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Introduction 

Consider the following polynomial with real 
coefficients 

 
𝑝(𝑧) = 𝑎1 + 𝑎2𝑧 + ⋯+ 𝑎𝑛𝑧𝑛−1 + 𝑎𝑛+1𝑧

𝑛             (1) 
 
where 𝑎𝑛+1 ≠ 0. If 𝑎𝑛+1 = 1 the obtained polynomial 

 
𝑝(𝑧) = 𝑎1 + 𝑎2𝑧 + ⋯+ 𝑎𝑛𝑧𝑛−1 + 𝑧𝑛      (2) 
 

is called a monic polynomial which corresponds to 
𝑛 −dimensional vector 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛)𝑇 ∈ ℝ𝑛. The 
polynomial (1) is called Schur stable polynomial if all roots 
lie in the open unit disc of the complex plane. The set of 
all monic Schur stable polynomials defines the set  

 
𝒟𝑛 = {𝑎 ∈ ℝ𝑛: 𝑝(𝑧) is Schur stable polynomial}.    (3) 
 
𝒟𝑛 is open, bounded and nonconvex subset in ℝ𝑛. The 

closure of 𝒟𝑛 is 
 

𝒟𝑛
̅̅ ̅̅ = {𝑎 ∈ ℝ𝑛: 𝑝(𝑧) has all roots in the closed unit disc}. 

 
Given a non-monic polynomial family 𝒫 with 

multilinear uncertainity 
 

𝒫 = {𝑝(𝑧, 𝑞) = 𝑎1(𝑞) + 𝑎2(𝑞)𝑧 + ⋯+𝑎𝑛(𝑞)𝑧𝑛−1 +
𝑎𝑛+1(𝑞)𝑧𝑛: 𝑞 ∈ 𝑄 ⊂ ℝ𝑙}.         (4)  

 
Here 𝑄 is a box and 𝑎𝑖  (𝑞): 𝑄 → ℝ (𝑖 = 1,2,… , 𝑛 + 1) 

are multilinear functions, that are affine linear with 
respect to each component. Without loss of generality 
assume that 𝑎𝑛+1(𝑞) > 0 for all 𝑞 ∈ 𝑄. If for 𝑞 ∈ 𝑄 the 
polynomial (4) is Schur stable the family (4) is said to be 
robust Schur stable. From now on the term stable will 
mean Schur stable. 

It is well known that a multilinear polynomial family 
appears quite frequently in practical applications [1]. In 
[2], some conditions for the Schur stability of this family 
are given. In [3,4], sufficient conditions are given for 
ensuring Schur stability by using the Edge Theorem. In [5], 
it is suggested a simple algorithm for testing Schur stability 
of a multilinear family and given a result on Schur stability 
of a compact matrix family. 

In Section 2 we discussed the robust stability of non-
monic multilinear polynomial families using the reflection 
coefficients in [6,7] and give a necessary and sufficient 
condition for robust stability of the multilinear polynomial 
family. 

The existence of a stable member in a matrix polytope 
and other related problems has been considered in many 
works (see [1,8,9] and references therein). Finding stable 
member in a polynomial family is one of the hard 
problems of linear control theory (see [10]). In Section 3, 
the necessary and sufficient condition for the existence of 
a stable member in the multilinear non-monic polynomial 
family is given. An application of this condition is shown in 
the example. In Section 4, a method is given for the 
presence of the stable element when the difference 
between degree and the number of uncertain parameters 
is 2 and 3. 

In [6] a multilinear map 𝑓(𝑘1, 𝑘2, … , 𝑘𝑛) =

(𝑓1(𝑘1, 𝑘2, … , 𝑘𝑛),… , 𝑓𝑛(𝑘1, 𝑘2, … , 𝑘𝑛))
𝑇

 has been 

defined by the multiplication of second and first order 
factors;  
If 𝑛 is even 
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𝑓1(𝑘1, 𝑘2, … , 𝑘𝑛) + 𝑓2(𝑘1, 𝑘2, … , 𝑘𝑛)𝑧 + ⋯
+ 𝑓𝑛(𝑘1, 𝑘2, … , 𝑘𝑛)𝑧𝑛−1 + 𝑧𝑛

