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Introduction 

Complex numbers, Hyperbolic numbers and Dual 
numbers arise in many areas such as coordinate 
transformation, matrix modeling, displacement analysis, 
rigid body dynamics, velocity analysis, static analysis, 
dynamic analysis, transformation, mechanics, kinematics, 
physics, mathematics, and geometry. Horadam [1] 
introduced the concept, the complex Fibonacci numbers, 
called the Gaussian Fibonacci numbers 𝐺𝐹𝑛 = 𝐹𝑛 + 𝑖𝐹𝑛−1 
where 𝐹𝑛 ∈ ℝ, 𝑖2 = −1 and  𝐹𝑛 , 𝑛𝑡ℎ  Fibonacci numbers. 
Fjelstad and Gal [2] defined the hyperbolic numbers 𝐻 =
ℎ + 𝑗ℎ∗ where ℎ, ℎ∗ ∈ ℝ, 𝑗2 = 1 and 𝑗 ≠ ±1. Clifford [3] 
described the dual numbers 𝐷 = 𝑑 + 𝜀𝑑∗ where 𝑑, 𝑑∗ ∈
ℝ, 𝜀2 = 0 and 𝜀 ≠ 0. Messelmi [4] expressed the dual-
complex numbers 𝑍 = 𝑧 + 𝜀𝑧∗ where 𝑧, 𝑧∗ ∈ ℂ, 𝜀2 = 0 
and 𝜀 ≠ 0. There are several studies in the literature that 
are concerned with these numbers [5-8].  

Fjelstad and Gal [2] inspected the extensions of the 
hyperbolic complex numbers to n-dimensions and they 
gave n-dimensional dual complex numbers in algebra and 
analysis. Matsuda [9] et al. inspected the two-dimensional 
rigid transformation which is more concise and efficient 
than the standard matrix presentation, by modifying the 
ordinary dual number construction for the complex 
numbers. Akar et al. [10] introduced arithmetical 
operations on dual-hyperbolic numbers. They 
investigated dual hyperbolic number and hyperbolic 
complex number valued functions. Majernik [11] gave 
three types of the four-component number systems which 
are formed by using the complex, binary and dual two-
component numbers. Aydın [12] formulated, if 𝑧1 = 𝑥1 +
𝑖𝑥2 and 𝑧2 = 𝑦1 + 𝑖𝑦2 any dual-complex number by 𝑤 =
𝑥1 + 𝑖𝑥2 + 𝜀𝑦1 + 𝑖𝜀𝑦2.  

Moreover, addition, subtraction, multiplication and 
division of dual-complex numbers and was defined by  

 

𝑤1 ± 𝑤2 = (𝑧1 + 𝜀𝑧2) ± (𝑧3 + 𝜀𝑧4) = (𝑧1 ± 𝑧3) + 𝜀(𝑧2 ± 𝑧4)  

 
𝑤1 × 𝑤2 = (𝑧1 + 𝜀𝑧2) × (𝑧3 + 𝜀𝑧4) = (𝑧1𝑧3) + 𝜀(𝑧1𝑧4 + 𝑧2𝑧3)  

 
and 
 

𝑤1

𝑤2

=
𝑧1 + 𝜀𝑧2

𝑧3 + 𝜀𝑧4

=
(𝑧1 + 𝜀𝑧2)(𝑧3 − 𝜀𝑧4)

(𝑧3 + 𝜀𝑧4)(𝑧3 − 𝜀𝑧4)

=
𝑧1

𝑧3

+ 𝜀
𝑧2𝑧3 − 𝑧1𝑧4

𝑧3
2

. 

 

Table 1. Multiplication scheme of dual-complex numbers 
 
 
 
 
 
 
 
 

The conjugations can operate on dual-complex 
numbers as follows: 

 
𝑤 = 𝑥1 + 𝑖𝑥2 + 𝜀𝑦1 + 𝑖𝜀𝑦2 

 
𝑤∗1 = (𝑥1 − 𝑖𝑥2) + (𝜀𝑦1 − 𝑖𝜀𝑦2), 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛  
 
𝑤∗2 = (𝑥1 + 𝑖𝑥2) − (𝜀𝑦1 + 𝑖𝜀𝑦2), 𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 

 
𝑤∗3 = (𝑥1 − 𝑖𝑥2) − (𝜀𝑦1 − 𝑖𝜀𝑦2), 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 

 

𝑤∗4 = (𝑥1 − 𝑖𝑥2) (1 − 𝜀
𝑦1+𝑖𝑦2

𝑥1+𝑖𝑥2
) , 𝑑𝑢𝑎𝑙 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛  

 
𝑤∗5 = (𝑦1 + 𝑖𝑦2) − (𝜀𝑥1 + 𝑖𝜀𝑥2), 𝑎𝑛𝑡𝑖 − 𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛  

