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Introduction 

Nonlinear phenomena modeled as nonlinear partial 
differential equations occur in many fields of science such 
as, mathematical biology, plasma physics, nonlinear 
optics, quantum mechanics, hydrodynamics, fluid 
dynamics, and chemical kinetics. Among these equations, 
the fKdV equation has utilized to investigate numerous 
significant issues in nonlinear physical phenomena. The 
fKdV equation has emerged in important physical systems 
such as in the theory of shallow water waves, gravity 
capillary waves, large interior waves in densely layered 
oceans, ion sound waves in plasma, and sound waves in a 
crystal lattice. Besides, the most well-known fKdV 
equations are the Sawada-Kotera equation, the Lax 
equation, the Caudrey-Dodd-Gibbon equation, the Ito 
equation, and the Kaup-Kuperschmidt equation.  So far, 
several methods have used for solving the fKdV equations. 
These methods are Adomian decomposition [1], Laplace 
decomposition [2], variational iteration [3], Hirota direct 
[4], extended direct algebraic [5], homotopy perturbation 
transform [6], modified variational iteration algorithm-I 
[7], and modified variational iteration algorithm-II [8]. 

In recent years, mathematicians and scientists have 
been interested in studying the solutions of fractional 
differential equations because of their various 
applications in fields such as physics, biology, 
mathematics, chemistry, viscoelasticity, ecology, 
turbulence, nanotechnology, ecology, aerodynamics, 
control theory, and so on [9-11]. In the literature, the 
homotopy analysis method [12, 13], the operational 
collocation method [13], the finite difference method 
[13], the homotopy analysis transform method [14], the 

generalized Adams-Bashforth Moulton method [15], and 
the Euler method [16] have been used in solving many 
fractional differential equations. So far, the time fractional 
fKDV equation is investigated by utilized homotopy 
perturbation transform [17], simplest equation [18], trial 
equation [19], Lie group analysis [20], generalized exp(-
∅(ξ))-expansion [21], novel hyperbolic and exponential 
ansatz [22] methods. However, the RPSM has not yet been 
used in the literature to solve the fractional fKdV 
equation. Hence, the goal of this study is to get 
approximate solutions of the time fractional fKdV 
equation  

 
𝐷𝑡
𝑣(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)𝑣𝑥𝑥𝑥(𝑥, 𝑡) +

𝑣𝑥𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 0,    0 < 𝛼 ≤ 1        (1) 
 

by utilizing the RPSM. Here, 𝐷𝑡
𝛼 represents the Caputo 

derivative of 𝑣(𝑥, 𝑡). The RPSM is offered by Abu Arqub 
[23] is an efficient method to find the values of the power 
series solution for fuzzy differential equations. Without 
perturbation, discretization, or linearization, the 
proposed method suggests a powerful and simple power 
series solution for differential equations. RPSM has also 
fewer processing requirements, require less time, and is 
more reliable compared to the Taylor series method. 
Besides, this method does not require comparing the 
coefficients of the corresponding terms or a recursion 
relationship. Moreover, the proposed method does not 
perform any transformation in the transition from simple 
linearity to complex nonlinearity and from the low order 
to higher order. In the literature, many fractional 

http://xxx.cumhuriyet.edu.tr/
https://orcid.org/0000-0001-7447-9219


Çulha Ünal / Cumhuriyet Sci. J., 43(3) (2022) 468-476 

469 

differential equations have also been solved by suggested 
method, for example, the Zakharov-Kuznetsov equation 
[24], the Klein-Gordon equation [25], the Boussinesq-
Burger’s equation [26], the foam drainage equation [27],  
 

the Swift-Holenberg equation [28], the Sharma-Tasso-
Olever equation [29], the Fisher equation [30], the 
Vibration equation [31], the Navier-Stokes equation [32], 
and the biological population diffusion equations [33]. 
 

Preliminaries 
 
In this section, we examine some definitions and theorems for the fractional power series and the Caputo derivative. 