= [𝑧2 + (𝑘1𝑘2 + 𝑘1)𝑧 + 𝑘2]
⋅ [𝑧2 + (𝑘3𝑘4 + 𝑘3)𝑧 + 𝑘4]⋯ [𝑧2

+ (𝑘𝑛−1𝑘𝑛 + 𝑘𝑛−1)𝑧 + 𝑘𝑛], 
if 𝑛 is odd 
 

𝑓1(𝑘1, 𝑘2, … , 𝑘𝑛) + 𝑓2(𝑘1, 𝑘2, … , 𝑘𝑛)𝑧 + ⋯
+ 𝑓𝑛(𝑘1, 𝑘2, … , 𝑘𝑛)𝑧𝑛−1 + 𝑧𝑛

= [𝑧2 + (𝑘1𝑘2 + 𝑘1)𝑧 + 𝑘2]⋯ [𝑧2

+ (𝑘𝑛−2𝑘𝑛−1 + 𝑘𝑛−2)𝑧 + 𝑘𝑛−1]
⋅ (𝑧 + 𝑘𝑛). 

Proposition 1 ([6]): 𝑝(𝑧) is a Schur polynomial if and 
only if there exist numbers 𝑘𝑗 ∈ (−1,1) such that 𝑎𝑖 =

𝑓𝑖(𝑘1, 𝑘2, … , 𝑘𝑛) (𝑖, 𝑗 = 1,2,… , 𝑛).  
From Proposition 1 follows the following 
Proposition 2: 𝑎 ∈ 𝔇𝑛

̅̅ ̅̅   if and only if there exist 
numbers 𝑘𝑗 ∈ [−1,1] such that 𝑎𝑖 = 𝑓𝑖(𝑘1, 𝑘2, … , 𝑘𝑛) 

(𝑖, 𝑗 = 1,2,… , 𝑛). The defined above map 𝑓 is a 
multilinear. The set 𝑄 = {(𝑞1, 𝑞2, … , 𝑞𝑙)

𝑇: 𝑞𝑖
− ≤ 𝑞𝑖 ≤

𝑞𝑖
+, 𝑖 = 1,2,… , 𝑙} is called a box. The following theorem 

shows that a multilinear image of a box is a polytope, that 
is convex hull of a finite number of points. 

 
Theorem 1 (The mapping theorem [3], p.247): Let 𝑓: 𝑄 →
ℝ𝑛 be a multilinear map, where 𝑄 is a box with the set of 

extreme points {𝑞𝑖}, then convex hull of the image 𝑓(𝑄) 
equals 𝑐𝑜{𝑓(𝑞𝑖)}, where 𝑐𝑜 stands for the convex hull.  

Let 𝐾 be the 𝑛-dimensional cube defined by  
𝐾 = {(𝑘1, 𝑘2, … , 𝑘𝑛): − 1 ≤ 𝑘1 ≤ 1, … ,−1 ≤ 𝑘𝑛 ≤ 1}. 

Proposition 3: 𝑓(𝜕𝐾) = 𝜕𝒟𝑛, where 𝜕𝐾 is the 
boundary of the set 𝐾.  

Proof. Take any 𝑥 ∈ 𝑓(𝜕𝐾). Then there exists 
(𝑘1

0, 𝑘2
0, … , 𝑘𝑛

0) ∈ 𝜕𝐾 such that 𝑓(𝑘1
0, 𝑘2

0, … , 𝑘𝑛
0) = 𝑥. 

Without loss of generality assume that 𝑥 ∈  {𝑘 ∈ 𝐾: 𝑘1 =
1}, then 𝑥 = 𝑓(1, 𝑘2

0, … , 𝑘𝑛
0). Three cases are possible. 

 
𝑓(1, 𝑘2

0, … , 𝑘𝑛
0) ∈ 𝒟𝑛. This case is impossible, since the 

second order factor [𝑠2 + (𝑘2
0 + 1)𝑠 + 𝑘2

0] from the 
definition of 𝑓 has unstable factor (𝑠 + 1). 

