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Abstract. In this paper, we study a special class of timelike surface which is called constant timelike angle surfaces in de 

Sitter space 
3

1S . In 
3

1S , conditions being a constant angle timelike surface have been determined and invariants of these 

surface have been investigated. In here, we use the angle between unit normal vector field of surfaces and a fixed spacelike 

axis in ambient space. 

Keywords: Constant angle surfaces , de Sitter space , Helix , Timelike surface 

De-Sitter Uzayında Sabit Açılı Zamansal Yüzeyler 

Özet. Bu çalışmada, yüzeyin birim normal vektör alanı ve  
4

1R de sabit bir uzaysal eksen arasındaki açıyı kullanarak, de-

Sitter uzayında sabit zamansal açılı yüzeyler olarak adlandırılan zamansal yüzeylerin özel bir sınıfı geliştirilmiştir. 

Anahtar Kelimeler: Sabit açılı yüzeyler, de-Sitter uzayı, Helis, zamansal yüzeyler 

 

1. INTRODUCTION 

In three dimensioan Euclidean space 
3E ,  a constant angle surfaces are a surfaces whose tangents 

make constant angle with a fixed direction in ambient space. A surface whose tangent planes makes a 

constant angle with a fixed vector field is called constant angle surface in ambient space. M.I. 

Munteanu and A.I. Nistor studied constant angle surface and obtained all class of constant angle 

surface in 
3E  [6]. Constant angle surface have been studied by A.J. Scale and G.R. Hernandez in n-

dimension Euclidean space 
nE  [13,14]. The Constant angle surface were applied to liquid layers and 

liquid crystals by P. Germelli and A.J. Scala [12]. Constant angle surface have been studied recently in 

product spaces 
2S R  [15] , 

2H R  [16] or different ambient spaces 
3Nil [17]. In [1], Lopez and 

Munteanu studied constant hyperbolic angle surfaces whose unit normal timelike vector field makes a 

constant hyperbolic angle with a fixed timelike axis in Minkowski space 
4

1R  . In the literature constant 

timelike and spacelike angle surface have not been investigated both in hyperbolic space 
3H  and de 

sitter space 
3

1S . A constant timelike and a spacelike angle surface in Hyperbolic space 
3H  and 

constant angle spacelike surface in de sitter space 
3

1S  are developed in our paper [19] , [20] and [21]. 

Constant timelike angle surface is a surface whose tangent planes makes a constant angle with a fixed 

vector field of 
3

1S  . De Sitter space  is a good model for a physical phenomenon. This kind of surfaces 

in de Sitter space 
3

1S  involved with our daily life such as architecture and geometrical design. 
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Probably, architectural structures and geometrical designs that use de Sitter curves enter into our life in 

the future. In this paper we introduce constant timelike angle timelike surfaces in de Sitter space 
3

1S .  

2. PRELIMINIARIES 

 

Let 
4

1R  be 4-dimensional vector space equipped with the scalar product ,  which is defined by 

 

1 1 2 2 3 3 4 4,x y x y x y x y x y     . 

4

1R  is 4-dimensional vector space equipped with the scalar product ,  , than 
4

1R  is called Lorentzian 

4- space or 4-dimensional Minkowski space. The Lorentzian norm (length) of x  is defined to be 

 
1

2,x x x . 

 

If   0 1 2 3, , ,i i i ix x x x  is the coordinate of 
ix  with respect to canonical basis  0 1 2 3, , ,e e e e of 

4

1R , then the 

lorentzian cross product 
1 2 3x x x   is defined by the symbolic determinant 

 

0 1 2 3

1 1 1 1

0 1 2 3

1 2 3 2 2 2 2

0 1 2 3

3 3 3 3

0 1 2 3

e e e e

x x x x
x x x

x x x x

x x x x



   . 

 

On can easly see that 

 

 1 2 3 4 1 2 3 4, det , , ,x x x x x x x x   . 

 

In [2],[3]and [5] Izimuya at all introduced and investigated differantial geometry of curves and 

surfaces in Hyperbolic 3-space. In the rest of this section, we give background of context in [22]. 

Given a vector 
4

1v R and a real number c , the hyperplane with pseudo normal v  is defined by 

 

 4

1( , ) , ,HP v c x R x v c   . 

 

 We say that ),( cvHP is a spacelike hyperplane, timelike hyperplane or lightlike hyperplane if v  is 

timelike, spacelike or lightlike respectively. We have following three types of pseudo-spheres in 
4

1R : 

 

Hyperbolic-3 space  :    3 4

1 01 , , 1, 1H x R x x x      , 

                         de Sitter 3- space :  3 4

1 1 , , 1S x R x x   , 

                         (open) lightcone :   4

1 0/ 0 , , 0, 1LC x R x x x     . 

