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distribution and discusses the different features of the distribution. Statistical inferences about the distribution
parameters are discussed with three estimation methods, namely maximum likelihood, least squares, and
weighted least squares. Monte Carlo simulation study is performed to evaluate of these estimators based on

mean square errors estimation, mean absolute deviation, and mean relative errors of estimation for a sample
of different sizes. A distribution simulation analysis based on real data is provided to demonstrate the

adaptability of the proposed model.
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Introduction

Over the past two decades, many discrete and
continuous statistical distributions have been introduced
into the literature. These distributions are saved as
members of a distribution family. Some distribution
families in the literature can be ordered as follows:
Azzalini [1] obtained the skew normal distribution,
Mudholkar and Srivastava [2] described exponential
distribution family, Marshall and Olkin [3] proposed a new
family of continuous distribution, namely the Marshall
and Olkin family. Eugene et al. [4] proposed another
family of distribution titled beta-generated family.
Recently, Mahdavi and Kundu [5] introduced a new family
titled a—power transformation (APT) and Karakaya et. al.
[6] obtained alpha logarithmic transformation (ALT)
family.

An example of a distribution family is transmuted
families. Generally, transmuted families are reported
based on order statistics. Transformed distributions were
introduced by Shaw and Buckley [7,8] using a quadratic
transformation. The order statistics of the transformed
distributions can be sorted as [9,10]. Recently,
Balakrishnan [11] proposed a new family of transformed
distributions based on datasets. Tanis and Saragoglu [12]
studied a special model based on the Weibull distribution
of a family of transformed record-based distributions.
Both in terms of distribution properties and statistical
inference parallel to the study [11]. Tanis et al. [13],
introduced a transmutation lower record type and
suggested a sub-model for Fréchet distribution, moreover
Tanis [14], suggested transmutation lower record type
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inverse Rayleigh and Tanis [15], suggested transmutation
lower record type power function distribution.

let X,y and X ;) be the first two lower record
values from a population with cumulative distribution
function (cdf) F(x).

G() = pP(Xy ) < ) + (1 = pIP(Xy ) < X)
=pF(x)+ (1 - p)[F(x)(l - log(F(x)))]
=F(x)[1—plog(F(x))] (1)

The distribution family with cdf in Equation (1) is called
transmuted lower record type (TLRT) and using TLRT, the
probability density function (pdf) of distribution is given
by

9(0) = f([1 = p(1 + log(F(2)))] @

In this paper, we obtained the TLRT version of the
exponential distribution in Section 2. In Section 3, the
unknown parameters are estimated by estimation
methods. A simulation study is performed in order to
compare the performance of these estimators in terms of
mean squared errors (MSEs), mean absolute deviations
(ABBs) and mean relative errors estimates (MREs). Two
applications with real data are made to show the
applicability of introduced distribution.
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Transmuted Lower
Distribution

Record Type Exponential

Let X be a random variable having exponential
distribution. The cdf and pdf of X as follows,

F(x) =1—exp(—1x), (3)
and
f(x) = exp(—2x) (4)

where A > 0. Substituting the cdf (3) and pdf (4) into
TLRT family the following cdf and pdf are obtained as

F(x; ) = (1 —exp(—Ax))(1

—plog(1— exp(—Ax))) )
and
fle;A) =2exp(—Ax) (1
—plog(1 — exp(—1x))) (6)

—plexp(—Ax)

where 1> 0,p € (0,1). The distribution with cdf is
called TLRT — Exp(p, A) distribution. Figure 1 presents
the plots of the TLRT — Exp(p, A) pdf for some choices of
parameters. From Figure 1, we observe that the
probabilities are decreasing when x is increasing.
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Figure 1. The pdf of TLRT — Exp(p, 1) distribution for some
choices of p and 4.

The mean of the TLRT — Exp(p, ) distribution is
obtained as

6p — 6 + pm?