𝑓(1, 𝑘2
0, … , 𝑘𝑛

0) is an exterior point of 𝒟𝑛. This case is 
impossible as well, since any neighbourhood of 
(1, 𝑘2

0, … , 𝑘𝑛
0) contains element from 𝐾0 (the set of 

interior point of 𝐾) and we obtain a contradiction to 
Proposition 1. 

It remains the case 𝑥 ∈ 𝜕𝒟𝑛 which proves 𝑓(∂𝐾) ⊂
∂𝒟𝑛. 

Conversely, assume that 𝑥 ∈ 𝜕𝒟𝑛 . Then there exists a 
sequence 𝑥𝑚 ∈ 𝒟𝑛 such that 𝑥𝑚 →  𝑥 as 𝑚 → ∞. By 
Proposition 1 there exists 𝑘𝑚 ∈ 𝐾0  such that 𝑓(𝑘𝑚) =
𝑥𝑚. The set 𝐾 is compact and without loss of generality 
assume that 𝑘𝑚 → 𝑘 ∈ 𝐾. Then 𝑓(𝑘) = 𝑥. The inclusion 
𝑘 ∈ 𝐾0 is impossible due to Proposition 1 and equality 
𝑓(𝑘) = 𝑥 and openness of 𝒟𝑛 (Recall that any vector 𝑦 ∈
𝜕𝒟𝑛  is unstable.). Consequently 𝑘 ∈ 𝜕𝐾 and 𝑥 ∈ f(∂𝐾). 

 
 
 
 

Stability of a Non-monic Multilinear Family 
 
Consider the set 𝒟𝑛 (see equation (3)). The boundary 

set ∂𝒟n of 𝒟n consists of three parts ([7]) 
𝜕𝒟𝑛 = 𝐵1 ∪ 𝐵−1 ∪ 𝐵𝑐 

where 
𝐵1 = {𝑎 ∈ ℝ𝑛: 𝑝(𝑧) has all roots in the closed disc |𝑧|

≤ 1 and has at least one root 𝑧 = 1}, 
𝐵−1 = {𝑎 ∈ ℝ𝑛: 𝑝(𝑧) has all roots in the closed disc |𝑧|

≤ 1 and has at least one root 𝑧 = −1}, 
𝐵𝑐 = {𝑎 ∈ ℝ𝑛: 𝑝(𝑧) has all roots in the closed disc |𝑧| ≤

1 and has at least one complex root 𝑧 = 𝑒𝑗𝜃 , 0 < 𝜃 <
𝜋 }. 

The following proposition has been proved in [6]. It 
gives parametric description of the boundary set 𝜕𝒟𝑛. 
Proposition 4 ([6]): a) Let 𝑛 be even. Then the surface 𝐵1  
has the parametric equation 

𝑥𝑖 = 𝑓𝑖(−1, 𝑘2, … , 𝑘𝑛), 𝑖 = 1,2,… , 𝑛
−1 ≤ 𝑘2 ≤ 1, … , −1 ≤ 𝑘𝑛 ≤ 1

 

and the surface 𝐵−1 has the parametric equation 
𝑥𝑖 = 𝑓𝑖(1, 𝑘2, … , 𝑘𝑛), 𝑖 = 1,2,… , 𝑛,
−1 ≤ 𝑘2 ≤ 1,… ,−1 ≤ 𝑘𝑛 ≤ 1.

 

b) Let 𝑛 be odd. Then the surface 𝐵1  has the 
parametric equation  

𝑥𝑖 = 𝑓𝑖(𝑘1, 𝑘2, … , 𝑘𝑛−1, −1), 𝑖 = 1,2,… , 𝑛
−1 ≤ 𝑘1 ≤ 1, … , −1 ≤ 𝑘𝑛−1 ≤ 1,

 

and the surface 𝐵−1 has the parametric equation 
𝑥𝑖 = 𝑓𝑖(𝑘1, 𝑘2, … , 𝑘𝑛−1, 1), 𝑖 = 1,2,… , 𝑛

−1 ≤ 𝑘1 ≤ 1, … , −1 ≤ 𝑘𝑛−1 ≤ 1.
 

c) The surface has the parametric equation  
𝑥𝑖 = 𝑓𝑖(𝑘1, 1, 𝑘3, … , 𝑘𝑛−1, 𝑘𝑛), 𝑖 = 1,2,… , 𝑛

−1 ≤ 𝑘1 ≤ 1,−1 ≤ 𝑘3 ≤ 1, … ,−1 ≤ 𝑘𝑛 ≤ 1.
 

