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Quantum computing requires use of various physical techniques together with quantum theory. One of the 
promising systems is spin systems as applied and seen in pulsed nuclear magnetic resonance (NMR) and pulsed 
electron paramagnetic resonance (EPR) spectroscopies and hence spin-based quantum information technology.  
Construction of higher spin systems and related rotation operators is important for the theoretical infrastructure 
that can be used in quantum information theory. It is expected that as the value of spin increases, it will give 
way to longer time in the computation with bigger data.  
Spin operators up to spin-4 have been published in previous studies. In this work, explicit symbolic expressions 
of x, y and z components of rotation operators for spin-4 were worked out via exponential operator for each 
element of related spin operator matrices and simple linear curve fitting process. The procedures gave out exact 
expressions of each element of the rotation operators. It can be predicted that quantum rotation operators for 
higher spins, like spin-4, will theoretically and practically contribute to spin-based quantum information 
technology.   
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Introduction 

Quantum computing combines computer science with 
quantum mechanics and it is a fast-growing research 
field[1-5]. Feynman [6,7] pointed out that only the 
computers working with quantum mechanical principles 
can simulate a quantum mechanical system, or one needs 
a quantum computer utilizing quantum mechanical 
processes can succeed such sophisticated and time-
consuming works. One system of such computers utilizes 
spins and hence spin rotation operators, also known as 
completely quantum mechanical rotation operators and 
have no classical counterpart.   

Spin rotation operators are one of the processes in 
quantum mechanical applications like pulsed magnetic 
resonance spectroscopy. In the literature only rotation 
operators of spin-1/2 system R ̂_x (θ),R ̂_y (θ),R ̂_z (θ) can 
be found related with quantum information theory. 
Wigner[8] introduced expressions of rotation matrices or 
Wigner–d matrices for orbital angular momenta on the 
standard Euler angles basis. Real rotation operators for 
total angular momenta of spin-1/2, 1, 3/2 and 2 were 
generated from Wigner–d formula in some quantum 
mechanics textbooks[9-12] and in some published papers 
[13-19]. A recently published paper on rotation operators 
by Curtright et al. [20] and Curtright and Van Kortryk[21] 
give rotation operator expressions in polynomial form for 
all spins in Cartesian components. In order to find out the 
rotation operators in a matrix form one has to sum up the 

polynomial terms given, which includes powers of related 
angular momentum operators. 

Pulsed nuclear magnetic resonance (pulsed-NMR), 
pulsed electron paramagnetic resonance (pulsed-EPR) 
and pulsed electron nuclear double resonance (pulsed-
ENDOR) spectroscopies, however, utilize rotation 
operators in rotating coordinate system or laboratory 
coordinate system where the spins are polarized along a 
definite orientation by an external magnetic field. The 
direction of the external magnetic field is defined as z–axis 
and a series of magnetic pulses are applied consequently 
along laboratory x and/or y axes to rotate the polarized 
spins around related axes. Spin-based quantum-
computation systems, where pulsed magnetic resonances 
are leading techniques which utilize pulse sequences, use 
the rotation operators intensively in the rotating 
coordinate system[22-28].  

Electron spin has attracted renewed interest towards 
the development of various new devices that depend on 
combined logic, storage and sensor applications. Another 
important application of these spin-based devices is in the 
computation depending on the quantum logic. Spin-based 
quantum computation  depending on electronic solid-
state devices are shifting gradually toward the prospective 
information technology [28]. 

In this work, explicit rotation operator expressions of 
spin-4 are constructed from exponential operators given 
in Eqn. (1) for x, y and z components of angular momenta 
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for a series of angles θ between interval θ_1 and θ_N with 
certain steps, e.g between 0 and 360o with 10o steps, and 
fitting the obtained values to suitable functions by linear 
curve fitting procedure. 