= (7)

E(X) = —

The second moment of distribution cannot be
obtained. Itis a rare distribution whose variance and other
moments cannot be obtained due to the non-finite
integral solution. The survival function and hazard

function TLRT — Exp(p,A) distribution is given by
respectively
S(x)=1-F(x) (8)
=—p(—1+exp(—Ax)) log(1l —
exp(—1x) ) + exp(—Ax)
And
f) 9)

M) =50

2 exp(—Ax) (=1 + plog(1 — exp(—1x)) + p)
T p(=1+ exp(=Ax)) log(1 — exp(—Ax)) — exp(—2Ax)’
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Figure 2. The hf of TLRT — Exp(p, 4) distribution for some
choices of p and 1
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Estimation

In this section, estimations of TLRT — Exp parameters
have been examined using some classical methods.

Method of Maximum Likelihood

Let x4;x5;...;x, be the observations of n
independent and identically random variable
Xi;X5; .3 X, from the TLRT — Exp distribution. Such

that, the log likelihood function has the following formula:

(P, 1) =nlog(A) — 23X, x; +
exp(Ax,)) — p}.

=1log{l - plog(l - (10)

By differentiating Equation (9) with respect to p and 1
respectively, and equating to zero, we have

9L, (p, ) log(1 — exp(—1x;)) -
ap  (—1+plog( —exp(—1x))) = (11)
and
04, (. D)

n_ ' - px;exp(—Ax;) 2
ALt Z 4 (1= exp(—2x))(1 — plog(1 — exp(~ Axl)))( )
0

I
=y

i=

We have the maximum likelihood (ML) estimators of
the TLRT — Exp parameters p and A by maximizing the
Equations 10-11. These equations cannot be solved
analytically for p and A. Therefore, they can be obtained
by numerical methods. The “optim” command in R is used
for this purpose.

Method of least square and weighted least
square

Let X1..5 Xp.p5--+3 Xp.n be the order statistics of a
random sample from the TLRT — Exp distribution.
Hence, we have the least square (LS) estimators of the
TLRT — Exp parameters p and A by minimizing the
following equation:

2

n+1]

@A) = Z |F(xinlp.2) -

j=1

with respect to p and A, where F(.) is the cdf in
Equation (5). Equivalently, they can be obtained by
solving:

n .
]
> [FGralp ) == | Gl 2) = 0,
J:l .
2 |FCoalp D) g Gl 2) = 0,
j=1

where,
OF (Xj.n)
11 (xj:n|p, ) =TJ"

= (=1+exp(D) log(1 — exp(=2))

and

aF(x':n)
N2 (Xjnlp, 2) = —222

= —exp(—1) (=1 +plog(1 — exp(—1)) + p)

The weighted least square (WLS) estimators,
and Ay .s, can be obtained by minimizing

(4D +2) j 7
Wp,2) = Z iln—j+1) [F(xj:"|p'/1)_n+1]

PwiLs

These estimators can also be obtained by solving:

& (n+ 1)2(n + 2) '
ﬁ’s [(x,';n|p, ) n]?] 11 (%jn|p, 2)

=0
And

o (4 1)2(n+2) j
G+ [(xj:nh”’ A) n—+1] M2 (%m|p. 1)

=0
Simulation Study

To obtain information about the performance of
estimators, we conducted an appropriate simulation
study. The results are given in the Tables 1-6. We
calculated the average absolute biases (ABBs), mean
square errors (MSEs), and mean relative errors of the
estimates (MREs) for all methods. The ABBs, MREs, and
MSEs are calculated by

And
- ¢
/(p'

where, ¢ = (p,2) and § = (p, i). The “optim” BFGS
routine in the R program were adopted to generate 5000
trials to estimate these indices of the ML, LS and WLS
estimates. The sample sizes are considered as n = 50, 100,
250, 500 and two-parameter settings were considered,
(p=05,1=05), (p=05 1=1.5), (p =05, 1=3),
(p=06,1=15),(p=09,1=15).