More detailed information about these can be found in [34,35]. 
Definition 2.1. [34] The Riemann-Liouville fractional integral operator with order 𝛼 is expressed as 
 

𝐽𝛼𝑓(𝑥) = {

1

Γ(𝛼)
∫(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡,        𝛼 > 0,

𝑥

0

  𝑥 > 0

𝑓(𝑥),                                       𝛼 = 0.

 

 
Definition 2.2. [34] The Caputo fractional derivative with order 𝛼 is defined as 
 

 𝐷𝛼𝑓(𝑥) = 𝐽𝑛−𝛼D𝑛𝑓(𝑥)   

            =
1

Γ(𝑛−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡)𝑑𝑡,

,

𝑥

0
    𝑥 > 0,     𝑛 − 1 < 𝛼 < 𝑛 ∈ ℤ+ 

 
where D𝑛 is the classic differential operator. Utilizing the Caputo derivative, the following is also gained  

 

𝐷𝛼𝑥𝛽 = 0,          𝛽 < 𝛼, 

𝐷𝛼𝑥𝛽 =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑥𝛽−𝛼 ,                𝛽 ≥ 𝛼. 

 
Definition 2.3. [34] For 𝑛 is the smallest integer which exceeds 𝛼, the Caputo time fractional differential operator of 

order 𝛼 of  𝑣(𝑥, 𝑡) is defined as 
 

𝐷𝑡
𝛼𝑣(𝑥, 𝑡) =

{
 
 

 
 1

Γ(𝑛 − 𝛼)
∫(𝑡 − 𝜏)𝑛−𝛼−1

𝜕𝑛𝑣(𝑥, 𝜏)

𝜕𝜏𝑛
𝑑𝜏,            𝑛 − 1 < 𝛼 < 𝑛

𝑡

0

𝜕𝑛𝑣(𝑥, 𝑡)

𝜕𝑡𝑛
,                                                               𝛼 = 𝑛 ∈ ℕ.

 

 
Definition 2.4. [35] A power series expanding which is called a fractional power series at 𝑡 = 𝑡0 of the form 
 

∑𝑐𝑛(𝑡 − 𝑡0)
𝑛𝛼 =

∞

𝑛=0

𝑐0 + 𝑐1(𝑡 − 𝑡0)
𝛼 + 𝑐2(𝑡 − 𝑡0)

2𝛼 +⋯ ,     0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛,     𝑡 ≥ 𝑡0, 

 
where the constants 𝑐𝑛’s are called the coefficients of the series and 𝑡 is a variable. 

Theorem 2.1. [35] Assume that 𝑓 has a fractional power series at 𝑡 = 𝑡0 of the manner 
 

𝑓(𝑡) =∑𝑐𝑛(𝑡 − 𝑡0)
𝑛𝛼

∞

𝑛=0

 ,         0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛,     𝑡0 ≤ 𝑡 < 𝑡0 +𝑅. 

 
If 𝐷𝑛𝛼𝑓(𝑡) are continuous on (𝑡0, 𝑡0 + 𝑅),  then  

 

𝑐𝑛 =
𝐷𝑛𝛼𝑓(𝑡0)

Γ(𝑛𝛼 + 1)
,           𝑛 = 0,1,2,…, 

 
where 𝐷𝑛𝛼 = 𝐷𝛼 . 𝐷𝛼 …𝐷𝛼, and 𝑅 is the radius of convergence. 
Theorem 2.2. [35] Assume that 𝑣(𝑥, 𝑡) is a multiple fractional power series at 𝑡 = 𝑡0 of the form 

𝑣(𝑥, 𝑡) = ∑𝑓𝑛(𝑥)(𝑡 − 𝑡0)
𝑛𝛼 ,        𝑥 ∈ 𝐼 ,      0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛 ,

∞

𝑛=0

     𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅. 
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When 𝐷𝑡

𝑛𝛼𝑣(𝑥, 𝑡) are continuous on 𝐼 × (𝑡0, 𝑡0 +𝑅),  𝑓𝑛(𝑥) are described by 
 

𝑓𝑛(𝑥) =
𝐷𝑡
𝑛𝛼𝑣(𝑥, 𝑡0)

Γ(𝑛𝛼 + 1)
 ,        𝑛 = 0,1,2,… . 