 
Obtaining Rotation Processors 
 

Matrix representations of rotation operators and their 
effect on quantum states are essential part of the 
quantum mechanics of microscopic systems [3-8]  and 
these matrices, in turn, can be widely used in a variety of 
applications. In order to be able to perform processes with 
exponential rotation operators given in Eqn. (1), it is 
necessary to form this operator for processing as linear 
operator, in other words, this operator should be 
linearized by making series expansions given as 

 
𝑅𝑅�𝛼𝛼 = exp�𝑖𝑖𝜃𝜃𝑝𝑝𝐽𝐽𝛼𝛼� ,      𝛼𝛼 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧   (1) 

 
which is derived from time dependent Schrödinger 

equation −𝑖𝑖ℏ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ℋ�𝜓𝜓 for a rotating magnetic field pulse 
B1, where ℋ� = 𝑔𝑔𝑔𝑔𝐵𝐵1𝐽𝐽𝛼𝛼 is pulse Hamiltonian applied to a 
spin system polarized by an external magnetic field along 
laboratory x or y axis and 𝐽𝐽𝛼𝛼  (𝛼𝛼 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧) are Pauli spin 
matrices representing electron spin S or nuclear spin I, 
coupled S and I systems. The constants g and 𝑔𝑔 are Landé-
g factor and Bohr magneton respectively. Here 𝜃𝜃𝑝𝑝 is the 
angle of rotation and 𝑡𝑡𝑝𝑝 is rotating pulse duration. Thus 
𝜃𝜃𝑝𝑝 can be written as 𝜃𝜃𝑝𝑝 = 𝑔𝑔𝑔𝑔𝐵𝐵1𝑡𝑡𝑝𝑝/ℏ = 𝜔𝜔𝑝𝑝𝑡𝑡𝑝𝑝. 

Eqn. (1) can be rewritten by definition 
 

Rα = exp�iθpĴα� = cos�θp Ĵα� + 𝑖𝑖 sin�θp Ĵα� ,   α = x, y, z    (2) 
 
Where 
 

cos�𝜃𝜃𝑝𝑝𝐽𝐽𝛼𝛼� = 𝕀𝕀 − 1
2!
𝜃𝜃𝑝𝑝2𝐽𝐽𝛼𝛼2 + 1

4!
𝜃𝜃𝑝𝑝4𝐽𝐽𝛼𝛼4 −

1
6!
𝜃𝜃𝑝𝑝6𝐽𝐽𝛼𝛼6 + ⋯ =

∑ 1
(2𝑛𝑛)!

𝜃𝜃𝑝𝑝2𝑛𝑛∞
𝑛𝑛=0 𝐽𝐽𝛼𝛼2𝑛𝑛     (3) 

 

sin�𝜃𝜃𝑝𝑝𝐽𝐽𝛼𝛼� =
1
1!

 𝜃𝜃𝑝𝑝1 𝐽𝐽𝛼𝛼1 −
1
3!
𝜃𝜃𝑝𝑝3𝐽𝐽𝛼𝛼3 +

1
5!
𝜃𝜃𝑝𝑝5𝐽𝐽𝛼𝛼5 − ⋯

= �
1

(2𝑛𝑛 + 1)!
𝜃𝜃𝑝𝑝2𝑛𝑛+1

∞

𝑛𝑛=0

𝐽𝐽𝛼𝛼2𝑛𝑛+1 

 
As the spin value increases evaluation of power series 

given in Eqn. (3) requires intensive calculation due to the 
powers of spin operator matrices. Pauli matrices for spin-
1/2 and corresponding explicit rotation operators are 
borrowed from textbooks [11-13] and are given in Eqn. 
(4). 