536



Erbayram et al. / Cumhuriyet Sci. J., 43(3) (2022) 534-542

Table 1. The averages of estimates, MSEs, ABBs, and MREs of the TLRT-Exp model for A = 0.5 and p = 0.5

MLE estimate

=~

EKK estimate

=~

WEKK estimate

=~

n i p A p A p
50 Averages 0.5255 0.4511 0.5226 0.5355 0.5191 0.5415
MSEs 0.0100 0.0356 0.0099 0.0414 0.0096 0.0416
ABBs 0.0100 0.1887 0.0997 0.2036 0.0979 0.2041
MREs 0.2000 0.3774 0.1993 0.4072 0.1957 0.4081
100 Averages 0.5144 0.4596 0.5166 0.4763 0.5166 0.4763
MSEs 0.0081 0.0292 0.0092 0.0400 0.0925 0.0400
ABBs 0.0899 0.1709 0.0961 0.2000 0.0962 0.2000
MREs 0.1799 0.3419 0.1922 0.3999 0.1923 0.4000
200 Averages 0.5093 0.4761 0.5075 0.4834 0.5077 0.4832
MSEs 0.0052 0.0181 0.0074 0.0342 0.0075 0.0344
ABBs 0.0721 0.1347 0.0865 0.1852 0.0868 0.1854
MREs 0.1442 0.2694 0.1729 0.3703 0.1736 0.3708
300 Averages 0.5042 0.4862 0.4999 0.4923 0.4998 0.4923
MSEs 0.0037 0.0130 0.0062 0.0277 0.0062 0.0278
ABBs 0.0611 0.1140 0.0787 0.1663 0.0788 0.1666
MREs 0.1221 0.2280 0.1573 0.3326 0.1575 0.3332
500 Averages 0.5018 0.4928 0.4999 0.4977 0.5009 0.4969
MSEs 0.0023 0.0077 0.0052 0.0180 0.0052 0.0177
ABBs 0.0480 0.0879 0.0720 0.1341 0.0721 0.1330
MREs 0.0960 0.1758 0.1441 0.2681 0.1441 0.2660

Table 2. The averages of estimates, MSEs, ABBs, and MREs of the TLRT-Exp model for A = 1.5 and p = 0.5

MLE estimate

EKK estimate

WEKK estimate

=~

n A P A P A P

50 Averages 1.5455 0.4610 1.5613 0.5484 1.5699 0.5375
MSEs 0.0860 0.0347 0.0889 0.0419 0.0928 0.0419
ABBs 0.2933 0.1864 0.2982 0.2049 0.3047 0.2048
MREs 0.1955 0.3728 0.1988 0.4098 0.2031 0.4095

100 Averages 1.5335 0.4733 1.5231 0.5039 1.5190 0.0402
MSEs 0.0680 0.0260 0.0800 0.0400 0.0810 0.0405
ABBs 0.2600 0.1611 0.2830 0.2002 0.2840 0.2005
MREs 0.1733 0.3223 0.1890 0.4004 0.1895 0.4011

200 Averages 1.5364 0.4747 1.5155 0.4879 1.5144 0.4884
MSEs 0.0460 0.0165 0.0672 0.0350 0.0673 0.0351
ABBs 0.2145 0.1283 0.2593 0.1871 0.2595 0.1874
MREs 0.1430 0.2567 0.1729 0.3742 0.1729 0.3747

300 Averages 1.5127 0.4873 1.5052 0.4880 1.5055 0.4879
MSEs 0.0303 0.0117 0.0581 0.0271 0.0582 0.0271
ABBs 0.1741 0.1083 0.2412 0.1647 0.2413 0.1647
MREs 0.1160 0.2165 0.1608 0.3293 0.1608 0.3294

500 Averages 1.5168 0.4871 1.4949 0.4959 1.4950 0.4959
MSEs 0.0185 0.0071 0.0471 0.0175 0.0471 0.0175
ABBs 0.1361 0.0847 0.2171 0.1325 0.2171 0.1326
MREs 0.0907 0.1695 0.1448 0.2650 0.1448 0.2652
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Table 3. The averages of estimates, MSEs, ABBs, and MREs of the TLRT-Exp model for A = 3 and p = 0.5

MLE estimate

EKK estimate

WEKK estimate

~

n A P A P A P

50 Averages 3.0904 0.4595 3.0227 0.6044 3.0384 0.5910
MSEs 0.3136 0.0321 0.2973 0.0412 0.3022 0.0410
A 0.5600 0.1793 0.5452 0.2030 0.5497 0.2025
MREs 0.1867 0.3585 0.1817 0.4059 0.1832 0.4050