× 𝟏 𝒊 𝜺 𝒊𝜺 

1 1 𝑖 𝜀 𝑖𝜀 

𝑖 𝑖 −1 𝑖𝜀 −𝜀 

𝜀 𝜀 𝑖𝜀 0 0 

𝑖𝜀 𝑖𝜀 −𝜀 0 0 

http://xxx.cumhuriyet.edu.tr/
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Therefore, the norm of dual-complex numbers is 
defined as 

 

𝑁𝑤
∗1 = ‖𝑤 × 𝑤∗1‖ = √|𝑧1|2 + 2𝜀𝑅𝑒(𝑧1𝑧2

∗) 

𝑁𝑤
∗2 = ‖𝑤 × 𝑤∗2‖ = √|𝑧1|2 

𝑁𝑤
∗3 = ‖𝑤 × 𝑤∗3‖ = √|𝑧1|2 − 2𝑖𝜀𝐼𝑚(𝑧1𝑧2

∗) 

𝑁𝑤
∗4 = ‖𝑤 × 𝑤∗4‖ = √|𝑧1|2 

𝑁𝑤
∗5 = ‖𝑤 × 𝑤∗5‖ = √𝑧1𝑧2 + 𝜀(𝑧2

2 − 𝑧1
2) 

Beneficial point is the number sequences that have 
been studied over many years. For 𝑛 ∈  ℕ0, Pell and Pell-
Lucas numbers are defined by the recurrence relations, 
respectively. 𝑃𝑛+2 = 2𝑃𝑛+1 + 𝑃𝑛, 𝑃0 = 0, 𝑃1 = 1 and 
𝑄𝑛+2 = 2𝑄𝑛+1 + 𝑄𝑛, 𝑄0 = 2, 𝑄1 = 2. Besides the 𝑛𝑡ℎ 

Pell and Pell-Lucas number are formulized as 𝑃𝑛 =
𝛼𝑛−𝛽𝑛

𝛼−𝛽
 

and 𝑄𝑛 = 𝛼𝑛 + 𝛽𝑛 , where 𝛼 = 1 + √2, 𝛽 = 1 − √2. 
These formulas are called as Binet’s formula [13, 14].  

Many researchers studied several areas of this number 
sequence. Halıcı and Çürük [15] examined the dual 
numbers and investigated the characteristic properties of 
them. They also gave equations about conjugates and 
some important features of these newly defined numbers. 
Azak and Güngör [16] defined the dual complex Fibonacci 
and Lucas numbers and gave the well-known properties 
for these numbers. Aydın [17] defined dual-complex k-Pell 
numbers, dual-complex k-Pell quaternions and also gave 
some algebraic properties of them.  

In the following sections, the dual-Gaussian Pell and 
the dual-Gaussian Pell-Lucas numbers will be defined. In 
this work, a variety of algebraic properties of dual-
Gaussian Pell and dual-Gaussian Pell-Lucas numbers are 
presented in a unified manner. Some identities will be 
given for dual-Gaussian Pell and dual-Gaussian Pell-Lucas 
numbers such as Binet’s formula, generating function, 
d’Ocagne’s identity, Catalan’s identity, Cassini’s identity, 
and some sum formulas. The dual-Gaussian Pell and the 
dual-Gaussian Pell-Lucas numbers’ properties will also be 
obtained using matrix representation.  

 

Dual-Gaussian Pell and Pell-Lucas numbers  
 

Definition 2.1: For 𝑛 ∈ ℕ0, the dual-Gaussian Pell and the dual-Gaussian Pell-Lucas numbers are defined by  
 

𝐷𝐺𝑃𝑛+3 = 𝑃𝑛+3 + 𝑖𝑃𝑛+2 + 𝜀𝑃𝑛+1 + 𝑖𝜀𝑃𝑛 

𝐷𝐺𝑄𝑛+3 = 𝑄𝑛+3 + 𝑖𝑄𝑛+2 + 𝜀𝑄𝑛+1 + 𝑖𝜀𝑄𝑛 

 
where 𝑃𝑛 and 𝑄𝑛, are the nth Pell and Pell-Lucas numbers. 𝜀, denotes the pure dual unit (𝜀2 = 0, 𝜀 ≠ 0), 𝑖 denotes the 
imaginary unit (𝑖2 = −1) and 𝑖𝜀 denotes the imaginary dual unit. 

 
𝐷𝐺𝑃0 = 𝑖 − 2𝜀 + 5𝑖𝜀, 𝐷𝐺𝑃1 = 1 + 𝜀 − 2𝑖𝜀 and 

𝐷𝐺𝑃2 = 2 + 𝑖 + 𝑖𝜀, …  

𝐷𝐺𝑄0 = 2 − 2𝑖 + 6𝜀 − 14𝑖𝜀, 𝐷𝐺𝑄1 = 2 + 2𝑖 − 2𝜀 + 6𝑖𝜀 and 𝐷𝐺𝑄2 = 6 + 2𝑖 + 2𝜀 − 2𝑖𝜀, … 