 

𝐼𝐼𝑥𝑥 = 1
2
�0 1
1 0�,  𝐼𝐼𝑦𝑦 = 𝑖𝑖

2
�0 −1
1 0 �,  𝐼𝐼𝑧𝑧 = 1

2
�1 0
0 −1� 

 
      (4) 
 

𝑅𝑅�𝑥𝑥(𝜃𝜃) = � 𝑐𝑐 𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖 𝑐𝑐 �,𝑅𝑅

�𝑦𝑦(𝜃𝜃) = � 𝑐𝑐 𝑖𝑖
−𝑖𝑖 𝑐𝑐�,𝑅𝑅

�𝑧𝑧(𝜃𝜃) = �𝑧𝑧 0
0 𝑧𝑧∗� 

where c, s and z are defined as 𝑐𝑐 = cos(𝜃𝜃/2), 𝑖𝑖 =
sin(𝜃𝜃/2), 𝑧𝑧 = 𝑐𝑐 + 𝑖𝑖𝑖𝑖. The rotation operators for spin-1/2 
systems are rather easy because the elements of the 
powers of Pauli spin matrices are either zero or unity 
multiplied by a coefficient. 

One of the way of obtaining explicit expressions of the 
rotation operators for the spins greater than 1/2 can be 
done two-step numerical calculation. In the first step the 
sine and cosine series given in Eqn. (3) are summed up 
numerically to highest possible precision for each element 
of a spin matrix for certain angles between e.g. 0o and 
360o with definite intervals like 10o. Variations of real and 
imaginary elements of rotation matrices are numerical 
values obtained after sums obtained for each angle. In the 
second step, variations of each element of the rotation 
matrices as functions of rotation angles are fitted to a 
linear function. The exact fitting function 𝑟𝑟𝑖𝑖𝑗𝑗(𝜃𝜃), found 
after some trials, are determined and given in Eqn. (5), 
 
𝑟𝑟𝑖𝑖𝑗𝑗(𝜃𝜃) = ∑ 𝜉𝜉𝑝𝑝

(𝑖𝑖𝑗𝑗)cos𝐾𝐾−𝑝𝑝 �𝜃𝜃
2
� sin𝑝𝑝−1 �𝜃𝜃

2
�𝐾𝐾

𝑝𝑝=1    (5) 
 
where  𝐾𝐾 = 2(𝐽𝐽 + 1);     𝑖𝑖, 𝑗𝑗 = 1, 2, 3⋯𝐾𝐾, 𝜃𝜃 is 

rotation angle around x, y or z axis and 𝐽𝐽 is the value of 
spin (nuclear, electronic or coupled spins) and K is the 
number of terms of fitting function and 𝜉𝜉𝑝𝑝 is the 
coefficient of p’th term of linear fitting function which is 
determined by linear curve fitting process. The accuracies 
of all fitting processes were controlled by the value r 
which is known as goodness of fitting, and visually on 
simultaneous plots of original and fitted curves. The 
operators corresponding to spins smaller than 4 were 
published previously [29-30].  All rotation operator 
matrices obtained were tested by comparing to 
corresponding operators obtained from Wigner–d 
formula [8,19] and operators in polynomial equations 
given by Curtright et al. [20] and Curtright and Van Kortryk 
[21]. 

 
Results and Discussion 

 
Rotation operator elements corresponding to spin-4 

operators are calculated using Eqns. (3) and (5), as 
discusses in the text above. The compact fit function given 
in Eqn. (5) can be expanded as given below, 
 
𝑟𝑟𝑖𝑖𝑗𝑗 = 𝜉𝜉0𝑐𝑐8 + 𝜉𝜉1𝑐𝑐7𝑖𝑖1 + 𝜉𝜉2𝑐𝑐6𝑖𝑖2 + 𝜉𝜉3𝑐𝑐5𝑖𝑖3 + 𝜉𝜉4𝑐𝑐4𝑖𝑖4

 
  

+𝜉𝜉5𝑐𝑐3𝑖𝑖5 + 𝜉𝜉6𝑐𝑐2𝑖𝑖6 + 𝜉𝜉7𝑐𝑐1𝑖𝑖7 + 𝜉𝜉8𝑖𝑖8
      (6) 