100 Averages 3.0425 0.4813 3.0036 0.5246 2.9886 0.5315
MSEs 0.2503 0.0256 0.2932 0.0395 0.2978 0.0397
ABBs 0.5003 0.1599 0.5414 0.1987 0.5457 0.1993
MREs 0.1668 0.3197 0.1805 0.3974 0.1819 0.3986

200 Averages 3.0763 0.4725 3.0461 0.4772 3.0457 0.4773
MSEs 0.1778 0.0169 0.2580 0.0334 0.2592 0.0336
ABBs 0.4216 0.1301 0.5079 0.1827 0.5091 0.1834
MREs 0.1405 0.2602 0.1693 0.3654 0.1697 0.3667

300 Averages 3.0289 0.4874 2.9849 0.5009 2.9848 0.5015
MSEs 0.1273 0.0124 0.2324 0.0280 0.2331 0.0282
ABBs 0.3568 0.1112 0.4821 0.1673 0.4828 0.1680
MREs 0.1189 0.2223 0.1607 0.3346 0.1609 0.3359

500 Averages 3.0083 0.4930 3.0150 0.4917 3.0143 0.4917
MSEs 0.0794 0.0074 0.1888 0.0167 0.1892 0.0168
ABBs 0.2818 0.0862 0.4345 0.1294 0.4349 0.1296
MREs 0.0939 0.1723 0.1448 0.2588 0.1450 0.2592

Table 4. The averages of estimates, MSEs, ABBs, and MREs of the TLRT-Exp model for A = 1.5 and p = 0.2.

MLE estimate

EKK estimate

WEKK estimate

~

n i p y) p A p

50 Averages 1.4239 0.2517 1.3787 0.2944 1.3702 0.2947
MSEs 0.0459 0.0142 0.0746 0.0205 0.0777 0.0206
ABBs 0.2143 0.1193 0.2730 0.1433 0.2787 0.1435
MREs 0.1429 0.5968 0.1820 0.7163 0.1858 0.7175

100 Averages 1.4639 0.2199 1.4445 0.2415 1.4444 0.2415
MSEs 0.0235 0.0090 0.0387 0.0125 0.0387 0.0124
ABBs 0.1532 0.0949 0.1968 0.1116 0.1968 0.1116
MREs 0.1022 0.4748 0.1312 0.5581 0.1312 0.5581

200 Averages 1.4953 0.2004 1.4893 0.2085 1.4893 0.2085
MSEs 0.0133 0.0057 0.0209 0.0079 0.0209 0.0079
ABBs 0.1152 0.7553 0.1449 0.0888 0.1449 0.0888
MREs 0.0768 0.3763 0.0966 0.4442 0.0966 0.4442

300 Averages 1.5004 0.1968 1.4971 0.2005 1.4971 0.2005
MSEs 0.0092 0.0045 0.0145 0.0056 0.0145 0.0056
ABBs 0.0959 0.0673 0.1204 0.0747 0.1204 0.0747
MREs 0.0639 0.3365 0.0803 0.3737 0.0803 0.3737

500 Averages 1.5036 0.1972 1.5025 0.1996 1.5025 0.1996
MSEs 0.0055 0.0027 0.0087 0.0036 0.0087 0.0036
ABBs 0.0740 0.0518 0.0931 0.0611 0.0931 0.0601
MREs 0.0494 0.2592 0.0620 0.3006 0.0620 0.3007
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Table 5. The averages of estimates, MSEs, ABBs, and MREs of the TLRT-Exp model for A = 1.5 and p = 0.6

MLE estimate

EKK estimate

WEKK estimate

~

~

=~

n i p A p A p

50 Averages 1.6103 0.5344 1.6363 0.6806 1.6630 0.6622
MSEs 0.0943 0.0274 0.0769 0.0141 0.0859 0.0140
ABBs 0.3072 0.1657 0.2772 0.1190 0.2932 0.1184
MREs 0.2048 0.2762 0.1848 0.1983 0.1954 0.1974