 
Let 𝐷𝐺𝑄𝑛+3 and 𝐷𝐺𝑄𝑚+3 be two dual-Gaussian Pell-Lucas numbers. The addition, substraction and multiplication 

of the dual-Gaussian Pell-Lucas numbers are given by 
 

𝐷𝐺𝑄𝑛+3 ± 𝐷𝐺𝑄𝑚+3 = (𝑄𝑛+3 ± 𝑄𝑚+3) + 𝑖(𝑄𝑛+2 ± 𝑄𝑚+2) + 𝜀(𝑄𝑛+1 ± 𝑄𝑚+1) + 𝑖𝜀(𝑄𝑛 ± 𝑄𝑚) 
 

𝐷𝐺𝑄𝑛+3 × 𝐷𝐺𝑄𝑚+3 = (𝑄𝑛+3𝑄𝑚+3 − 𝑄𝑛+2𝑄𝑚+2) + 𝑖(𝑄𝑛+3𝑄𝑚+2 + 𝑄𝑛+2𝑄𝑚+3) + 𝜀(𝑄𝑛+3𝑄𝑚+1 − 𝑄𝑛+2𝑄𝑚 +
                                             𝑄𝑛+1𝑄𝑚+3 − 𝑄𝑛𝑄𝑚+2) + 𝑖𝜀(𝑄𝑛+3𝑄𝑚 + 𝑄𝑛+2𝑄𝑚+1 + 𝑄𝑛+1𝑄𝑚+2 + 𝑄𝑛𝑄𝑚+3).  

 
There exist five different conjugations. Dual-Gaussian Pell-Lucas numbers can operate as follows: 
 

𝐷𝐺𝑄𝑛+3 = 𝑄𝑛+3 + 𝑖𝑄𝑛+2 + 𝜀𝑄𝑛+1 + 𝑖𝜀𝑄𝑛 
 

𝐷𝐺𝑄𝑛+3
∗1 = (𝑄𝑛+3 − 𝑖𝑄𝑛+2) + (𝜀𝑄𝑛+1 − 𝑖𝜀𝑄𝑛), 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 

 
𝐷𝐺𝑄𝑛+3

∗2 = (𝑄𝑛+3 + 𝑖𝑄𝑛+2) − (𝜀𝑄𝑛+1 + 𝑖𝜀𝑄𝑛), 𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 

𝐷𝐺𝑄𝑛+3
∗3 = (𝑄𝑛+3 − 𝑖𝑄𝑛+2) − (𝜀𝑄𝑛+1 − 𝑖𝜀𝑄𝑛), 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 

𝐷𝐺𝑄𝑛+3
∗4 = (𝑄𝑛+3 − 𝑖𝑄𝑛+2) (1 − 𝜀

𝑄𝑛+1 + 𝑖𝑄𝑛

𝑄𝑛+3 + 𝑖𝑄𝑛+2

) , 𝑑𝑢𝑎𝑙 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 

𝐷𝐺𝑄𝑛+3
∗5 = (𝑄𝑛+1 + 𝑖𝑄𝑛) − (𝜀𝑄𝑛+3 + 𝑖𝜀𝑄𝑛+2), 𝑎𝑛𝑡𝑖 − 𝑑𝑢𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 
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Similarly, the properties for dual-Gaussian Pell numbers are obtained.  
Lemma 2.2: Let 𝑃𝑛 and 𝑄𝑛 be the Pell and the Pell-Lucas numbers, respectively. The following relations are satisfied 

 
𝑄𝑛+1

2 + 𝑄𝑛
2 = 8𝑃2𝑛+1 

𝑄𝑛+1
2 − 𝑄𝑛

2 = 8𝑃2𝑛+1 − 4(−1)𝑛 

𝑄2𝑛+2 + 𝑄2𝑛 = 8𝑃2𝑛+1 

𝑄2𝑛+2 − 𝑄2𝑛 = 2𝑄2𝑛+1 

𝑄𝑛+𝑟𝑄𝑛 = 𝑄2𝑛+𝑟 + 𝑄𝑟(−1)𝑛 

𝑄𝑚𝑄𝑛+𝑟 + 𝑄𝑚+𝑟𝑄𝑛 = 2𝑄𝑚+𝑛+𝑟 + (−1)𝑛𝑄𝑚−𝑛𝑄𝑟 

𝑄𝑚𝑄𝑛+𝑟 − 𝑄𝑚+𝑟𝑄𝑛 = (−8)(−1)𝑛𝑃𝑚−𝑛𝑃𝑟 

 
Proof: The proofs are carried out with the help of the Binet’s formula.  
Proposition 2.3: 𝐷𝐺𝑄𝑛 be a dual-Gaussian Pell-Lucas number. The following properties hold.  
 