 
Angular variation of rotation operator element 𝑟𝑟26 of 

operator matrix 𝑅𝑅𝑥𝑥(𝜃𝜃) and as an example, is given in 
Figure 1a. Angular variation of rotation operator element 
𝑟𝑟46 of operator matrix 𝑅𝑅𝑦𝑦(𝜃𝜃), as an example, is given in 
Figure 1b.  
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Figure 1. a) The variation of the element r26 of the rotation operator Rx(θ) for spin-4 with rotation angle. b) The 
variation of the element r46 of the rotation operator Ry(θ) for spin-4 with rotation angle.   

The variation and graph of these elements according 
to the angle are given in Figure 1 a and b. As can be seen 
in Figure 1, the agreement was found to be perfect in the 
operations performed with the least squares method. 
Figure 1 shows the solid line fit function in a and b. 

 
𝑟𝑟26 = √175 𝑐𝑐4𝑖𝑖4 − √63 𝑐𝑐2𝑖𝑖6   (7) 

where other coefficients are zero. All nonzero 
elements of rotation operator matrices 
𝑅𝑅𝑥𝑥(𝜃𝜃),  𝑅𝑅𝑦𝑦(𝜃𝜃) and 𝑅𝑅𝑧𝑧(𝜃𝜃) were calculated similarly. 
Calculations were performed with the precision of 
 𝜀𝜀 = 10−9 and elements of rotation operators were given 
in Eqn. (8) and Table1.  

 

𝑅𝑅𝑥𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑟𝑟11 𝑖𝑖𝑟𝑟12 𝑟𝑟13
𝑖𝑖𝑟𝑟12 𝑟𝑟22 𝑖𝑖𝑟𝑟23
𝑟𝑟13 𝑖𝑖𝑟𝑟23 𝑟𝑟33