100 Averages 1.5811 0.5519 1.5953 0.6567 1.5884 0.6758
MSEs 0.0775 0.0251 0.0635 0.0141 0.0668 0.0147
ABBs 0.2785 0.1585 0.2520 0.1188 0.2584 0.1211
MREs 0.1856 0.2642 0.1680 0.1979 0.1730 0.2019

200 Averages 1.5618 0.5667 1.5658 0.5908 1.5527 0.6057
MSEs 0.6111 0.0208 0.0487 0.0129 0.0488 0.0130
ABBs 0.2472 0.1442 0.2208 0.1136 0.2210 0.1144
MREs 0.1648 0.2404 0.1472 0.1893 0.1473 0.1907

300 Averages 1.5361 0.5754 1.5366 0.5943 1.5307 0.6105
MSEs 0.0468 0.0167 0.0432 0.0123 0.0453 0.0126
ABBs 0.2163 0.1294 0.2078 0.1109 0.2129 0.1122
MREs 0.1442 0.2156 0.1386 0.1849 0.1419 0.1869

500 Averages 1.5170 0.5889 1.5135 0.5945 1.5042 0.6107
MSEs 0.0338 0.0116 0.0360 0.0114 0.0387 0.0117
ABBs 0.1838 0.1079 0.1898 0.1069 0.1968 0.1083
MREs 0.1226 0.1799 0.1265 0.1782 0.1312 0.1804

Table 6. The averages of estimates, MSEs, ABBs, and MREs of the TLRT-Exp model for A = 1.5 and p = 0.9

MLE estimate

EKK estimate

WEKK estimate

~

n i p y! p A p

50 Averages 1.9066 0.7185 2.0446 0.7123 2.0508 0.7112
MSEs 0.1700 0.0329 0.2968 0.0352 0.3039 0.0353
ABBs 0.4124 0.1815 0.5448 0.1877 0.5512 0.1880
MREs 0.2749 0.2017 0.3631 0.2086 0.3675 0.2089

100 Averages 1.8762 0.7339 1.9471 0.7122 1.9535 0.7116
MSEs 0.1419 0.0276 0.2023 0.0353 0.2085 0.0355
ABBs 0.3767 0.1661 0.4498 0.1878 0.4566 0.1884
MREs 0.2511 0.1846 0.2998 0.2087 0.3044 0.2093

200 Averages 1.7546 0.7840 1.9006 0.7143 1.9016 0.7141
MSEs 0.0724 0.0134 0.1605 0.0345 0.1613 0.0345
ABBs 0.2690 0.1159 0.4006 0.1857 0.4016 0.1859
MREs 0.1793 0.1288 0.2670 0.2063 0.2677 0.2065

300 Averages 1.7156 0.8046 1.8707 0.7180 1.8728 0.7174
MSEs 0.0542 0.0094 0.1379 0.0331 0.1391 0.0333
ABBs 0.2329 0.0971 0.3714 0.1819 0.3730 0.1826
MREs 0.1553 0.1079 0.2476 0.2022 0.2487 0.2028

500 Averages 1.6551 0.8313 1.7963 0.7566 1.8031 0.7497
MSEs 0.0380 0.0067 0.0897 0.0206 0.0940 0.0226
ABBs 0.1951 0.0816 0.2995 0.1434 0.3066 0.1503
MREs 0.1300 0.0907 0.1997 0.1593 0.2044 0.1670
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From Tables 1-6, it was concluded that the averages
estimates, ABBs, MREs and MSEs of all estimates decrease
when n increases as expected. The ML, LS and WLS
estimates are almost identical in terms of ABBs, MSEs, and
MREs criteria.

Real Data Applications

In this section, the TLRT — Exp distribution is applied
to the two real data sets. For the comparison issue, we
consider transmuted lower record type Fréchet (TLRT-F),
Exponential (Exp), Fréchet (Fr), transmuted log-logistic
(TLL), transmuted Weibull (TW) and transmuted
exponential (TE) distributions. The pdfs of these
distributions are given in the ML estimates, log-likelihood

value, Akaike's information criteria (AIC), corrected Akaike
information criterion (AlCc), Kolmogorov-Smirnov test
statistic (KS), p-values based on the statistic for all
distributions given in Table 7-8. Different discrimination
criterion methods based on log-likelihood function
evaluated at the ML estimates were also considered. The
discrimination criterion methods are respectively: AIC =
=21(B, x) + 2k, AlCc = AIC + (2k(k + 1))/((n — k —
1)) and BIC = —2l(6,x) + klog(n) where k is the
number of parameters to be fitted 8 and is the estimates
of 6.