 

Here, 𝐷𝑡
𝑛𝛼 =

𝜕𝑛𝛼

𝜕𝑡𝑛𝛼
=

𝜕𝛼

𝜕𝑡𝛼
.
𝜕𝛼

𝜕𝑡𝛼
…

𝜕𝛼

𝜕𝑡𝛼
 , and 𝑅 = min𝑐∈𝐼𝑅𝑐, that 𝑅𝑐 is effect domain of convergency of the fractional power 

series ∑ 𝑓𝑛(𝑐)(𝑡 − 𝑡0)
𝑛𝛼∞

𝑛=0 . 
  

Basic Idea of  Suggested Method 
 
In this part of the paper, we examine a solution procedure for the suggested method. To present the basic idea of 

proposed method, we study the nonlinear fractional differential equation in the form 
 
𝐷𝑡
𝑣(𝑥, 𝑡) = 𝑁(𝑣) + 𝑅(𝑣),       0 <  ≤ 1,     𝑡 > 0,                                               (2) 

 
by the initial condition 
 
𝑣(𝑥, 0) = 𝑓(𝑥). 
 
Here, 𝐷𝑡

𝛼𝑣(𝑥, 𝑡) represents the Caputo derivative of  𝑣(𝑥, 𝑡), 𝑁(𝑣) and 𝑅(𝑣) denote nonlinear and linear terms, 
respectively. The RPSM proposes the solution for Eq. (2) with a fractional power series at 𝑡 = 0, 

 

𝑣(𝑥, 𝑡) = ∑𝑓𝑛(𝑥)
𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
 ,       𝑥 ∈ 𝐼,       0 < 𝛼 ≤ 1 ,

∞

𝑛=0

        0 ≤ 𝑡 < 𝑅. 

 
Then, the 𝑘th truncated series of 𝑣(𝑥, 𝑡), that is 𝑣𝑘(𝑥, 𝑡) can be given as  
 

𝑣𝑘(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)
𝑡𝑛𝛼

Γ(𝑛𝛼+1)
 ,       𝑥 ∈ 𝐼, 0 < 𝛼 ≤ 1 ,𝑘

𝑛=0       0 ≤ 𝑡 < 𝑅,                (3) 

 
where 𝑣0 = 𝑓0(𝑥) = 𝑣(𝑥, 0) = 𝑓(𝑥). Eq. (3) can be also expressed as 

 

𝑣𝑘(𝑥, 𝑡) = 𝑓(𝑥) + ∑ 𝑓𝑛(𝑥)
𝑡𝑛𝛼

Γ(𝑛𝛼+1)
 ,       𝑥 ∈ 𝐼,      0 < 𝛼 ≤ 1 ,𝑘

𝑛=1     0 ≤ 𝑡 < 𝑅,    𝑘 = 1,2,….       (4) 

 
In order to obtain the 𝑓𝑛(𝑥) in series expansion (4), the residual function for Eq. (1) is given below: 
 
𝑅𝑒𝑠𝑣(𝑥, 𝑡) = 𝐷𝑡

𝛼𝑣(𝑥, 𝑡) − 𝑁(𝑣) − 𝑅(𝑣). 
 
Therefore, the 𝑘-th residual function 𝑅𝑒𝑠𝑣,𝑘 is 

 
𝑅𝑒𝑠𝑣,𝑘(𝑥, 𝑡) = 𝐷𝑡

𝛼𝑣𝑘(𝑥, 𝑡) − 𝑁(𝑣𝑘) − 𝑅(𝑣𝑘).                                           (5) 
 