Now we give stability condition of the family (4). 
Define the functions (𝑖 = 1,2,… , 𝑛) 
 
𝐹𝑖(𝑞1, … , 𝑞𝑙 , 𝑘1, 𝑘2, … , 𝑘𝑛) = 𝐹𝑖(𝑞, 𝑘) =

𝑎𝑛+1(𝑞)𝑓𝑖(𝑘) − 𝑎𝑖(𝑞)      (5) 
 
Theorem 2: Assume that the family (4) is given, where 𝑛 is 
even, 𝑎𝑖(𝑞): 𝑄 → ℝ  (𝑖 = 1,2,… , 𝑛 + 1) are multilinear 
functions, 𝑄 ⊂ ℝ𝑙  is a box and 𝑎𝑛+1(𝑞) > 0 for all 𝑞 ∈ 𝑄. 
Assume also that this family has a stable member 𝑝(𝑧, 𝑞∗). 
Then (4) is robust stable if and only if the following 
conditions a), b), c) are satisfied simultaneously.  

a) The system 
 
𝐹𝑖(𝑞1, 𝑞2, … , 𝑞𝑙 , −1, 𝑘2, … , 𝑘𝑛) = 0   (6) 
 
has no solution on the box 𝑄 × [−1,1]𝑛−1 (𝑖 = 1,2,… , 𝑛). 

 
b) The system 

 
𝐹𝑖(𝑞1, 𝑞2, … , 𝑞𝑙 , 1, 𝑘2, … , 𝑘𝑛) = 0   (7) 
 
has no solution on the box 𝑄 × [−1,1]𝑛−1 (𝑖 = 1,2,… , 𝑛). 

c) The system 
 
𝐹𝑖(𝑞1, 𝑞2, … , 𝑞𝑙 , 𝑘1, 1, 𝑘3, … , 𝑘𝑛) = 0   (8) 
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has no solution on the box 𝑄 × [−1,1]𝑛−1 (𝑖 = 1,2,… , 𝑛). 
Proof. Assume that the family (4) is robust stable. From 

the condition 𝑎𝑛+1(𝑞) > 0 it follows that the family 
 

𝒫̃ = {
𝑎1(𝑞)

𝑎𝑛+1(𝑞)
+

𝑎2(𝑞)

𝑎𝑛+1(𝑞)
𝑧 + ⋯+

𝑎𝑛(𝑞)

𝑎𝑛+1(𝑞)
𝑧𝑛−1 + 𝑧𝑛: 𝑞

∈ 𝑄} 

 
is robust stable as well. Consequently for all 𝑞 ∈ 𝑄 the 

vector 𝑣(𝑞) = (
𝑎1(𝑞)

𝑎𝑛+1(𝑞)
, . . . ,

𝑎𝑛(𝑞)

𝑎𝑛+1(𝑞)
) is not contained in the 

boundary 𝜕𝒟𝑛 = 𝐵1 ∪ 𝐵−1 ∪ 𝐵𝑐 of the open set 𝒟𝑛. By 
Proposition 1 and 4 

𝑣(𝑞) ∉ 𝐵1 ⇒ The system (6) has no solution on 𝑄 ×
[−1,1]𝑛−1, 

𝑣(𝑞) ∉ 𝐵−1 ⇒ The system (7) has no solution on 𝑄 ×
[−1,1]𝑛−1, 

𝑣(𝑞) ∉ 𝐵𝑐 ⇒ The system (8) has no solution on 𝑄 ×
[−1,1]𝑛−1. 