First data set: These data were reported in by
Chouklain and Stephens [16]. The data are n =72
exceedances of flood peaks (in m3/s) of the Wheaton
River near Carcross in Yukon Territory, Canada. The 72
exceedances, for the years 1958 to 1984, rounded to one
decimal place.

Table 7. MLEs and selection criteria statistics for first data set

TLRT-Exp TLRT-F TLL TW TE Fr Exp
a 0.2248 0.6521 1.1609 0.9017 24.408 0.6521 12.204
p 0.0703 2.8834 16.405 25.109 -0.1345 2.8790
A 0.0016 0.5275 1.000
=l 251.23 267.02 257.64 251.50 253.36 267.02 253.66
KS 0.0993 0.1530 0.1286 0.1052 0.1278 0.1532 0.9539
p-value 0.4770 0.0686 0.1846 0.4035 0.3037 0.0682 0.0000
AlC 506.46 540.04 521.28 509.00 510.72 538.04 509.32
AlCc 506.63 540.39 521.63 509.35 510.89 538.21 509.38
BIC 506.17 539.61 520.85 508.57 510.43 537.75 509.18

Exceedances of flond peaks of the Wheaton River near Carcioss in Yukon Territory Canada

L L L L L L
0 0 20 0 40 50 B0

Figure 3. Empirical and TLRT-Exp distributions based on the
first data set

Second data set

These data were reported in by Riffi et.al [17]. The data
was collected from a group of 46 patients, per years, upon
the recurrence of leukemia who received autologous
marrow. The data set is listed below which is about
leukemia free-survival times (in years) for the 46
autologous transplant patients.

According to the results in Table 7-8, TLRT-Exp has
minimum KS and maximum p-value. In addition, when the
discrimination criteria are examined, it is seen that it has
minimum values in three criteria (AIC, AlCc and BIC).
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Table 8. MLEs and selection criteria statistics for second data set

Test TLRT-Exp TLRT-F TLL T™W TE Fr Exp
a 0.3884 0.4887 1.0127 0.8403 1.7678 0.7017 1.5172
p 0.4985 1.7313 1.9256 3.1614 0.3206 0.3371
A 1.0000 1.0000 1.0000
=l 63.72 67.80 65.32 63.99 64.65 69.45 65.18
KS 0.0964 0.1204 0.0972 0.1001 0.1431 0.1399 0.2701
p-value 0.7864 0.5170 0.7781 0.7460 0.5073 0.3288 0.0024
AlC 131.44 141.60 136.64 133.98 133.30 142.90 132.36
AlCc 131.72 142.17 137.21 134.55 133.58 143.18 132.45
BIC 130.77 140.59 135.63 132.97 132.63 142.23 132.02

Figure 4. Empirical and TLRT-Exp distributions based on the
second data set

From Figure 3-4, it can be said that TLRT-Exp can be a
good alternative to modeling real data.

Conclusions

In this study, we proposed a new model via the
transmuted lower record type family using exponential
distribution and examined the properties of the new
model such as survival, cumulative distribution, hazard
rate functions, and expected value. In the literature
review, it can be seen that the family so far have been
applied to the Frechet, power function and inverse
Rayleigh distributions. Statistical inferences about the
distribution parameters are discussed with three
estimation methods, namely maximum likelihood, least
squares, and weighted least squares. A detailed Monte
Carlo simulation study is conducted to examine the
performance of given estimation methods. In addition,
the new model is examined in two real data sets with
regard to discrimination criteria. It was observed that the
obtained model is more flexible than the known
distributions such as transmuted lower record type
Fréchet, exponential, Fréchet, transmuted log-logistic,
transmuted Weibull, and transmuted exponential

distributions. Considering that the variety of data is
increasing, the family used in this study can be applied to
other existing and primarily newly obtained continuous
distributions for future studies.
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