 

 We also define the lightcone 3-sphere 

 

 3 4

1 0, , 0, 1S x R x x x     . 
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A hypersurface given by the intersection of 
3

1S  with a spacelike (resp.timelike) hyperplane is called an 

elliptic hyperquadric (resp. hyperbolic hyperquadric). If 0c   and ),( cvHP  is lightlike , then 

3

1( , )HP v c S  is a de Sitter horosphere.  

Let 
2U IR be open subset, and let 

3

1: SUx  be an embedding. If  the vector subspace U  

which generated by  
1 2
,u ux x  is spacelike, then x  is called spacelike surface, if U  contain at least a 

timelike vector field then x  is called timelike surface in 
3

1S . 

  In point of view Kasedou [22], we construct the extrinsic differantial geometry of curves in 
3

1S . Since 
3

1S is a Riemannian manifold, the regular curve 
3

1: SI   is given by arclength 

parameter. 

 

Theorem 1 

i) if 
3

1: SI   is a spacelike curve with unit speed, then Frenet-Serre type formulae is obtained 

 

'( ) ( )

'( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( )

'( ) ( ) ( )

d

d d

d

s t s

t s s n s s

n s s t s s e s

e s s n s



 

 






 


  
  

 

where ( ) || '( ) ( ) ||d s t s s   and 
       

2

det( , ' , '' , ''' )
( )

( )
d

d

s s s s
s

s

   



  . 

     ii) If 
3

1: SI  is a timelike curve with unit speed, then Frenet-Serre type formulae is obtained 

 

'( ) ( )

'( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( )

'( ) ( ) ( )

d

d d

d

s t s

t s s n s s

n s s t s s e s

e s s n s



 

 






 


 
  

 

 

where ( ) || '( ) ( ) ||d s t s s   and 
       

2

det( , ' , '' , ''' )
( )

( )
d

d

s s s s
s

s

   



  . 

 

 It is easily see that ( ) 0d s   if and only if there exists a lightlike vector c  such that 

( )s c   is a geodesic. 

Now we give extrinsic differential geometry on surfaces in 
3

1S  due to Kasedou [22]. 

Let 
2U IR  is an open subset, and 

3

1: SUx  is a regular surface )(uxM  . Since M is a 

timelike surface, there is e( 1 2

1 2

( ) ( ) ( )
( )

|| ( ) ( ) ( ) ||

x u x u x u
e u

x u x u x u

 


 
such that , , 0, , 1

iue x e x e e   . 

Thus there is de Sitter Gauss image of x  which is defined by mapping 
2 3

1:E U IR S  , ( ) ( )E u e u . The lightcone Gauss image of x  is defined by map :L U LC   

 

     L u x u e u   . 

 

The derivative  0dx u can be identify by the mapping 1
pT M on the tangent space pT M . 
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Therefore, we have 

 

   0 01
PT MdL u dE u   . 

 

The linear transformations 

 

 0: :p p pS dL u T M T M     

 

 and 

 

 0: :p p pA dE u T M T M    

 

 is called the hyperbolic shape operator and de Sitter shape operator of M at  0p x u . 

Let ( )iK p
 and  ( ), 1, 2iK p i   be the eigenvalues of 



pS  and pA . Since 

 

1
pp T M pS A    , 

 


pS  and pA  have same eigenvectors and relations 

 

   pKpK ii  1 . 

( )iK p
and  ( ), 1, 2iK p i   are called hyperbolic and de Sitter principal curvetures of M at 

 0p x u . 

 Let  s  be a unit speed curve on M , with     1 2,p u s u s . We consider the 

hyperbolic curvature vector      sstsk  '  and the de Sitter normal curvature 

 

                1,,',, 02010020100   susuLstsusuLsksKn  

 

of     1 0 2 0,p u s u s . The de Sitter normal curvature depends only on the point p  and the unit 

tangent vector of M  at p .  Hyperbolic normal curvature of  s  is defined to be 

 

    1n nK s K s   . 

 

The Hyperbolic Gauss curvature and mean curvature of M at  0p x u  is given by 

 

     pKpKSuK ph

  210 det  

 

 and 

 

 
   1 2

0

1

2 2
h p

K p K p
H u TraceS

 

 


  . 

 

 And also the extrinsic (de Sitter) Gauss curvature and mean curvature of M at  0p x u is given by 
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     0 1 2deteK u Ap K p K p   

 

 and 

 

 
   1 2

0

1

2 2
d

K p K p
H u TraceAp


  . 

 

Let 
4

1:x M R  be an immersion of a surface M  into 
4

1R . We say that x  is timelike (resp. 

spacelike, lightlike) if the induced metric on M  via x  is Lorentzian (resp.  Riemannian, 

degenerated). If , 1x x  , then x  is an immersion of 
3

1S . 