Conversely, if the systems (6), (7) and (8) have no 
solutions then 𝑃̃ ⊂ 𝒟𝑛 or 𝑃̃ ⊂ 𝒟𝑛

𝑐 , where 𝒟𝑛
𝑐  is the 

complementary of 𝒟𝑛 . Since the family 𝒫 and 

consequently the family 𝑃̃ has a stable member then 𝑃̃ ⊂
𝒟𝑛, from this it follows that the family (4) is robust stable.  

The systems (6), (7), (8) can be investigated by using 
The Mapping Theorem (Theorem 1) and splitting 
evaluation algorithm (see [5]). Divide the box 𝑄 ×
[−1,1]𝑛−1 into small subboxes and if the convex hull of 
the images of vertices does not include the zero then 
eliminate this small subbox.  

Example 1: Consider robust stability problem for the 
following multilinear family 
𝑝(𝑧, 𝑞) = (7 − 𝑞1𝑞2 − 2𝑞1)𝑧

6 + (2 + 𝑞1 + 0.5𝑞2)𝑧
5

+ (2.5 + 𝑞1 + 0.1𝑞2 − 𝑞1𝑞2)𝑧
4

+ (1.5 + 𝑞1𝑞2)𝑧
3

+ (0.5 + 𝑞1 − 𝑞1𝑞2)𝑧
2

+ (−0.7 + 𝑞1 + 0.5𝑞2)𝑧 + 0.4 − 𝑞1

+ 𝑞2 − 0.5𝑞1𝑞2, 
𝑞1 ∈ [6,10], 𝑞2 ∈ [3,5]. For 𝑞1 = 6, 𝑞2 = 3 the 

polynomial is stable. Using the equations of the boundary 
𝜕𝒟𝑛 in the parametric forms ((6), (7), (8)) write three 
multilinear systems of equations 
𝐹𝑖(𝑞, 𝑘) = 𝑎𝑛+1(𝑞)𝑓𝑖(𝑘) − 𝑎𝑖(𝑞) 
 
𝑎7(𝑞1, 𝑞2)𝑓𝑖(1, 𝑘2, 𝑘3, … , 𝑘6) − 𝑎𝑖(𝑞1, 𝑞2) = 0   (9) 
(i = 1, … ,6) 
 
𝑎7(𝑞1, 𝑞2)𝑓𝑖(−1, 𝑘2, 𝑘3, … , 𝑘6) − 𝑎𝑖(𝑞1, 𝑞2) = 0 (10) 
(i = 1, … ,6) 

 
𝑎7(𝑞1, 𝑞2)𝑓𝑖(𝑘1, 1, 𝑘3, … , 𝑘6) − 𝑎𝑖(𝑞1, 𝑞2) = 0 (11) 
(i = 1, … ,6) 

 
where 𝑎𝑖(𝑞1, 𝑞2) are the coefficients of 𝑝(𝑧, 𝑞) and  
(𝑞1, 𝑞2, 𝑘1, … , 𝑘6) ∈ 𝐵

= [6,10] × [3,5] × [−1,1] × ⋯
× [−1,1]. 

We have to show that all three systems (9)-(11) have 
no solutions. Here we use splitting-elimination algorithm 
(see [5]) with the use of The Mapping Theorem (divide the 
box 𝐵 into small subboxes, if for a subbox the zero is not 
contained in the convex hull of the images of vertices, 
then eliminate this subbox). 

For the systems (9), (10) and (11) all subboxes are 
eliminated after 2, 2 and 418 steps totally 16 sec, 
respectively. Therefore the given family does not intersect 
the boundary of 𝒟𝑛 and has a stable member. 
Consequently the family is robust stable. 

Example 2: Consider the given multilinear family  
𝑝(𝑧, 𝑞) = (1 − 𝑞1 + 3𝑞2 + 3𝑞1𝑞2)𝑧

7 + (𝑞1𝑞2 + 𝑞1 − 𝑞2

− 6)𝑧6

+ (−5𝑞1𝑞2 − 6𝑞1 + 5𝑞2 + 12)𝑧5

+ (8𝑞1𝑞2 + 13𝑞1 − 7𝑞2 − 8)𝑧4

+ (−4𝑞1𝑞2 − 11𝑞1 − 𝑞2)𝑧
3

+ (𝑞1𝑞2 + 8𝑞2 − 1)𝑧2

+ (4𝑞1 − 4𝑞2 + 4)𝑧 − 4 + 𝑞1 − 𝑞2, 
𝑞1 ∈ [−1, 4], 𝑞2 ∈ [−2, 5]. Using the equations of the 
boundary ∂𝒟n we obtain three multilinear systems of 
equations that correspond to the multilinear family.  

