑠𝑠𝑒𝑡𝑟𝑎𝑖𝑛,𝑗+𝜌2×𝑠𝑠𝑒𝑔𝑒𝑛,𝑗

𝜌1+𝜌2
),                                                        (7) 

where weights 𝜌1 = 1 and 𝜌2 = 0.1 are the same weight values used in (Carvalho et al., 2011). The 

𝑠𝑠𝑒𝑡𝑟𝑎𝑖𝑛 and 𝑠𝑠𝑒𝑔𝑒𝑛 are Sum of Square Error (SSE) for the repeated training and test phases of each 

architecture with  HL . 

𝑠𝑠𝑒𝑡𝑟𝑎𝑖𝑛,𝑗  =
1

2
∑ (𝑓𝐴𝑁𝑁(𝑥𝑖) − 𝑦𝑖)2𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1 ,                                                                   (8) 

𝑠𝑠𝑒𝑔𝑒𝑛,𝑗  =
1

2
∑ (𝑓𝐴𝑁𝑁(𝑥𝑔,𝑖) − 𝑦𝑔,𝑖)

2𝑁𝑔𝑒𝑛
𝑖=1 ,                                                                   (9) 

where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of data in the training dataset while 𝑁𝑔𝑒𝑛 is the number of data in the test 

dataset. In this study, ANN training was performed with the backpropagation algorithm with random 

initial weights. Thus, each training session for the same architecture  HL can provide models with 

different performances because of different convergence paths. In order to perform more consistent 

performance analyzes for each HL configuration, training and test calculations were repeated N times 
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with the HL configurations and minimum value of 𝐸𝑗  is used to assess the performance of each HL 

configuration. Accordingly, the objective function 𝑓𝑜𝑏𝑗  is modified as 

𝑓𝑜𝑏𝑗 = min {𝐸𝑗|𝑗 = 1,2, . . 𝑁}                                                                     (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Steps of processing the candidate solution of metaheuristic optimization to obtain a feasible interpretation for the 

neural architecture description 

The  𝑦𝑛𝑛 = 𝑓𝐴𝑁𝑁(𝑥𝑖)  represents the approximation function of the trained ANN model. Besides 

improving the training and test performances by minimizing 𝑠𝑠𝑒𝑡𝑟𝑎𝑖𝑛 and 𝑠𝑠𝑒𝑔𝑒𝑛, other important 

architectural optimization goals are network complexity (number of neurons) and training speed 

(number of epochs). The penalty factor in equation 7 is formulated for jth training trial as follows  

(Carvalho et al., 2011; Anochi et al., 2014) 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑗 =  𝛾1(𝜀𝑛𝑒𝑢,𝑗  )
2

× 𝛾2(𝑒𝑝𝑜𝑐ℎ𝑠𝑗) + 1,           (11) 

where 𝛾1 and 𝛾2 are the tuning parameters used to achieve a balance between the number of neurons 

(𝜀𝑛𝑒𝑢 ) and the number of training epoch (𝑒𝑝𝑜𝑐ℎ𝑠) in the optimization process. These two parameters 

were configured 𝛾1 = 0.1 and 𝛾2 =  0.001. The 𝜀𝑛𝑒𝑢  parameter is the total number of neurons in the 

neural network. It is calculated by adding the number of neurons in each hidden layer. (Sum of 

elements of vector  HL ) 

Considering 𝑠𝑠𝑒𝑡𝑟𝑎𝑖𝑛 and 𝑠𝑠𝑒𝑔𝑒𝑛 in this architecture optimization, optimal ANN architecture can 

improve generalization performance of ANN models. With 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 term, the network complexity can 

be reduced and the computation time for the training of optimal architecture ANN can be increased. 

Figure 4 shows basic system components of this optimal architecture data-driven modeling system that 

manages the demand order forecasting. The next section demonstrates an experimental study for this 

system. 
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Figure 4. Basic system components for optimal architecture ANN based data-driven modeling of daily total order data by 

using metaheuristic optimization 

RESULTS AND DISCUSSION 

Experimental Study 

The demand order dataset used in this study involves twelve predictive attributes from 60 

business days from a real database of a Brazilian company of large logistics (UCI, 2007), Ten 

predictive attributes that exclude time data (week of the month and day of the week) are used. There 

Table 1 shows details of 12 entries of the data. The dataset includes twelve attributes as input and a 

target that is the total of orders for daily treatment. In this data, we used 40 of them for training and 20 

of them for testing purposes. While the dataset reserved for training was used for training and 

optimization, the dataset reserved for testing was used for performance evaluation. Since the 

backpropagation algorithm of ANN can yield different training performances, average performance of 

resulting ANN models is evaluated according to 20 times independent training of each candidate 

architecture. 

For the architectural optimization by PSO algorithm, 30 particles were used in the optimization. 

The maximum number of iterations is limited to 50. The individual learning coefficients were set as 

𝑐1 = 2.0  and  𝑐2 = 2.0 . The acceleration coefficients are taken as 𝑤 = 1 and  𝜉 = 0.99 . At the same 

time, the configuration settings of the DE algorithm, which is another metaheuristic method to 

compare results of swarm-intelligence based optimization and evolutionary optimization in this article, 

are 0.2 for crossover probability (𝑝𝑐𝑟), lower limit of scaling factor 0.2, and upper limit of scaling 

factor 0.8. The maximum number of iterations is limited to 50. 