𝐷𝐺𝑄𝑛+3 + 𝐷𝐺𝑄𝑛+3

∗1 = 2𝑄𝑛+3 + 2𝜀𝑄𝑛+1 

𝐷𝐺𝑄𝑛+3 × 𝐷𝐺𝑄𝑛+3
∗1 = 8𝑃2𝑛+5 + 16𝜀𝑃2𝑛+3 

𝐷𝐺𝑄𝑛+3 + 𝐷𝐺𝑄𝑛+3
∗2 = 2𝑄𝑛+3 + 2𝑖𝑄𝑛+2 

𝐷𝐺𝑄𝑛+3 × 𝐷𝐺𝑄𝑛+3
∗2 = [8𝑃2𝑛+5 − 4(−1)𝑛] + 2𝑖[𝑄2𝑛+5 + 2(−1)𝑛] 

𝐷𝐺𝑄𝑛+3 + 𝐷𝐺𝑄𝑛+3
∗3 = 2𝑄𝑛+3 + 2𝑖𝜀𝑄𝑛 

𝐷𝐺𝑄𝑛+3 × 𝐷𝐺𝑄𝑛+3
∗3 = 8𝑃2𝑛+5 + 32𝑖𝜀(−1)𝑛 

Similarly, the proposition for dual-Gaussian Pell numbers is obtained. 
Definition 2.4: For 𝑛 ∈ ℕ0, 𝐷𝐶𝑃𝑛 and 𝐷𝐶𝑄𝑛 the dual-complex Pell and the dual-complex Pell-Lucas numbers, the 
negadual-Gaussian Pell and the negadual-Gaussian Pell-Lucas numbers are defined by  
 
𝐷𝐺𝑃−𝑛 = (−1)𝑛+1𝐷𝐺𝑃𝑛

∗1 

𝐷𝐺𝑄−𝑛 = (−1)𝑛𝐷𝐺𝑄𝑛
∗1 

where 𝑃𝑛 and 𝑄𝑛, are the nth Pell and Pell-Lucas numbers. Also, 𝐷𝐶𝑃𝑛 and 𝐷𝐶𝑄𝑛, are the dual-complex Pell and 
dual-complex Pell-Lucas numbers. 𝜀, denotes the pure dual unit (𝜀2 = 0, 𝜀 ≠ 0), 𝑖 denotes the imaginary unit (𝑖2 = −1) 
and 𝑖𝜀 denotes the imaginary dual unit. 

 
𝐷𝐺𝑄−𝑛 = 𝑄−𝑛 + 𝑖𝑄−𝑛−1 + 𝜀𝑄−𝑛−2 + 𝑖𝜀𝑄−𝑛−3 

 
When the equality is established, 

 
𝐷𝐺𝑄−𝑛 = (−1)𝑛𝑄𝑛 + 𝑖(−1)𝑛+1𝑄𝑛+1 + 𝜀(−1)𝑛+2𝑄𝑛+2 + 𝑖𝜀(−1)𝑛+3𝑄𝑛+3 

𝐷𝐺𝑄−𝑛 = (−1)𝑛[𝑄𝑛 − 𝑖𝑄𝑛+1 + 𝜀𝑄𝑛+2 − 𝑖𝜀𝑄𝑛+3] 

𝐷𝐺𝑄−𝑛 = (−1)𝑛𝐷𝐶𝑄𝑛
∗1 

 
Similarly, 𝐷𝐺𝑃−𝑛 is found.  
Theorem 2.5: Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and the dual-Gaussian Pell-Lucas numbers, respectively. 
The following relations are satisfied 
 
2(𝐷𝐺𝑃𝑛+1 + 𝐷𝐺𝑃𝑛) = 𝐷𝐺𝑄𝑛+1 

2(𝐷𝐺𝑃𝑛+1 − 𝐷𝐺𝑃𝑛) = 𝐷𝐺𝑄𝑛 

𝐷𝐺𝑃𝑛+1 + 𝐷𝐺𝑃𝑛−1 = 𝐷𝐺𝑄𝑛 

𝐷𝐺𝑃𝑛+1 − 𝐷𝐺𝑃𝑛−1 = 2𝐷𝐺𝑃𝑛 

𝐷𝐺𝑃𝑛+2 + 𝐷𝐺𝑃𝑛−2 = 6𝐷𝐺𝑃𝑛 

𝐷𝐺𝑃𝑛+2 − 𝐷𝐺𝑃𝑛−2 = 2𝐷𝐺𝑄𝑛 
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𝐷𝐺𝑄𝑛+1 + 𝐷𝐺𝑄𝑛 = 4𝐷𝐺𝑃𝑛+1 

𝐷𝐺𝑄𝑛+1 − 𝐷𝐺𝑄𝑛 = 4𝐷𝐺𝑃𝑛 

𝐷𝐺𝑄𝑛+1 + 𝐷𝐺𝑄𝑛−1 = 8𝐷𝐺𝑃𝑛 

𝐷𝐺𝑄𝑛+1 − 𝐷𝐺𝑄𝑛−1 = 2𝐷𝐺𝑄𝑛 

𝐷𝐺𝑄𝑛+2 + 𝐷𝐺𝑄𝑛−2 = 6 𝐷𝐺𝑄𝑛 

𝐷𝐺𝑄𝑛+2 − 𝐷𝐺𝑄𝑛−2 = 16 𝐷𝐺𝑃𝑛 

Proof:  
2(𝐷𝐺𝑃𝑛+1 + 𝐷𝐺𝑃𝑛) = 2(𝑃𝑛+1 + 𝑖𝑃𝑛 + 𝜀𝑃𝑛−1 + 𝑖𝜀𝑃𝑛−2 + 𝑃𝑛 + 𝑖𝑃𝑛−1 + 𝜀𝑃𝑛−2 + 𝑖𝜀𝑃𝑛−3) 