For the equation systems, all subboxes are eliminated 
after 78, 122 and 256 steps totally 63 sec, respectively. 
There are no solutions. Therefore the given family does 
not intersect the boundary of 𝒟𝑛. For 𝑞1 = 0,  𝑞2 = 0 the 
polynomial is not stable. As a result the family has no 
stable member. 

 

Existence of a Stable Member 
 
Consider the family (4), we are interested in the 

existence of 𝑞∗ ∈ 𝑄 such that 𝑝(𝑧, 𝑞∗) becomes Schur 
stable. This problems of such types are important in the 
control theory ([11]). 

Theorem 3: There exists a stable member in 𝒫 if and 
only if the following multilinear system 
𝐹𝑖(𝑞1, … , 𝑞𝑙 , 𝑘1, … , 𝑘𝑛) = 𝑎𝑛+1(𝑞)𝑓𝑖(𝑘) − 𝑎𝑖(𝑞) = 0  (12) 

(𝑖 = 1,2,… , 𝑛)  
 
has a solution in 𝑄 × (−1,1)𝑛.  

Proof. There exists a stable member in 𝒫 if and only if 

there exists a stable member in 𝒫̃. By Proposition 1 for a 

given 𝑞∗ ∈ 𝑄 the polynomial 𝑝̃ (𝑧, 𝑞∗) ∈ 𝒫̃ is stable if and 
only if there exists 𝑘∗ ∈ (−1,1)𝑛  such that  
𝑎𝑖(𝑞

∗)

𝑎𝑛+1(𝑞
∗)

= 𝑓𝑖(𝑘
∗)           (𝑖 = 1,2,… , 𝑛) 

By the definition of 𝐹𝑖 this means that the system (12) 
has solution (𝑞∗, 𝑘∗) ∈ 𝑄 × (−1,1)𝑛. System (12) is a 
multilinear system defined on a box. Its solution can be 
searched by splitting-elimination algorithm: 

Divide 𝑄 × (−1,1)𝑛 into small subboxes and for a 
small subbox the convex hull of vertices does not include 
the zero then the eliminate this subbox by the Mapping 
Theorem. By this way we eliminate a great number of 
subboxes. If a remaining subbox has small volume then 
check its center for stability, i.e. if (𝑞𝑐 , 𝑘𝑐) is a center then 
check the polynomial 𝑝(𝑧, 𝑞𝑐) for stability. 

Example 3: Consider the given multilinear family  
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𝑝(𝑧, 𝑞) = (𝑞1 − 0.2𝑞2 + 3.6)𝑧5 + (𝑞1 + 0.3𝑞2 + 1.1)𝑧4

+ (0.5𝑞1𝑞2 − 1.5𝑞1 + 𝑞2 − 3)𝑧3

+ (𝑞1𝑞2 − 3𝑞1 + 1.25𝑞2 − 3.75)𝑧2

+ (𝑞2 − 𝑞1 − 5)𝑧 + 𝑞1 + 𝑞2 − 1, 
𝑞1 ∈ [−4,−1], 𝑞2 ∈ [2, 5]. The splitting-elimination 

algorithm gives 388 remaining subboxes of  
𝐵 = [−1,1]5 × [−4,−1] × [2,5]. 

When the centers of the remaining 388 subboxes are 

examined, for the center 𝑞1
𝑐 = −

17

8
, 𝑞2

𝑐 = 
25

8
 of the box 

[0.5, 1] × [−0.5,0] × [−1,−0.5] × [0,1] × [0,1]

× [−
5

2
,−

7

4
] ×  [

11

4
,
7

2
] 

the polynomial is stable. 
 