𝑖𝑖𝑟𝑟14 𝑟𝑟15 𝑖𝑖𝑟𝑟16
𝑟𝑟24 𝑖𝑖𝑟𝑟25 𝑟𝑟26
𝑖𝑖𝑟𝑟34 𝑟𝑟35 𝑖𝑖𝑟𝑟36

𝑟𝑟17 𝑖𝑖𝑟𝑟18 𝑟𝑟19
𝑖𝑖𝑟𝑟27 𝑟𝑟28 𝑖𝑖𝑟𝑟18
𝑟𝑟37 𝑖𝑖𝑟𝑟27 𝑟𝑟17

𝑖𝑖𝑟𝑟14 𝑟𝑟24 𝑖𝑖𝑟𝑟34
𝑟𝑟15 𝑖𝑖𝑟𝑟25 𝑟𝑟35
𝑖𝑖𝑟𝑟16 𝑟𝑟26 𝑖𝑖𝑟𝑟36

𝑟𝑟44 𝑖𝑖𝑟𝑟45 𝑟𝑟46
𝑖𝑖𝑟𝑟45 𝑟𝑟55 𝑖𝑖𝑟𝑟45
𝑟𝑟46 𝑖𝑖𝑟𝑟45 𝑟𝑟44

𝑖𝑖𝑟𝑟36 𝑟𝑟26 𝑖𝑖𝑟𝑟16
𝑟𝑟35 𝑖𝑖𝑟𝑟25 𝑟𝑟15
𝑖𝑖𝑟𝑟34 𝑟𝑟24 𝑖𝑖𝑟𝑟14

𝑖𝑖
𝑟𝑟17 𝑖𝑖𝑟𝑟27 𝑟𝑟37
𝑟𝑟18 𝑟𝑟28 𝑖𝑖𝑟𝑟27
𝑟𝑟19 𝑖𝑖𝑟𝑟18 𝑟𝑟17

𝑖𝑖𝑟𝑟36 𝑟𝑟35 𝑖𝑖𝑟𝑟34
𝑟𝑟26 𝑖𝑖𝑟𝑟25 𝑟𝑟24
𝑖𝑖𝑟𝑟16 𝑟𝑟15 𝑖𝑖𝑟𝑟14

𝑟𝑟33 𝑖𝑖𝑟𝑟23 𝑟𝑟13
𝑖𝑖𝑟𝑟23 𝑟𝑟22 𝑖𝑖𝑟𝑟12
𝑟𝑟13 𝑖𝑖𝑟𝑟12 𝑟𝑟11⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑅𝑅𝑦𝑦 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑟𝑟11 𝑟𝑟12 −𝑟𝑟13

−𝑟𝑟12 𝑟𝑟22 𝑟𝑟23
−𝑟𝑟13 −𝑟𝑟23 𝑟𝑟33

−𝑟𝑟14 𝑟𝑟15 𝑟𝑟16
−𝑟𝑟24 −𝑟𝑟25 𝑟𝑟26
𝑟𝑟34 −𝑟𝑟35 𝑟𝑟36

−𝑟𝑟17 −𝑟𝑟18 𝑟𝑟19
𝑟𝑟27 −𝑟𝑟28 −𝑟𝑟18
𝑟𝑟37 𝑟𝑟27 −𝑟𝑟17

𝑟𝑟14 −𝑟𝑟24 −𝑟𝑟34
𝑟𝑟15 𝑟𝑟25 −𝑟𝑟35

−𝑟𝑟16 𝑟𝑟26 −𝑟𝑟36

𝑟𝑟44 𝑟𝑟45 −𝑟𝑟46
−𝑟𝑟45 𝑟𝑟55 𝑟𝑟45
−𝑟𝑟46 −𝑟𝑟45 𝑟𝑟44

𝑟𝑟36 𝑟𝑟26 𝑟𝑟16
−𝑟𝑟35 −𝑟𝑟25 𝑟𝑟15
𝑟𝑟34 −𝑟𝑟24 −𝑟𝑟14

−𝑟𝑟17 −𝑟𝑟27 𝑟𝑟37
𝑟𝑟18 −𝑟𝑟28 −𝑟𝑟27
𝑟𝑟19 𝑟𝑟18 −𝑟𝑟17

−𝑟𝑟36 −𝑟𝑟35 −𝑟𝑟34
𝑟𝑟26 𝑟𝑟25 −𝑟𝑟24

−𝑟𝑟16 𝑟𝑟15 𝑟𝑟14

𝑟𝑟33 𝑟𝑟23 −𝑟𝑟13
−𝑟𝑟23 𝑟𝑟22 𝑟𝑟12
−𝑟𝑟13 −𝑟𝑟12 𝑟𝑟11⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑅𝑅𝑧𝑧 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑧𝑧11 0 0 0 0 0 0 0 0
0 𝑧𝑧22 0 0 0 0 0 0 0
0 0 𝑧𝑧33 0 0 0 0 0 0
0 0 0 𝑧𝑧44 0 0 0 0 0
0 0 0 0 𝑧𝑧55 0 0 0 0
0 0 0 0 0 𝑧𝑧44∗ 0 0 0
0 0 0 0 0 0 𝑧𝑧33∗ 0 0
0 0 0 0 0 0 0 𝑧𝑧22∗ 0
0 0 0 0 0 0 0 0 𝑧𝑧11∗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Table 1. Elements of rotation operators for spin 4 
  

𝑟𝑟11 = 𝑐𝑐8 𝑟𝑟28 = 𝑖𝑖8 − √49𝑐𝑐2𝑖𝑖6 

𝑟𝑟12 = √7𝑐𝑐7  𝑟𝑟33=𝑐𝑐8 − √144𝑐𝑐6𝑖𝑖2 

𝑟𝑟13 = −√28 𝑐𝑐6𝑖𝑖2 𝑟𝑟34 = √18𝑐𝑐7𝑖𝑖 − √450𝑐𝑐5𝑖𝑖3 + √200𝑐𝑐3𝑖𝑖5 

𝑟𝑟14 = −√56𝑐𝑐5𝑖𝑖3 𝑟𝑟35 = √640𝑐𝑐4𝑖𝑖4 − √90(𝑐𝑐6𝑖𝑖2 + 𝑐𝑐2𝑖𝑖6) 