                                    = 2(𝑃𝑛+1 + 𝑃𝑛) + 2𝑖(𝑃𝑛 + 𝑃𝑛−1) + 2𝜀(𝑃𝑛−1 + 𝑃𝑛−2) + 2𝑖𝜀(𝑃𝑛−2 + 𝑃𝑛−3)  

                                    = 𝑄𝑛+1 + 𝑖𝑄𝑛 + 𝜀𝑄𝑛−1 + 𝑖𝜀𝑄𝑛−2 = 𝐷𝐺𝑄𝑛+1  

The other steps of the theorem can be proved by a similar method. 
Theorem 2.6: (Generating Function Formula) Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and Pell-Lucas numbers. 
Generating function formula for this numbers is as follows 

 

𝑚(𝑡) =
(𝑖 − 2𝜀 + 5𝑖𝜀) + 𝑡(1 − 2𝑖 + 5𝜀 − 12𝑖𝜀)

1 − 2𝑡 − 𝑡2
 

ℎ(𝑡) =
(2 − 2𝑖 + 6𝜀 − 14𝑖𝜀) + 𝑡(−2 + 6𝑖 − 14𝜀 + 34𝑖𝜀)

1 − 2𝑡 − 𝑡2
. 

Proof: Let ℎ(𝑡) be the generating function for dual-Gaussian Pell-Lucas numbers as 
 
ℎ(𝑡) = ∑ 𝐷𝐺𝑄𝑛𝑡𝑛∞

𝑛=0 . Using ℎ(𝑡), 2𝑡ℎ(𝑡)  and 𝑡2ℎ(𝑡), we get the following equations, 

𝑡ℎ(𝑡) = ∑ 𝐷𝐺𝑄𝑛𝑡𝑛+1∞
𝑛=0 , 𝑡2ℎ(𝑡) = ∑ 𝐷𝐺𝑄𝑛𝑡𝑛+2∞

𝑛=0 . After the needed calculations, the generating function for dual- 

 
Gaussian Pell-Lucas numbers is obtained as 
 

ℎ(𝑡) =
𝐷𝐺𝑄0 + 𝐷𝐺𝑄1𝑡 − 2𝐷𝐺𝑄0𝑡

1 − 2𝑡 − 𝑡2
 

ℎ(𝑡) =
(2 − 2𝑖 + 6𝜀 − 14𝑖𝜀) + 𝑡(−2 + 6𝑖 − 14𝜀 + 34𝑖𝜀)

1 − 2𝑡 − 𝑡2
. 

Similarly, generating function formula for dual-Gaussian Pell numbers is obtained. 
Theorem 2.7: (Binet’s Formula) Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and Pell-Lucas numbers. Binet’s formula 
for this number is as follows 
 

𝐷𝐺𝑃𝑛 =
�̂�𝛼𝑛−3 − �̂�𝛽𝑛−3

𝛼 − 𝛽
 

𝐷𝐺𝑄𝑛 = �̂�𝛼𝑛−3 + �̂�𝛽𝑛−3 

where �̂� = 𝛼3 + 𝑖𝛼2 + 𝜀𝛼1 + 𝑖𝜀, 𝛼 = 1 + √2 and �̂� = 𝛽3 + 𝑖𝛽2 + 𝜀𝛽1 + 𝑖𝜀, 𝛽 = 1 − √2. 
 
Proof:  
𝐷𝐺𝑄𝑛 = 𝑄𝑛 + 𝑖𝑄𝑛−1 + 𝜀𝑄𝑛−2 + 𝑖𝜀𝑄𝑛−3 

      = (𝛼𝑛 + 𝛽𝑛) + 𝑖(𝛼𝑛−1 + 𝛽𝑛−1) + 𝜀(𝛼𝑛−2 + 𝛽𝑛−2) + 𝑖𝜀(𝛼𝑛−3 + 𝛽𝑛−3) 

      = 𝛼𝑛−3(𝛼3 + 𝑖𝛼2 + 𝜀𝛼1 + 𝑖𝜀) + 𝛽𝑛−3(𝛽3 + 𝑖𝛽2 + 𝜀𝛽1 + 𝑖𝜀) 

𝐷𝐺𝑄𝑛 = �̂�𝛼𝑛−3 + �̂�𝛽𝑛−3. 