As in [23, 36-39], some effective relations of RPSM are described as follows: 
𝑅𝑒𝑠𝑣(𝑥, 𝑡) = 0, 
 
lim
𝑘→∞

𝑅𝑒𝑠𝑣,𝑘(𝑥, 𝑡) = 𝑅𝑒𝑠𝑣(𝑥, 𝑡) for 𝑥 ∈ 𝐼 and 𝑡 ≥ 0, 

 
𝐷𝑡
𝑛𝛼𝑅𝑒𝑠𝑣(𝑥, 0) = 𝐷𝑡

𝑛𝛼𝑅𝑒𝑠𝑣,𝑘(𝑥, 0) = 0,          𝑛 = 0,1,… , 𝑘.         (6) 

 
The RPSM and its applications are based on these relations. 
The RPSM is clarified by substituting 𝑘th truncated series of 𝑣(𝑥, 𝑡) in Eq. (5) and computing the fractional derivative 

𝐷𝑡
(𝑘−1)𝛼

 of 𝑅𝑒𝑠𝑣,𝑘(𝑥, 𝑡) for 𝑘 = 1,2, .... Then, utilizing the relation (6), the algebraic equation in the form 

 

𝐷𝑡
(𝑘−1)𝛼𝑅𝑒𝑠𝑣,𝑘(𝑥, 0) = 0,         0 < 𝛼 ≤ 1,    0 ≤ 𝑡 < 𝑅,     𝑡 = 0,    𝑘 = 1,2,….       (7) 
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Solutions of the Time Fractional fKdV Equation       
 

In this section, we consider Eq. (1) by the initial condition 
 

𝑣(𝑥, 0) = 𝑒𝑥.                                                                (8) 
 
The exact solution for Eq. (1) when 𝛼 = 1 is [1] 
 
𝑣(𝑥, 𝑡) = 𝑒𝑥−𝑡 . 
 
For Eq. (1), we express the following residual function as 
 

𝑅𝑒𝑠𝑣(𝑥, 𝑡) = 𝐷𝑡
𝛼𝑣(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑣(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)

𝜕3

𝜕𝑥3
𝑣(𝑥, 𝑡) +

𝜕5

𝜕𝑥5
𝑣(𝑥, 𝑡), 

 
and 𝑘-th residual function 𝑅𝑒𝑠𝑣,𝑘, 

 

𝑅𝑒𝑠𝑣,𝑘(𝑥, 𝑡) = 𝐷𝑡
𝛼𝑣𝑘(𝑥, 𝑡) + 𝑣𝑘(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑣𝑘(𝑥, 𝑡) − 𝑣𝑘(𝑥, 𝑡)

𝜕3

𝜕𝑥3
𝑣𝑘(𝑥, 𝑡) +

𝜕5

𝜕𝑥5
𝑣𝑘(𝑥, 𝑡).        (9) 

 
In order to gain coefficient 𝑓1(𝑥), we consider 𝑘 = 1 in Eq. (9) and we get 
 

𝑅𝑒𝑠𝑣,1(𝑥, 𝑡) = 𝐷𝑡
𝛼𝑣1(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑣1(𝑥, 𝑡) − 𝑣1(𝑥, 𝑡)

𝜕3

𝜕𝑥3
𝑣1(𝑥, 𝑡) +

𝜕5

𝜕𝑥5
𝑣1(𝑥, 𝑡), 

 
where 
 

𝑣1(𝑥, 𝑡) = 𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
, 

 
for 
 
𝑣0 = 𝑓0(𝑥) = 𝑓(𝑥) = 𝑣(𝑥, 0) = 𝑒

𝑥 . 
 
Hence, we gain 
 

𝑅𝑒𝑠𝑣,1(𝑥, 𝑡) = 𝑓1(𝑥) + (𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
)(𝑓′(𝑥) + 𝑓1′(𝑥)

𝑡𝛼

Γ(𝛼 + 1)
)

− (𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
)(𝑓′′′(𝑥) + 𝑓1

′′′(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
) + 𝑓(5)(𝑥) + 𝑓1

(5)(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
. 

 
From Eq. (7), we get 𝑅𝑒𝑠𝑣,1(𝑥, 0) = 0, and thus 

 
𝑓1(𝑥) = −𝑒

𝑥 . 
 
Therefore, the first RPS solution of Eq. (1) is 
 

𝑣1(𝑥, 𝑡) = 𝑒
𝑥 − 𝑒𝑥

𝑡𝛼

Γ(𝛼 + 1)
. 