𝑟𝑟15 = √70𝑐𝑐4𝑖𝑖4 𝑟𝑟36 = √200𝑐𝑐5𝑖𝑖3 + √450𝑐𝑐3𝑖𝑖5 − √18𝑐𝑐𝑖𝑖7 

𝑟𝑟16 = √56𝑐𝑐3𝑖𝑖5 𝑟𝑟37 = √225𝑐𝑐4𝑖𝑖4 − √144𝑐𝑐2𝑖𝑖6 + 𝑖𝑖8 

 𝑟𝑟17 = −√28𝑐𝑐2𝑖𝑖6 𝑟𝑟44 = 𝑐𝑐8 − √225𝑐𝑐6𝑖𝑖2 + √900𝑐𝑐4𝑖𝑖4 − √100𝑐𝑐2𝑖𝑖6 

𝑟𝑟18 = −√7𝑐𝑐𝑖𝑖7 𝑟𝑟45 = √20(𝑐𝑐7𝑖𝑖 + 𝑐𝑐𝑖𝑖7) + √720(𝑐𝑐3𝑖𝑖5 − 𝑐𝑐5𝑖𝑖3) 

𝑟𝑟19 = 𝑖𝑖8 𝑟𝑟46 = 𝑖𝑖8 − √100𝑐𝑐6𝑖𝑖2 + √900𝑐𝑐4𝑖𝑖4 − √225𝑐𝑐2𝑖𝑖6 

𝑟𝑟22 = 𝑐𝑐8 − √49𝑐𝑐6𝑖𝑖2 𝑟𝑟55 = 𝑐𝑐8 − √256(𝑐𝑐6𝑖𝑖2 + 𝑐𝑐2𝑖𝑖6) + 𝑖𝑖8 

𝑟𝑟23 = √14𝑐𝑐7𝑖𝑖 − √126𝑐𝑐5𝑖𝑖3 

𝑧𝑧11 = 𝑐𝑐8 − 28(𝑐𝑐6𝑖𝑖2 + 𝑐𝑐2𝑖𝑖6) + 70𝑐𝑐4𝑖𝑖4 + 𝑖𝑖8
+ 8𝑖𝑖(𝑐𝑐7𝑖𝑖 − 𝑐𝑐𝑖𝑖7)
+ 56𝑖𝑖(𝑐𝑐3𝑖𝑖5 − 𝑐𝑐5𝑖𝑖3) 

𝑟𝑟24 = √175𝑐𝑐4𝑖𝑖4 − √63𝑐𝑐6𝑖𝑖2 
𝑧𝑧22 = 𝑐𝑐8 + 14(𝑐𝑐2𝑖𝑖6 − 𝑐𝑐6𝑖𝑖2) − 𝑖𝑖8 + 6𝑖𝑖(𝑐𝑐7𝑖𝑖 + 𝑐𝑐𝑖𝑖7)

− 14𝑖𝑖(𝑐𝑐5𝑖𝑖3 + 𝑐𝑐3𝑖𝑖5) 

𝑟𝑟25 = √140(𝑐𝑐3𝑖𝑖5 − 𝑐𝑐5𝑖𝑖3) 
𝑧𝑧33 = 𝑐𝑐8 − 4(𝑐𝑐6𝑖𝑖2 + 𝑐𝑐2𝑖𝑖6) − 10𝑐𝑐4𝑖𝑖4 + 𝑖𝑖8

+ 4𝑖𝑖(𝑐𝑐7𝑖𝑖 + 𝑐𝑐5𝑖𝑖3 − 𝑐𝑐3𝑖𝑖5 − 𝑐𝑐𝑖𝑖7) 

