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Abstract

Kulli introduced the first Banhatti-Sombor index in [20] which is outlined as

BSO1(G) = ∑
uv∈E(G)

1√
(du)2 +(dv)2

.

Our research will be calculated on an algebraic formation, utilising the chief principals of Banhatti-Sombor index of monogenic semigroup
graphs which was first studied by [14].
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1. Introduction

The authors inspiration behind monogenic semigroup graphs emanated from zero divisor graphs. Our initial focus will be zero divisor graphs
before venturing into monogenic semigroup graphs (see [9, 10, 11, 12]). The researchers [16, 17] has provided research on zero divisor
graphs which are commutative and non commutative. The adjacement rule of vertices has been utilized in this instance. The research derived
from [16, 17] a new graph with relation to monogenic semigroup graph which is defined in [14]. Necessary and sufficient condition for two
different vertices xi,x j ∈ SM to be connected is i+ j > n (1≤ i, j ≤ n). Our indepth research on monogenic semigroup graph continues in
[2, 3, 4, 5, 6].
Topological indices insurmountable value in a wide range of different disciplines of science is immeasurable. Structural property and
chemical structure are connected to topological descriptor values. Many graph indices defined as molecular graphs originated from molecules
modified by atoms with vertices and bonds between them with edge. Molecular structures need graphs to obtain data in relation to the
essence of molecules.
These indices contain values associated with structural property and molecular structure. Several graph indices have been specified as
molecular graphs which emanated from molecules changed by atoms with vertices and bonds between them with edge. As a whole chemical
molecules utilise graphs to acquire data pertaining to the nature of molecules. Topological indices are frequently used in chemical graph
theory to analyze chemical structure (see [27]). The Sombor index which is a vertex degree based molecular structure descriptor lower
and upper bounds was initiated by Gutman [18]. Recently, many studies have been done on the chemical applications of this index, see
[7, 8, 13, 21, 26]. For lower and upper bounds over the Sombor index of a graph see [15, 19, 22, 25] and elsewhere.
Our research on this study depicts G set of graph, V (G) exhibits vertex set of G and E(G) exhibits edge set of G. Gutman in [18] has defined
the Sombor index as given below:

SO(G) = ∑
uv∈E(G)

√
(du)2 +(dv)2.

Subsequently, Kulli defined Banhatti-Sombor indices in [20] and calculated certain formulas on some nanostructures. The author defined the
first Banhatti-Sombor index as

BSO1(G) = ∑
uv∈E(G)

1√
(du)2 +(dv)2

.
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In [23], [24] the author determined an equation of Sombor index and an equation of Nirmala index of a graph of a monogenic semigroup
respectively. In this paper we estimate the Banhatti-Sombor index of a graph of a monogenic semigroup.
By the way, for a positive integer n, we have

⌊n
2

⌋
=

{ n
2 i f n is even
n−1

2 i f n is odd
(1.1)

In this study the exact equation of Banhatti-Sombor index of a graph of a monogenic semigroup is determined.

2. An Algorithm

The researchers in [2] presented an algorithm for the neighborhood of vertices to facilitate their computation. We will also use this algorithm
to calculate the first Banhatti Sombor index of the graph of a monogenic semigroup. The following notations such as xn,xn−1,xn−2, . . . ,x1

given below represent the elements of the vertex set.

In: xn is adjacent to xi1 (1≤ i1 ≤ n−1).

In−1: xn−1 is adjacent to xi2 (2≤ i2 ≤ n−2).

In−2: xn−2 is adjacent to xi3 (3≤ i3 ≤ n−3).

Continuing the algorithm in this way, we obtain the following conclusion.

If n is even:

I n
2 +2: x

n
2 +2 is adjacent not just to x

n
2−1, x

n
2 and x

n
2 +1 also adjacent to xn, xn−1, xn−2, . . ., x

n
2 +3.

I n
2 +1: x

n
2 +1 is adjacent not just to x

n
2 also adjacent to xn, xn−1, xn−2, . . . , x

n
2 +2.

If n is odd:

I n+1
2

: x
n+1

2 +2 is adjacent not just to x
n+1

2 −2, x
n+1

2 −1, x
n+1

2 and x
n+1

2 +1 also adjacent to xn, xn−1, xn−2, . . . , x
n+1

2 +3.

I n+1
2 +1: x

n+1
2 +1 is adjacent not just to x

n+1
2 −1 and x

n+1
2 also adjacent to xn−1, xn−2, . . . , x

n+1
2 +2.

It is possible to reach some of the studies on degree series from [1, 14] sources and see also the references cited in these works. The proof of
the following lemma given in [14], as given in the above algorithm ([2]).

Lemma 2.1. Let d1,d2, . . . ,dn be the degrees of vertices x1,x2, . . . ,xn in a monogenic semigroup graph (Γ(SM)), respectively. Then we have

d1 = 1, d2 = 2, . . . ,db n
2 c =

⌊n
2

⌋
, db n

2 c+1 =
⌊n

2

⌋
, db n

2c+2 =
⌊n

2

⌋
+1, . . . ,dn = n−1. (2.1)

Remark 2.2. If we consider the repeated terms in the above lemma which are listed below

db n
2c =

⌊n
2

⌋
= db n

2c+1.

we see the degree of dn is denoted by n−1, granted that the vertices number is n.