Similarly, substituting 𝑘 = 2 in Eq. (9) to yield the coefficient 𝑓2(𝑥), we get 
 

𝑅𝑒𝑠𝑣,2(𝑥, 𝑡) = 𝐷𝑡
𝛼𝑣2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑣2(𝑥, 𝑡) − 𝑣2(𝑥, 𝑡)

𝜕3

𝜕𝑥3
𝑣2(𝑥, 𝑡) +

𝜕5

𝜕𝑥5
𝑣2(𝑥, 𝑡), 

 
where 

𝑣2(𝑥, 𝑡) = 𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
. 

Therefore, we have 
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𝑅𝑒𝑠𝑣,2(𝑥, 𝑡) = 𝑓1(𝑥) + 𝑓2(𝑥)
𝑡𝛼

Γ(𝛼 + 1)

+ (𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
)(𝑓′(𝑥) + 𝑓1′(𝑥)

𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2′(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
)

− (𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
)(𝑓′′′(𝑥) + 𝑓1

′′′(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2

′′′(𝑥)
𝑡2𝛼

Γ(2𝛼 + 1)
)

+ 𝑓(5)(𝑥) + 𝑓1
(5)(𝑥)

𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2

(5)(𝑥)
𝑡2𝛼

Γ(2𝛼 + 1)
. 

 
From Eq. (7), we gain 𝐷𝑡

𝛼𝑅𝑒𝑠𝑣,2(𝑥, 0) = 0, and hence 

 
𝑓2(𝑥) = 𝑒

𝑥 . 
 
Therefore, the second RPS solution of Eq. (1) is 
 

𝑣2(𝑥, 𝑡) = 𝑒
𝑥 − 𝑒𝑥

𝑡𝛼

Γ(𝛼 + 1)
+ 𝑒𝑥

𝑡2𝛼

Γ(2𝛼 + 1)
. 

 
Likewise, substituting 𝑘 = 3 in Eq. (9) to obtain the coefficient 𝑓3(𝑥), we have 
 

𝑅𝑒𝑠𝑣,3(𝑥, 𝑡) = 𝐷𝑡
𝛼𝑣3(𝑥, 𝑡) + 𝑣3(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑣3(𝑥, 𝑡) − 𝑣3(𝑥, 𝑡)

𝜕3

𝜕𝑥3
𝑣3(𝑥, 𝑡) +

𝜕5

𝜕𝑥5
𝑣3(𝑥, 𝑡), 

 
where 
 

𝑣3(𝑥, 𝑡) = 𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
+ 𝑓3(𝑥)

𝑡3𝛼

Γ(3𝛼 + 1)
. 

 
Therefore, we get 
 

𝑅𝑒𝑠𝑣,3(𝑥, 𝑡) = 𝑓1(𝑥) + 𝑓2(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓3(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)

+ (𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
+ 𝑓3(𝑥)

𝑡3𝛼

Γ(3𝛼 + 1)
)(𝑓′(𝑥) + 𝑓1′(𝑥)

𝑡𝛼

Γ(𝛼 + 1)

+ 𝑓2′(𝑥)
𝑡2𝛼

Γ(2𝛼 + 1)
+ 𝑓3′(𝑥)

𝑡3𝛼

Γ(3𝛼 + 1)
)

− (𝑓(𝑥) + 𝑓1(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
+ 𝑓3(𝑥)

𝑡3𝛼

Γ(3𝛼 + 1)
)(𝑓′′′(𝑥) + 𝑓1

′′′(𝑥)
𝑡𝛼

Γ(𝛼 + 1)

+ 𝑓2
′′′(𝑥)

𝑡2𝛼

Γ(2𝛼 + 1)
+ 𝑓3

′′′(𝑥)
𝑡3𝛼

Γ(3𝛼 + 1)
) + 𝑓(5)(𝑥) + 𝑓1

(5)(𝑥)
𝑡𝛼

Γ(𝛼 + 1)
+ 𝑓2

(5)(𝑥)
𝑡2𝛼

Γ(2𝛼 + 1)

+ 𝑓3
(5)(𝑥)

𝑡3𝛼

Γ(3𝛼 + 1)
. 