𝑟𝑟26 = √175𝑐𝑐4𝑖𝑖4 − √63𝑐𝑐2𝑖𝑖6 
𝑧𝑧44 = 𝑐𝑐8 + 2(𝑐𝑐6𝑖𝑖2 − 𝑐𝑐2𝑖𝑖6) − 𝑖𝑖8 + 2𝑖𝑖(𝑐𝑐7𝑖𝑖 + 𝑐𝑐𝑖𝑖7)

+ 6𝑖𝑖(𝑐𝑐5𝑖𝑖3 + 𝑐𝑐3𝑖𝑖5) 
𝑟𝑟27 = √126𝑐𝑐3𝑖𝑖5 − √14𝑐𝑐𝑖𝑖7 𝑧𝑧55 = 1 

Conclusions 
 

Spin-based quantum computing uses qubit systems 
(spin-1/2, single electron or proton), qutrit systems (spin-
1, electron pair or nuclei), and qudit systems (spin>1). 
Present studies on spin-based quantum computation 
system concentrate mainly on qubit system, but higher 
spin system also seem to be promising. Besides the nuclei 
with higher spins, carbon nanotubes or fullerenes may 
contain two, three or more unpaired electrons therefore, 
it seems necessary to establish the theoretical 
foundations of large spin systems. Since EPR spectroscopy 
can work in different spin systems, it is evident that 
quantum mechanical spin operators, some basic quantum 
gates corresponding quantum rotation operators will 
encourage investigation for spin systems greater than 
spin-1/2. 

Quantum mechanical rotation operators RX(θ), RY(θ) 
and RZ(θ) corresponding to spin-4 were formed by series 
expansion of exponential operator and variations 
generated for each element of rotation operator were 
fitted by least squares procedure to linear functions of 
sines and cosines. The operators RX(θ) and RZ(θ) in matrix 
forms are symmetric, and RY(θ) is antisymmetric. The 
rotation operators found can be used to determine the 
rotations of the corresponding spins or dipoles around 
three Cartesian coordinates. It is expected that it can form 
a basis for its implementation for spin-4 or equivalent 
magnetic dipole systems. 
 
Conflicts of interest 
 

The authors state that did not have conflict of interests. 
 
 

References 
 
[1] Gruska, J., Quantum Computing, McGraw-Hill Publishing 

Company. UK, (1999) 439. 
[2] Bellac, M.A., A  short Introduction To Quantum 

Information and Computation, (translated from French). 
Cambridge University Press. Berlin, (2006). 

[3] McMahon, D., Quantum computing, Explained. John Wiley 
& Sons. Inc. Publication. USA, (2008) 332. 

[4] Nakahara, M., Ohmi T., Quantum Computing From Linear 
Algebra to Physical Realizations, Taylor and Francis Books. 
Boca Raton, (2008). 

[5] Nielsen, M.A., Chuang I. L., Quantum Computation and 
Quantum Information, 10th Anniversary Ed, Cambridge 
University Press. Cambridge, New York, (2010). 

[6] Feynman R., Simulating physics with computers, Int. J. 
Theor. Phys., 21 (1982) 467–488. 

[7] Feynman, R., Quantum Mechanical Computers, 
Foundation of Physics, 16(6) (1986)507. 

[8] Wigner, E.P., Group theory and its applications to the 
quantum mechanics of atomic spectra, Academic Press. 
Los Mexico. Alamos, (1959). 

[9] Messiah, A., Quantum Mechanics Vol. 2., North-Holland 
John Wiley & Sons. Orsay, France, (1966). 

[10] Sakurai J.J., Napolitano J.J., Modern Quantum Mechanics. 
Cambridge University Press, United States of America, 
(2011). 