 
Similarly, Binet’s formula for dual-Gaussian Pell numbers is obtained. 
Theorem 2.8: (d’Ocagne’s Identity) Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and Pell-Lucas numbers. d’Ocagne’s 
identity for this number is as follows 

 
𝐷𝐺𝑃𝑚 𝐷𝐺𝑃𝑛+1 − 𝐷𝐺𝑃𝑚+1 𝐷𝐺𝑃𝑛 = 8(−1)𝑛+1𝑃𝑚−𝑛 − 2𝑖(−1)𝑛𝑃𝑚−𝑛 − 𝜀[6(−1)𝑛(𝑃𝑚−𝑛) + (−1)𝑛(𝑃𝑚−𝑛−2 +
                                                                       𝑃𝑚−𝑛+2)] − 12𝑖𝜀(−1)𝑛𝑃𝑚−𝑛  
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𝐷𝐺𝑄𝑚 𝐷𝐺𝑄𝑛+1 − 𝐷𝐺𝑄𝑚+1 𝐷𝐺𝑄𝑛 = 8[(−1)𝑛𝑃𝑚−𝑛+1 + (−1)𝑚𝑃𝑛−𝑚] + 16𝑖(−1)𝑛𝑃𝑚−𝑛  
                                                             +8𝜀[(−1)𝑚(𝑃𝑛−𝑚−2 + 𝑃𝑛−𝑚+2) − (−1)𝑛(𝑃𝑚−𝑛−2 + 𝑃𝑚−𝑛+2)] 

Proof:  
 

𝐷𝐺𝑄𝑚 𝐷𝐺𝑄𝑛+1 − 𝐷𝐺𝑄𝑚+1 𝐷𝐺𝑄𝑛 = (𝑄𝑚 + 𝑖𝑄𝑚−1 + 𝜀𝑄𝑚−2 + 𝑖𝜀𝑄𝑚−3)(𝑄𝑛+1 + 𝑖𝑄𝑛 + 𝜀𝑄𝑛−1 + 𝑖𝜀𝑄𝑛−2) −

(𝑄𝑚+1 + 𝑖𝑄𝑚 + 𝜀𝑄𝑚−1 + 𝑖𝜀𝑄𝑚−2)(𝑄𝑛 + 𝑖𝑄𝑛−1 + 𝜀𝑄𝑛−2 + 𝑖𝜀𝑄𝑛−3) = 8[(−1)𝑛𝑃𝑚−𝑛+1 + (−1)𝑚𝑃𝑛−𝑚] +

16𝑖(−1)𝑛𝑃𝑚−𝑛 + 8𝜀[(−1)𝑚(𝑃𝑛−𝑚−2 + 𝑃𝑛−𝑚+2) − (−1)𝑛(𝑃𝑚−𝑛−2 + 𝑃𝑚−𝑛+2)]  

 
Similarly, d’Ocagne’s identity for dual-Gaussian Pell numbers is obtained. 
Theorem 2.9: (Catalan’s Identity) Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and Pell-Lucas numbers. Catalan’s 
identity for this number is as follows 
 
𝐷𝐺𝑃𝑛

2 − 𝐷𝐺𝑃𝑛+𝑟 𝐷𝐺𝑃𝑛−𝑟 = 𝑃𝑟
2[(−1)𝑛−𝑟 + (−1)𝑛+𝑟] + 𝑖𝑃𝑟(−1)𝑛−𝑟[𝑃𝑟−1 − 𝑃𝑟+1] 

                                          +𝜀𝑃𝑟[(−1)𝑛−1(𝑃−𝑟−2 + 𝑃−𝑟+2) + (−1)𝑛−𝑟(𝑃𝑟+2 + 𝑃−𝑟+2)] 

                                          +𝑖𝜀𝑃𝑟[(−1)𝑛−𝑟−1(𝑃𝑟+3 + 𝑃𝑟−1) + (−1)𝑛−𝑟(𝑃𝑟−3 + 𝑃𝑟+1)] 

 
𝐷𝐺𝑄𝑛

2 − 𝐷𝐺𝑄𝑛+𝑟 𝐷𝐺𝑄𝑛−𝑟 = 4(−1)𝑛[2𝑃𝑟
2 − 𝑃𝑟] + 16𝑖(−1)𝑛−𝑟[𝑃𝑟

2] 

                                            −8𝜀𝑃𝑟[(−1)𝑛−𝑟(𝑃𝑟+2 + 𝑃𝑟−2) + (−1)𝑛−1(𝑃−𝑟+2 + 𝑃−𝑟−2)] 

                                            +8𝑖𝜀(−1)𝑛−𝑟𝑃𝑟[(𝑃𝑟+3 + 𝑃𝑟−1) − (𝑃𝑟−3 + 𝑃𝑟+1)] 

Proof:  
𝐷𝐺𝑄𝑛

2 − 𝐷𝐺𝑄𝑛+𝑟 𝐷𝐺𝑄𝑛−𝑟

= (𝑄𝑛 + 𝑖𝑄𝑛−1 + 𝜀𝑄𝑛−2 + 𝑖𝜀𝑄𝑛−3)(𝑄𝑛 + 𝑖𝑄𝑛−1 + 𝜀𝑄𝑛−2 + 𝑖𝜀𝑄𝑛−3)