Figure 5a shows decrease of 𝑓𝑜𝑏𝑗 function values during the architectural optimization of ANN 

models by using the PSO. The figure shows that the PSO minimizes the objective function to optimize 

neural architecture for the improved total order demand forecast. Figure 5b shows the reduction of 𝑓𝑜𝑏𝑗 

values during the architectural optimization of the ANN model using DE. Figure 6a shows the actual 

data and total daily demand order estimates of the optimal architecture ANN models for the test data 

set. As can be seen, it almost overlaps with the test data. Figure 6b shows similar results for the DE 

algorithm. As can be seen, there is overlap with the data. In Figure 7a and Figure 7b, changes of the 
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absolute error (𝑒 = 𝑦𝑑 − 𝑦𝑝𝑠𝑜, 𝑒 = 𝑦𝑑 − 𝑦𝑑𝑒 ) are shown, which are calculated by subtracting the 

estimated value obtained from the real data. It is seen that the ANN model optimized with PSO and 

DE is very consistent in total daily order estimation. 

Table 1. Daily order demand forecasting dataset 

Data Model Input / Output 

Week of the month (first, second, third or fourth week); numerical equivalents {1.0, 2.0, 

3.0, 4.0, 5.0} 
Input 

Day of the week (Monday to Friday); numerical equivalents {2.0, 3.0, 4.0, 5.0, 6.0} Input 

Urgent orders Input 

Non urgent orders Input 

Type A orders Input 

Type B orders Input 

Type C orders Input 

Orders from the tax sector Input 

Orders from the traffic controller sector Input 

Banking sector orders (1) Input 

Banking sector orders (2) Input 

Banking sector orders (3) Input 

The daily total demand order (Ground truth data) Output 

Table 2 shows the Mean Relative Error (MRE), Mean Square Error (MSE) and Mean Absolute 

Error (MAE) performances. Considering the MRE performance, when the results of the studies 

conducted in (Simsek and Alagoz, 2021) and (Ferreira et al., 2016) are examined, the optimal ANN 

used in this study may provide a better performance. MRE of the ANN model in (Simsek and Alagoz, 

2021) was obtained  0.000015. The MRE value of the ANN model of Ferreira et al. is 0.0006  (Ferreira 

et al., 2016). The lowest MRE that was obtained in this study is 2.16 10-7 by using the optimal ANN-

DE model. The MRE is 2.82 10-7 for the optimal ANN-DE model. When the values in the table are 

compared, the optimal ANN models with PSO and DE significantly improve the demand order 

estimates. The MSEs and MAEs of optimal ANN models with DE and PSO are considerably lower 

than ANN models in the literature. The ANN model of Simsek et al. implemented Gray Wolf 

Optimization (GWO) algorithm to perform the rectangular architecture optimization of ANN, where 

only wide and depth parameters of the rectangular ANN architecture are optimized (Simsek and 

Alagoz, 2021). This limits data-driving modeling performance of ANNs with GWO to the rectangular 

shape architectures. This restriction can deteriorate optimality of the resulting networks and reduces 

the performance. The results in the table apparently show that optimal architecture ANN models can 

contribute to the data-driven modeling performance of ANNs in this application. For this reason, more 

advanced architectural optimization based on the modified Carvalho et al.’s objectives is implemented 

in the current study. 

Table 2. Performance of demand order estimation models with metaheuristic optimizations 
Parameter 

Training 

Algorithm 

Mean Square 

Error (MSE) 

Mean Absolute 

Error (MAE) 

Mean Relative 

Error (MRE) 

ANN-PSO                                1.1310-2 6.92 10-2 2.82 10-7 

ANN-DE  9.15 10-3 6.31 10-2 2.16 10-7 

ANN-GWO (Simsek and 

Alagoz, 2021) 

 31.34  3.60 15.0 10-6 
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Figure 5. The convergence of the PSO (a) and DE (b) algorithm in ANN optimization 

Figure 6. ANN model optimized with PSO (a) and DE (b) algorithm for order demand forecast actual data (yd) and 

forecast data (ynn) 
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Figure 7. PSO (a) and DE (b) distribution of the absolute error of the ANN estimator model for each measurement 

according to the ground truth data 

CONCLUSION 

In this article, a neuroevolution method was demonstrated to obtain ANN models with optimal 

architecture for the order demand estimation problem. Two different optimization algorithms were 

implemented for the data-driven architectural optimization of the ANN models. These metaheuristic 

algorithms are the PSO and the DE algorithms. To enhance the architecture search task by using 

metaheuristic methods, the neuroevolution objective was enhanced by employing the minimum value 

policy of the objective (Equation 7). Results indicated that the DE and PSO algorithm could 

significantly improve the learning performance of ANN based estimation models.  

In the experimental study, satisfactory daily demand order estimation results were obtained by 

using an architectural optimal ANN model. The experimental results show that ANN-PSO model can 

significantly improve the MSE, MAE and MRE performances compared to the previous work results. 
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