Let 
3

1:x M S  be a spacelike immersion, and let   be a unit normal vector field to M  . If 

there exists spacelike direction W such that timelike angle  ,U   is constant on M  , then M  is 

called constant timelike angle surfaces with spacelike axis. 

Let 
3

1:x M S  be a spacelike immersion and let   be a unit normal vector field to M . If 

there exists spacelike direction W  such that spacelike angle  ,U   is constant on M , then M  is 

called constant spacelike angle surfaces with spacelike axis. 

    From now on, the constant angle surface is proposed in de Sitter space 
3

1S . 

 

3. TIMELIKE SURFACE WITH CONSTANT TIMELIKE ANGLE 

 

 Let call )(M  is tangent vector fields space over M . Let write DD, and D  are Levi-Civita 

connections of 
4 3

1 1,R S and M  respectively.  For any , ( )X Y M , we have 

( )T
XXD Y D Y ( )T

XXD Y D Y , ( , ) ( )XV X Y D Y   

here V  is second fundamental form of M  over 
4

1R and 

, , ( , )X X X XD Y D Y X Y x D Y D Y V X Y                                                                        (3.1)  

where the superscript T  and   are the tangent and normal component of XD Y . Equations in (3.1) 

are called the Gauss formula of M  on 
3

1S . If   is a normal vector field of M over 
3

1S , then )(XA  

and )(XBx  Weingarten Endomorphism are defined by the tangent components of XD  and -

XD x . So the Weingarten equations of the vector field   and x  will be as follows 

( ) ,

( ) ,

X X

X Xx

A X D D x x

B X D x D x

  

 

   


   


                                                                                               (3.2) 

It is clear that )(XA  and )(XBx  operators for each Mp  are both linear and self adjoint 

operators. That is 
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( ), , ( )A X Y X A Y   and ( ), , ( )x xB X Y X B Y . 

Let called eigenvalues )(PKi of  
p

A
over 

3

1S  and eigenvalues ( )iK P of  x p
B  over 

4

1R  are 

principal curvetures and also, for any )(, MYX   we have 

 ),,(
~

),( YXVYXA  , xYXVYXBx ),,(
~

),(  . 

Since ( , )V X Y  is second fundamental form of M  over 
4

1IR , so we can write ( , )V X Y  as follows 

xYXBYXAYXV x ),(),(),(
~

  . 

 Let call 
1 2{ , }v v  is a base of TpM  tangent plane and let us denote 

jijiij vvAvvVa ),(),,(
~

                                                                                               (3.3) 

jixjiij vvBxvvVb ),(),,(
~

                                                                                              (3.4) 

 So  ( , )X XD Y D Y V X Y  . On the other hand for 
1 2{ , }v v  base , we get 

xvvvvAvDvD jijijvjv
i

i
,),(                                                                                    (3.5) 

 If 
1 2{ , }v v  is orthonormal base, then we have from (3.1) and (3.2) 

ijjvjv avDvD
i

i
                                                                                                                (3.6) 

 and also we get 

1 1 2 2iv i iD a v a v                                                                                                                   (3.7) 

1 1 2 2iv i iD x b v b v                                                                                                                    (3.8) 

 

3.1 Constant Timelike Angle Surfaces With Spacelike Axis 

Definition 1 Let 
2U IR  be open set and let 

3

1:x U S  be an embedding where ( )M x U . Let 

3

1:x M S  and   is spacelike unit normal vector field on M , if there exist a constant spacelike 

vector W  which has a constant timelike angle with   , then M  is called constant timelike angle 

surface with spacelike axis. 
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Since our surface is timelike, the orthogonal base of tangent space TpM has a timelike tangent vector. 

Let M  be constant timelike angle surface with spacelike axis, and let   and W  be unit normal and 

fixed axis of M . If   is an timelike angle between spacelike vectors   and W  then 

 cosh, W . 

If 0  , then W  . From now on the rest of the paper, without loss of generality we assume that 

 . If 
TW  is the projection of W  on the tangent plane of M , then we decompose W  as 

T NW W W   

 So that we write 

1 2

TW W x    . 

If we take inner product of both sides of this equality first with  , then with x  

1 2cosh , ,W x     . 

On the other hand since W and x  are spacelike vector fields, then we can use define of spacelike and 

timelike angle between these vectors. 

Theorem 2 If   is spacelike angle between spacelike vectors W and x , then we can write from [11] 

2 2

1sin cosh (cosh ) (cos )W e x         

 and de Sitter projection 
dW of W  as follows 

2 2

1sin cosh (cosh )dW e                                                                                         (3.9) 

Remark 1 Let   be timelike angle between spacelike vectors W and x ,  then we can write for [11] 

 cosh, xW  

 or 

 
2 cosh   . 