− (𝑄𝑛+𝑟 + 𝑖𝑄𝑛+𝑟−1 + 𝜀𝑄𝑛+𝑟−2 + 𝑖𝜀𝑄𝑛+𝑟−3)(𝑄𝑛−𝑟 + 𝑖𝑄𝑛−𝑟−1 + 𝜀𝑄𝑛−𝑟−2 + 𝑖𝜀𝑄𝑛−𝑟−3)

= 4(−1)𝑛[2𝑃𝑟
2 − 𝑃𝑟] + 16𝑖(−1)𝑛−𝑟[𝑃𝑟

2]

− 8𝜀𝑃𝑟[(−1)𝑛−𝑟(𝑃𝑟+2 + 𝑃𝑟−2) + (−1)𝑛−1(𝑃−𝑟+2 + 𝑃−𝑟−2)]

+ 8𝑖𝜀(−1)𝑛−𝑟𝑃𝑟[(𝑃𝑟+3 + 𝑃𝑟−1) − (𝑃𝑟−3 + 𝑃𝑟+1)] 

 
Similarly, Catalan’s identity for dual-Gaussian Pell numbers is obtained. 
Theorem 2.10: (Cassini’s Identity) Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and Pell-Lucas numbers. Cassini’s 
identity for this number is as follows 
 
𝐷𝐺𝑃𝑛

2 − 𝐷𝐺𝑃𝑛+1 𝐷𝐺𝑃𝑛−1 = −2(−1)𝑛 + 2𝑖(−1)𝑛 − 12𝜀(−1)𝑛 + 12𝑖𝜀(−1)𝑛 

𝐷𝐺𝑄𝑛
2 − 𝐷𝐺𝑄𝑛+1 𝐷𝐺𝑄𝑛−1 = 4(−1)𝑛 − 16𝑖(−1)𝑛 + 96(−1)𝑛𝜀 − 96𝑖𝜀(−1)𝑛 

 
Proof: If 𝑟 = 1 is taken in the Catalan’s identity, Cassini’s identity is obtained. Similarly, Cassini’s identity for dual-
Gaussian Pell numbers is obtained. 
Theorem 2.11: Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell and Pell-Lucas numbers. In this case 
 

∑ 𝐷𝐺𝑃𝑘 = (
𝑄𝑛+1−1

2
)𝑛

𝑘=1 + 𝑖 (
𝑄𝑛−1

2
) + 𝜀 (

𝑄𝑛−1+1

2
) + 𝑖𝜀 (

𝑄𝑛−2−3

2
)  

∑ 𝐷𝐺𝑃2𝑘−1 = (
𝑃2𝑛

2
)𝑛

𝑘=1 + 𝑖 (
𝑃2𝑛−1−1

2
) + 𝜀 (

𝑃2𝑛−2+2

2
) + 𝑖𝜀 (

𝑃2𝑛−3−5

2
)  

∑ 𝐷𝐺𝑃2𝑘 = (
𝑃2𝑛+1−1

2
)𝑛

𝑘=1 + 𝑖 (
𝑃2𝑛

2
) + 𝜀 (

𝑃2𝑛−1−1

2
) + 𝑖𝜀 (

𝑃2𝑛−2+2

2
)  

∑ 𝐷𝐺𝑄𝑘 = (2𝑃𝑛+1 − 2)𝑛
𝑘=1 + 𝑖(2𝑃𝑛) + 𝜀(2𝑃𝑛−1 − 2) + 𝑖𝜀(2𝑃𝑛−2 + 4)  

∑ 𝐷𝐺𝑄2𝑘−1 = (
𝑄2𝑛−1

2
)𝑛

𝑘=1 + 𝑖 (
𝑄2𝑛−1+3

2
) + 𝜀 (

𝑄2𝑛−2−5

2
) + 𝑖𝜀 (

𝑄2𝑛−3+15

2
)  

∑ 𝐷𝐺𝑄2𝑘 = (
𝑄2𝑛+1−1

2
)𝑛

𝑘=1 + 𝑖 (
𝑄2𝑛−1

2
) + 𝜀 (

𝑄2𝑛−1+3

2
) + 𝑖𝜀 (

𝑄2𝑛−2−5

2
)  

Proof:  
 ∑ 𝐷𝐺𝑄𝑘 = ∑ (𝑄𝑘 + 𝑖𝑄𝑘−1 + 𝜀𝑄𝑘−2 + 𝑖𝜀𝑄𝑘−3)𝑛

𝑘=1
𝑛
𝑘=1  
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                 = ∑ 𝑄𝑘
𝑛
𝑘=1 + 𝑖 ∑ 𝑄𝑘