 
From Eq. (7), we gain 𝐷𝑡

2𝛼𝑅𝑒𝑠𝑣,3(𝑥, 0) = 0, and hence 

 
𝑓3(𝑥) = −𝑒

𝑥 . 
 
Therefore, the third RPS solution of Eq. (1) is 
 

𝑣3(𝑥, 𝑡) = 𝑒
𝑥 − 𝑒𝑥

𝑡𝛼

Γ(𝛼 + 1)
+ 𝑒𝑥

𝑡2𝛼

Γ(2𝛼 + 1)
− 𝑒𝑥

𝑡3𝛼

Γ(3𝛼 + 1)
. 

 
Using the same process for 𝑘 = 4, the following is obtained as 
 
𝑓4(𝑥) = 𝑒

𝑥 , 

𝑣4(𝑥, 𝑡) = 𝑒
𝑥−𝑒𝑥

𝑡𝛼

Γ(𝛼 + 1)
+𝑒𝑥

𝑡2𝛼

Γ(2𝛼 + 1)
−𝑒𝑥

𝑡3𝛼

Γ(3𝛼 + 1)
+ 𝑒𝑥

𝑡4𝛼

Γ(4𝛼 + 1)
. 
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To validate the accuracy and efficiency of the suggested method, the numerical comparisons of the fourth RPS 

solution with the exact solution for 𝛼 = 1 and different values of 𝑥 and 𝑡 are illustrated in Table 1. Clearly observed 
from Table 1 that the absolute error is being smaller when the value of the 𝑡 is decreasing 

Table 1. Comparison between the solutions v_4 (x,t) and the exact solution for α=1. 

x t v4 (x,t) Exact solution Absolute error 

 
 

-10 

0 
0.2 
0.4 
0.6 
0.8 
1 

4.53999x10−5 
3.71704x10−5 
3.04361x10−5 
2.49427x10−5 
2.05087x10−5 
1.7025x10−5 

4.53999x10−5 
3.71703x10−5 
3.04325x10−5 
2.4916x10−5 

2.03995x10−5 
1.67017x10−5 

0 
1.x10−10 

3.6299x10−9 
2.67117x10−8 
1.09158x10−7 
3.23273x10−7 

 
 

-5 

0 
0.2 
0.4 
0.6 
0.8 
1 

6.73795x10−3 
5.51658x10−3 
4.51712x10−3 
3.70183x10−3 
3.04376x10−3 
2.52673x10−3 

6.73795x10−3 
5.51656x10−3 
4.51658x10−3 
3.69786x10−3 
3.02755x10−3 
2.47875x10−3 

0 
1.73856 x10−8 
5.38726x10−7 
3.96436x10−6 
1.62005x10−5 
4.79779x10−5 

 
 

0 

0 
0.2 
0.4 
0.6 
0.8 
1 

1 
8.18733x10−1 

6.704x10−1 
5.494x10−1 

4.51733x10−1 
3.75x10−1 

1 
8.18731x10−1 
6.7032x10−1 

5.48812x10−1 
4.49329x10−1 
3.67879x10−1 

0 
2.58026x10−6 
7.9954x10−5 

5.88364x10−4 
2.40437x10−3 
7.12056x10−3 

 
 

5 

0 
0.2 
0.4 
0.6 
0.8 
1 

1.48413x102 
1.21511x102 
9.94962x101 
8.15382x101 
6.70432x101 
5.56549x101 

1.48413x102 
1.2151x102 

9.94843x101 
8.14509x101 
6.66863x101 
5.45982x101 

0 
3.82944x10−4 
1.18662x10−2 
8.73209x10−2 
3.5684x10−1 
1.05678x100 

 
 

10 

0 
0.2 
0.4 
0.6 
0.8 
1 

2.20265x104 
1.80338x104 
1.47665x104 
1.21013x104 
9.95009x103 
8.25992x103 

2.20265x104 
1.80337x104 
1.47648x104 
1.20884x104 
9.89713x103 
8.10308x103 

0 
5.68339x10−2 

1.7611x100 
1.29596x101 
5.29598x101 
1.56841x102 

 
In Figure 1, for −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 1 when 𝛼 = 1, the comparison between the 𝑣4(𝑥, 𝑡) solution and the 

exact solution is illustrated. When equal parameters are selected, the fourth RPS solutions have similar shapes to the 
exact solutions, as seen in Figure 1. 