[11] Schiff, L.I., Quantum Mechanics, Third Ed. New York, 
(1968). 

[12] Merzbacher, E., Quantum Mechanics, Second Ed. New 
York, (1970). 

[13] Morrison M.A., Parker G.A., A Guide to Rotations in 
Quantum Mechanics, J. Aust. Phys., 40 (1987) 465–498. 

[14] Shu-Shen L., Gui-Lu L., Feng-Shan B., Song-Lin F., Hou-Zhi 
Z., Quantum computing, Proeedings of the Academy of 
Sciences of the United States of America, 98(21) (2001) 
11847-11848. 



Kocakoç, Tapramaz / Cumhuriyet Sci. J., 43(3) (2022) 510-514 

514 

[15] Blanca M.A., Flórez M., Bermejo M., Evaluation of the 
rotation matrices in the basis of real spherical harmonics, 
Journal of Molecular Structure Theochem, 419 (1997) 19-
27. 

[16] Dachsel, H., Fast and accurate determination of the Wigner 
rotation matrices in the fast multipole method, J. 
Chem.Phys., 124 (2006) 144115–1-144115–6. 

[17] Gimbutas, Z., Greengard, L.,   A fast and stable method for 
rotating spherical harmonic expansions, J. Comput. Phys., 
228 (2009) 5621–5627. 

[18] Aubert, G., An alternative to Wigner d-matrices for 
rotating real spherical harmonics, AIP Advances, 3 (2013) 
062121–1-062121–25. 

[19] Tilma T., Everitt M. J., Samson J.H., Munro W.J., Nemoto 
K., Wigner Functions for Arbitrary Quantum Systems, Phys. 
Rev. Letters, 117 (2016) 180401. 

[20] Curtright, T.L., Fairlie, D.B., Zachos, C.K., Compact Formula 
for Rotations as Spin Matrix Polynomials, Sıgma, 10 (2014) 
1–15. 

[21] Curtright, T.L., Van Kortryk, T.S., On Rotations as Spin 
Matrix Polynomials, Journal of Physics A: Mathematical 
and Theoretical, 48 (2014) 1-15. 

[22] Fukushima, E., Roeder, S.B.W., Experimental pulse NMR: a 
nuts and bolts approach, Wesley Publishing Company, 
Massachusetts, (1981). 

[23] Rule, G.S., Hitchens, T.K., Fundamentals of Protein NMR 
Spectroscopy, Springer. New Delhi, India, (2006). 

[24] Oliviera I.S., Bonagamba T.J., Sarthour, R.S., Freitas, J.C.C., 
deAzevedo, E.R., NMR Quantum Information Processing. 
ElsevierScience. Netherlands, (2007). 

[25] Jones, J.A., NMR Quantum Computation, Prog. Nucl. 
Magn. Reson, Spectroscopy, 38 (2001) 326–360. 

[26] Schweiger, A., Jeschke, G., Principles of Pulse Electron 
Paramagnetic Resonance. Oxford University Press. UK, 
(2001). 

[27] Price M.D., Fortunato E.M., Pravia M.A., Breen C., 
Kumaresean S., Rosenberg G., Cory  D.G., Information 
Transfer on an NMR Quantum Information Processor, 
Concepts in Magnetic Resonance Part A, 13(3) (2001) 151-
158. 

[28] Govind Joshi, S.K., Spintronics and quantum computation, 
Indian J. Phys., 78A (3) (2004) 299-308. 

[29] Kocakoc  M., Tapramaz  R., Formation of Matrices of S = 1, 
S = 3/2 Spin Systems in Quantum Information Theory 
Formation of Matrices Some Spin Systems, J. New 
Research in Science, 7(2) (2018) 9-12. 

[30] Kocakoc  M., Tapramaz  R., Some Transactions Made with 
Hadamard Gate in Qutrit Systems, Journal of New Results 
in Engineering and Natural Science, 8 (2018) 6-10. 

 
 
 