3. Banhatti-Sombor Index over a Monogenic Semigroup Graph

In this part an explicit equation of the first Banhatti-Sombor index over a graph of a monogenic semigroup is calculated.

Theorem 3.1. Let SM be a monogenic semigroup. The first Banhatti-Sombor index of Γ(SM) is

BSO1(Γ(SM)) =


∑

n
2−1
k=1 ∑

n−k−1
i=k

1√
(n−k)2+i2

+∑

n
2
k=1

1√
(n−k)2+( n

2 )
2

i f n is even

∑

n−1
2

k=1 ∑
n−k−1
i=k

1√
(n−k)2+i2

+∑

n−1
2

k=1
1√

(n−k)2+( n
2 )

2
i f n is odd
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Proof. The idea is to methodically prepare BSO1(Γ(SM)) in terms of the sum of degrees. In our calculations we will utilise the algorithm
given because it uses a structured method to sum up the degrees of vertices adding equations. We also need the equations (1.1), (2.1) and
Remark 2.2.

If n is odd:

[BSO1] (Γ(SM) =
1√

d2
n +d2

1

+
1√

d2
n +d2

2

+
1√

d2
n +d2

3

+ . . .+
1√

d2
n +d2

n−2

+
1√

d2
n +d2

n−1

+

+
1√

d2
n−1 +d2

2

+
1√

d2
n−1 +d2

3

+ . . .+
1√

d2
n−1 +d2

n−2

+

+ . . .+

+
1√

d2
n+1

2 +2
+d2

n+1
2 −2

+
1√

d2
n+1

2 +2
+d2

n+1
2 −1

+
1√

d2
n+1

2 +2
+d2

n+1
2

+
1√

d2
n+1

2 +2
+d2

n+1
2 +1

+
1√

d2
n+1

2 +1
+d2

n+1
2 −1

+
1√

d2
n+1

2 +1
+d2

n+1
2

Consequently, the first Banhatti-Sombor index of Γ(SM) is obtained as the following sum

[BSO1] (Γ(SM) = ∑
i j∈E(G)

1√
d2

i +d2
j

= [BSO1]n +[BSO1]n−1 + . . .+[BSO1] n+1
2 +2 +[BSO1] n+1

2 +1

We will calculate each Banhatti-Sombor index separately in the sum given above. Besides, we consider the equation
⌊ n

2
⌋
= n−1

2 given in
(1.1) where n is odd.

[BSO1]n =
1√

(n−1)2 +12
+

1√
(n−1)2 +22

+
1√

(n−1)2 +32
+ . . .+

1√
(n−1)2 +

⌊ n
2
⌋2

+ . . .+

+
1√

(n−1)2 +(n−2)2
+

1√
(n−1)2 +

⌊ n
2
⌋2

=
n−2

∑
i=1

1√
(n− i)2 + i2

+
1√

(n−1)2 +( n−1
2 )2

If the same procedure is applied in [BSO1]n applied to [BSO1]n−1 , . . . , [BSO1] n+1
2 +2 , [BSO1] n+1

2 +1 we have

[BSO1]n−1 =
n−3

∑
i=2

1√
(n− i)2 + i2

+
1√

(n−2)2 +( n−1
2 )2

,

[BSO1] n+1
2 +2 =

1√
( n+3

2 )2 +( n−3
2 )2

+
1√

( n+3
2 )2 +( n−1

2 )2
+

1√
( n+3

2 )2 +( n−1
2 )2

+
1√

( n+3
2 )2 +( n+1

2 )2

hence

[BSO1] n+1
2 +1 =

1√
( n+1

2 )2 +( n−1
2 )2

+
1√

( n+1
2 )2 +( n−1

2 )2
.

Hence

[BSO1]n +[BSO1]n−1 + . . .+[BSO1] n+1
2 +2 +[BSO1] n+1

2 +1 =

n−1
2

∑
k=1

n−k−1

∑
i=k

1√
(n− k)2 + i2

+

n−1
2

∑
k=1

1√
(n− k)2 + n

2
2
.

Similarly, if n is even, the following sum can be found.

[BSO1]n +[BSO1]n−1 + . . .+[BSO1] n
2 +2 +[BSO1] n

2 +1 =

n
2−1

∑
k=1

n−k−1

∑
i=k

1√
(n− k)2 + i2

+

n
2

∑
k=1

1√
(n− k)2 + n

2
2

The example given below is showing the calculation of the first Banhatti-Sombor index of Γ(SM6) to support the main theorem.



Konuralp Journal of Mathematics 43

Figure 3.1: SM6 monogenic semigroup graph

Example 3.2. Let SM6 be a monogenic semigroup that given below.

SM6 =
{

x,x2,x3,x4,x5,x6
}
∪{0}

Now we will calculate the first Banhatti-Sombor index of Γ(SM6) graph by using the technique given in Theorem 3.1.

BSO1(Γ(SM) =
2

∑
k=1

5−k

∑
i=k

1√
(6− k)2 + i2

+
3

∑
k=1

1√
(6− k)2 +(3)2

=
1√

52 +12
+

1√
52 +22

+
1√

52 +32
+

1√
52 +42

+
1√

42 +22
+

1√
42 +32

+
1√

52 +32
+

1√
42 +32

+
1√

32 +32

As will be understood, the Banhatti-Sombor index of a graph of a monogenic semigroup is found easily by considering the exact formula
obtained in the main theorem.

References
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