.   
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Figure 1. The graph of the exact solution and the 𝑣4(𝑥, 𝑡) of Eq. (1) when 𝛼 = 1. 

 

The RPS solution 𝑣4(𝑥, 𝑡) is illustrated in Figure 2, for −20 ≤ 𝑥 ≤ 20 and 0 ≤ 𝑡 ≤ 25 when 𝛼 = 0.2, 𝛼 = 0.5, 𝛼 =
0.8, 𝛼 = 1. When 𝛼 = 1 is chosen among the different values of 𝛼, the 𝑣4(𝑥, 𝑡) is closest to the exact solution. 
 

 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 2. 3D graph of the fourth RPS solution of Eq. (1): (a) 𝑣4(𝑥, 𝑡) when 𝛼 = 0.2, (b) 𝑣4(𝑥, 𝑡) when 𝛼 = 0.5, (c) 
𝑣4(𝑥, 𝑡) when 𝛼 = 0.8, (d) 𝑣4(𝑥, 𝑡) when 𝛼 = 1. 
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For −20 ≤ 𝑥 ≤ 20  and 𝑡 = 15 at the different 𝛼 values, the 𝑣4(𝑥, 𝑡) is demonstrated in Figure 3. In this figure, the 
line with dots represents the solution at 𝛼 = 0.2, the unitary line represents the solution at 𝛼 = 0.5, the line with 
dashes represents the solution at 𝛼 = 0.8, and the line with dot-dash represents the solution at 𝛼 = 1. It is clear that 
from Figure 3, the frequency increases as 𝑥 approaches to zero. Besides, clearly seen from Figure 3 that the 𝑣4(𝑥, 𝑡) 
solution approaches the exact solution as the value of the 𝛼 increases. 

 

 

Figure 3. 2D graph of the 𝑣4(𝑥, 15) for 𝛼 = 0.2, 𝛼 = 0.5, 𝛼 = 0.8, and 𝛼 = 1. 

Conclusions 
 
In this study, the RPSM was utilized to gain 

approximate solutions of the time fractional fKdV 
equation. These solutions were numerically compared to 
the exact solutions in Table 1. In this table, for 𝛼 = 1 and 
different values of 𝑥 and 𝑡, the absolute errors of the RPS 
solutions were also introduced. In Table 1, when the 
numerical results were examined, the reliability of the 
proposed method for the time fractional fKdV equation 
had emerged. Besides, the fourth RPS solutions were 
demonstrated by 2D and 3D graphs. It could be seen in 
Figure 1 that the fourth RPS solution has similar shapes to 
the exact solution when equal parameters were chosen. 
The RPS solution 𝑣4(𝑥, 𝑡) was illustrated for the different 
values of 𝛼 in Figure 2 and Figure 3. All graphics were 
showed by the help of Mathematica. In addition, it was 
seen that RPSM achieved a high accuracy when the 
numerical results were analyzed in this paper. 

When the RPSM is studied, it has more advantages 
than other methods in the literature. The RPSM is useful 
and effective method for solving nonlinear partial 
differential equations. The suggested method also does 
not require any linearization, transformation, 
discretization, or perturbation. Besides, this method does 
not need any small parameter for iterative solution. 
Moreover, by minimizing the residual error, the RPSM 
provides convergence of the series solution. Furthermore, 

by selecting a suitable initial estimate approximation, the 
proposed method can be used in nonlinear problems. As 
a result, the RPSM can be utilized to solve a wide range of 
fractional differential equations in mathematics and 
science. 
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