𝑛−1
𝑘=0 + 𝜀 ∑ 𝑄𝑘

𝑛−2
𝑘=−1 + 𝑖𝜀 ∑ 𝑄𝑘

𝑛−3
𝑘=−2  

                 = (2𝑃𝑛+1 − 2) + 𝑖(2𝑃𝑛) + 𝜀(2𝑃𝑛−1 − 2) + 𝑖𝜀(2𝑃𝑛−2 + 4) 
 
Other sums are proven through the same method. Similarly, Sums are proven for dual-Gaussian Pell numbers is 
obtained. 
Theorem 2.12: Let 𝐷𝐺𝑃𝑛 and 𝐷𝐺𝑄𝑛 be the dual-Gaussian Pell-Lucas numbers. For 𝑛 ≥ 1be integer. Then, the matrix 
representations of these sequences with both negative and positive indices are as follows 

 [
2 1
1 0

]
𝑛

[
𝐷𝐺𝑃2 𝐷𝐺𝑃1

𝐷𝐺𝑃1 𝐷𝐺𝑃0
] = [

𝐷𝐺𝑃𝑛+2 𝐷𝐺𝑃𝑛+1

𝐷𝐺𝑃𝑛+1 𝐷𝐺𝑃𝑛
] 

 [
0 1
1 2

]
𝑛

[
𝐷𝐺𝑃0

𝐷𝐺𝑃1
] = [

𝐷𝐺𝑃𝑛

𝐷𝐺𝑃𝑛+1
] 

 [
2 1
1 0

]
𝑛

[
𝐷𝐺𝑄2 𝐷𝐺𝑄1

𝐷𝐺𝑄1 𝐷𝐺𝑄0
] = [

𝐷𝐺𝑄𝑛+2 𝐷𝐺𝑄𝑛+1

𝐷𝐺𝑄𝑛+1 𝐷𝐺𝑄𝑛
] 

 [
0 1
1 2

]
𝑛

[
𝐷𝐺𝑄0

𝐷𝐺𝑄1
] = [

𝐷𝐺𝑄𝑛

𝐷𝐺𝑄𝑛+1
] 

 [
0 1
1 −2

]
𝑛

[
𝐷𝐺𝑃2 𝐷𝐺𝑃1

𝐷𝐺𝑃1 𝐷𝐺𝑃0
] = [

𝐷𝐺𝑃−𝑛+2 𝐷𝐺𝑃−𝑛+1

𝐷𝐺𝑃−𝑛+1 𝐷𝐺𝑃−𝑛
] 

 [
0 1
1 −2

]
𝑛

[
𝐷𝐺𝑃0

𝐷𝐺𝑃1
] = [

𝐷𝐺𝑃−𝑛

𝐷𝐺𝑃−𝑛−1
] 

 [
0 1
1 −2

]
𝑛

[
𝐷𝐺𝑄2 𝐷𝐺𝑄1

𝐷𝐺𝑄1 𝐷𝐺𝑄0
] = [

𝐷𝐺𝑄−𝑛+2 𝐷𝐺𝑄−𝑛+1

𝐷𝐺𝑄−𝑛+1 𝐷𝐺𝑄−𝑛
] 

 [
0 1
1 −2

]
𝑛

[
𝐷𝐺𝑄0

𝐷𝐺𝑄1
] = [

𝐷𝐺𝑄−𝑛

𝐷𝐺𝑄−𝑛−1
] 

Proof:  
 For the prove, we utilize induction principle on n. The equality holds for n = 1. Now assume that the equality is true 

for n >1. Then, we can verify for 𝑛 + 1 as follows 
 

[2 1
1 0

]
𝑛+1

[
𝐷𝐺𝑃2 𝐷𝐺𝑃1

𝐷𝐺𝑃1 𝐷𝐺𝑃0
] = [2 1

1 0
] [2 1

1 0
]

𝑛

[
𝐷𝐺𝑃2 𝐷𝐺𝑃1

𝐷𝐺𝑃1 𝐷𝐺𝑃0
] 

= [
2 1
1 0

] [
𝐷𝐺𝑃𝑛+2 𝐷𝐺𝑃𝑛+1

𝐷𝐺𝑃𝑛+1 𝐷𝐺𝑃𝑛
] = [

𝐷𝐺𝑃𝑛+3 𝐷𝐺𝑃𝑛+2

𝐷𝐺𝑃𝑛+2 𝐷𝐺𝑃𝑛+1
] 

 
Thus, the first step of the theorem can be proved easily. Similarly, the other steps of the proof are seen by induction on 
n.  
 

Conclusions 

This study presents the dual-Gaussian Pell-Lucas and 
Pell numbers. We obtained these new numbers not 
defined in the literature before. These number sequences 
have great importance as they are used in quantum 
physics, applied mathematics, kinematic, differential 
equations and cryptology. Since this study includes some 
new results, it contributes to literature by providing 
essential information concerning these new numbers. 
Therefore, we hope that this new number system and 
properties that we have found will offer a new perspective 
to the researchers.  
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