Stable Member for the Cases 𝒏 − 𝒍 = 𝟐 and 𝒏 −
𝒍 = 𝟑 

 
As pointed out in [5] stabilization problem for unstable 

plant can be reduced to the following: 
Let 𝐴 be 𝑛 × 𝑙 matrix with full rank, 𝑈0 ∈ ℝ𝑛 , 𝑐 =

(𝑐1, 𝑐2, … , 𝑐𝑙)
𝑇  and 𝑘 = (𝑘1, 𝑘2, … , 𝑘𝑛)𝑇. Is there exists 

(𝑐, 𝑘) ∈ ℝ𝑙 × ℝ𝑛 such that  
 
𝐴𝑐 + 𝑈0 = 𝑓(𝑘)      (13) 

 
where 𝑓:ℝ𝑛 → ℝ𝑛  is defined in Introduction and 𝑙 < 𝑛? 
By solving the first 𝑙 equations in (13) with respect to 
𝑐1, 𝑐2, … 𝑐𝑙 and inserting into the lost 𝑛 − 𝑙 equations the 
obtained 𝑐1 = 𝑏1(𝑘),… , 𝑐𝑙 = 𝑏𝑙(𝑘) a multilinear system 
consisting of (𝑛 − 𝑙) equations 
 
𝑔1(𝑘1,𝑘2,…,𝑘𝑛)=0

⋮
𝑔𝑛−𝑙(𝑘1,𝑘2,…,𝑘𝑛)=0

    (14) 

 
is obtained. Consequently there exists a stabilizing vector 
𝑐 if and only if the system (14) has a solution in [−1,1]𝑛. 
Here we consider the cases 𝑛 − 𝑙 = 2 and 𝑛 − 𝑙 = 3. 
In this case, it is possible to display rough image of 
(−1,1)𝑛  under map 𝑔. 

From the equation (14) it follows that there exists a 
stabilizing vector if and only if the zero is contained in the 
image  
𝑔((−1,1)𝑛) = {𝑔(𝑘): 𝑘 ∈ (−1,1)𝑛} 

where 𝑔 = (𝑔1,… , 𝑔𝑛−1)
𝑇. Gridding and displaying 

this image for the cases 𝑛 − 𝑙 = 2 and 𝑛 − 𝑙 = 3 may give 
positive results.  

The following procedure can be suggested. 
 By gridding, display the “rough” image 𝑔((−1,1)𝑛). 

This “rough” image gives a hint of the existence (or 
nonexistence) of a solution of (14). 

 Choose sufficient small 𝜀 > 0. Consider for a point 
𝑔(𝑘∗) for which the distance between 𝑔(𝑘∗) and the 
origin is less than ε. 

 Calculate 𝑐∗ = 𝑏(𝑘∗) and check 𝑐∗ for a stabilizing 
parameter. 

Example 4: Let the family (2) be as 
𝑝(𝑧, 𝑐) = 𝑧5 + (𝑐3 − 0.4)𝑧4 + (𝑐2 − 0.1𝑐3 − 1.19)𝑧3

+ (𝑐1 − 0.1𝑐2 − 0.06𝑐3 + 0.876)𝑧2

+ (−0.1𝑐1 − 0.06𝑐2)𝑧 − 0.06𝑐1. 

Here 

𝐴 =

[
 
 
 
 
−0.06 0 0
−0.1 −0.06 0

1 −0.1 −0.06
0 1 −0.1
0 0 1 ]

 
 
 
 

, 𝑈0 =

[
 
 
 
 

0
0

0.876
−1.19
−0.4 ]

 
 
 
 

. 

Therefore 𝑛 = 5, 𝑙 = 3, 𝑛 − 𝑙 = 2. After 
corresponding calculations we conclude that 
𝑔1(𝑘1,… , 𝑘5) has 27 terms whereas 𝑔2(𝑘1,… , 𝑘5) has 22 
terms. 

 

 

Figure 1. The “rough” images of g([-1,1]^5 ). 