 Therefore W  can be written as follows 

    cosh coshTW W x     . 

 On the other hand, since 

 
2

2 2sinh coshTW      
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 then there is not any timelike angle between W and x . 

    Let 
||||

1 T

T

W

W
e  , and let assume 

2e be a unit vector field on M  orthogonal to 
1e . Then 

we have an ortonormal basis 
1 2{ , , , }e e x in 

4

1R for each point of M . Since 
dW  is constant vector 

field on 
3

1S , we have 

0
22

 dede WDWD  

 hence we have 

 
2 2

2 2

1sin cosh (cosh ) 0e eD e D                                                                  (3.10) 

 By (3.10)  , we obtain 

 
2 2

21sin cosh 0a    . 

 Since 
2 2sin cosh 0    , we conclude 01221  aa . Using (3.7) in (3.10), we find 

2 1 22 2
2 2

cosh

sin cosh
eD e a e



 





                                                                              (3.11) 

Similarly, since 
dW is a constant vector field on 

3

1S , then we have 

 0
1

deWD  and 1

2 2sin coshe dD W x                                                              (3.12) 

By (3.9), we see that 

 1 1 1

2 2

1sin cosh (cosh )e e edD W D e D                                                           (3.13) 

 By (3.12) and (3.13), we conclude that 

 1 1

2 2 2 2

1sin cosh (cosh ) sin coshe eD e D x                                         (3.14) 

 By (3.14), then we get 

 
1

2 2

1sin cosh , 0eD e     

 or 

 
2 2

11sin cosh 0a     
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 Since 
2 2sin cosh 0    , we conclude 

11 0a  . Using (3.7) in (3.12) , we obtain 

 

 
1 1eD e x                                                                                                                   (3.15) 

  Hence, we have proved the following theorem. 

Theorem 3 If D  is Levi-Civita connection for a constant timelike angle surface M of 
3

1S , then 

1 21 1 22 2
2 2

cosh
0

sin cosh
e eD e D e a e



 


 


 

1 22 2 22 1
2 2

cosh
0

sin cosh
e eD e D e a e



 


 


. 

Corollary 1 Let M  be a timelike surface with a constant timelike angle in 
3

1S . Then, there exist local 

coordinates ,u v  such that the metric on M  writes as 
222:, dvdu  , where ( , )u v   is a 

smooth function on M , i.e. the coefficients of the first fundamental form are 
21, 0,E F G     .     

Let we find the ),( vuxx   parametrization of the surface M  with respect to the metric 

222:, dvdu   on M . By Theorem-1, one can obtain the following corollary. 

Corollary 2 There exist an equation system for a timelike surface with a constant timelike angle in 
3

1S  

which is 

2 2

22

uu

u
uv v

v
vv u u v

x x

x x

x x x a x






   




 







   


                                                                                   (3.16) 

Corollary 3 Let   be unit normal vector of the a timelike surface with a constant timelike angle M . 

Then the equation below hold 












vxv

xu

xaD

D

v

u

22

0




                                                                                                            (3.17) 

 Since 
vuuv   , we have 0)( 22  vx xaD

u . Using 022 a , 
u vx xv uD x D x  and Theorem 1, we 

obtain 
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2

22 22
2 2

cosh
( ) ( ) 0

sin cosh
ua a



 
 


                                                                                  (3.18) 

or 

22 22( ) ( ) 0u
ua a




                                                                                                              (3.19) 

Hence, we have 

22( ) 0ua                                                                                                                            (3.20) 

 By (3.20),we see that there exist a smooth function )(v   depending on  v  such that 

22 ( )a v                                                                                                                           (3.21) 

Prposition 1 Let ),( vuxx   be parametrization of a timelike surface with a constant timelike angle in 

3

1S . If 022 a on M , then the x  describes an flat plane of de Sitter space 
3

1S . 

         From now on, we are assume that 022 a . By solving equation (3.16), we obtain a 

function ( )v   such that 

 

2 2

2 2

22

sin cosh
, ( ) sin cosh ( )

cosh ( )
a v v

u v

 
  

 

 
  


. 

 Therefore by (3.21) ,we obtain 

 
2 2

( )
( , ) ( cosh ( ))

sin cosh

v
u v u v


  

 


 


.  

 If we choose 
2 2( ) sin coshv v      and ( ) lnv v  , then we have the following theorem. 

 

Theorem  4 If M  is satisfy (3.22), then there exist local coordinates ,u v on M  with having the 

parametrization 

1
22

( )
( , ) ( ) , 1, 2,3, 4

2cosh ( cosh ln )

i
i i

d v
x u v d v i

u v 


  


                                                     (3.23) 

Proof From (3.22), the proof is clear. 
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