 
Gridding the cube [−1,1]5 with step size ℎ = 0.25 and 

displaying the image 𝑔([−1,1]5) gives the Fig. 1.  
For 𝜀 = 0.5, 𝑘∗ is calculated as  
𝑘∗ = (−0.75,−0.5, 0.75,−0.25, 0.5)𝑇 which gives 
stabilizing vector 𝑐∗ = (−1.041, 1.215, 0.877)𝑇 . 

 
Example 5: Consider the following “famous” example 

from [9,10]; 
𝑝(𝑧, 𝑐) = 𝑝0(𝑧) + 𝑐1𝑝1(𝑧) + 𝑐2𝑝2(𝑧), 

where 𝑝0(𝑧) = 𝑧5 − 0.1𝑧4 − 1.9825𝑧3 +
0.1772𝑧2 + 0.8211𝑧, 𝑝1(𝑧) = 𝑧2 − 0.5𝑧 + 0.8, 𝑝2(𝑧) =
𝑧3 − 0.5𝑧2 + 0.8𝑧. 

Here 

𝐴 =

[
 
 
 
 

0.8 0
−0.5 0.8

1 −0.5
0 1
0 0 ]

 
 
 
 

, 𝑈0 =

[
 
 
 
 

0
0.8211
0.1772

−1.9825
−0.1 ]

 
 
 
 

 

and 
𝑔1(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5)

= 0.625(𝑘1𝑘2𝑘4𝑘5 + 𝑘2𝑘3𝑘4𝑘5

− 𝑘1𝑘4𝑘5 − 𝑘2𝑘3𝑘5 − 𝑘2𝑘4)
+ 0.859375𝑘2𝑘4𝑘5 − 𝑘1𝑘2𝑘3𝑘4𝑘5

+ 𝑘1𝑘2𝑘3𝑘5 + 𝑘1𝑘3𝑘4𝑘5 + 𝑘1𝑘2𝑘4

− 𝑘1𝑘3𝑘5 + 𝑘2𝑘3𝑘4 − 𝑘1𝑘4 − 𝑘2𝑘3

+ 𝑘2𝑘5 + 𝑘4𝑘5 + 0.6903875, 
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𝑔2(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5)
= 1.25(−𝑘1𝑘2𝑘4𝑘5 − 𝑘2𝑘3𝑘4𝑘5

+ 𝑘1𝑘4𝑘5 + 𝑘2𝑘3𝑘5 + 𝑘2𝑘4)
− 𝑘1𝑘2𝑘3𝑘4 + 0.78125𝑘2𝑘4𝑘5

− 3.008875 + 𝑘1𝑘2𝑘3 − 𝑘1𝑘2𝑘5

+ 𝑘1𝑘3𝑘4 − 𝑘3𝑘4𝑘5 − 𝑘1𝑘3 + 𝑘1𝑘5

+ 𝑘3𝑘5 + 𝑘2 + 𝑘4 
𝑔3(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5)

= −0.1 − 𝑘1𝑘2 − 𝑘3𝑘4 + 𝑘1 + 𝑘3

− 𝑘5. 
Gridding [−1,1]5 with step size ℎ = 0.03 and 

displaying the image 𝑔([−1,1]5) gives the Fig. 2.  
 

 

Figure 2. The “rough” images of g([-1,1]5 ). 

 
For 𝜀 = 0.1, 𝑘∗ is calculated as 𝑘∗ =

(−0.99, −0.96,0.99,−0.96,−0.03)𝑇 and the 
corresponding 𝑐∗ = (−0.03456,0.104025)𝑇 is stabilizing 
vector. 

 

Conclusion 
 
In this study, determining the robust stability of 

families of nonmonic multilinear polynomials and 
searching for stable member in these families are 
discussed. Reflection (box) coefficients have been used to 
analyze these problems. The set of 𝑛-th order Schur stable 
polynomials can be characterized by the reflection 
coefficients. For these problems, the results are given by 
using the reflection coefficients and the multilinear 
functions' extreme point property. Hence a multilinear 
equations system is obtained. Solution of this system of 
equations can be investigated with the division-
elimination algorithm. One of the hard problems in linear 
control theory is considered by visualizing for the cases 
𝑛 − 𝑙 = 2 and 𝑛 − 𝑙 = 3. A number of examples are given 
to illustrate the results. 
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