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Introduction 

Statistical convergence is a generalization of the 
concept of convergence in the Cauchy sense. The idea of 
statistical convergence was introduced under the name of 
"almost convergence" in the first edition [1] of Zygmund’s 
monograph, published in 1935. The term "statistical 
convergence" was used by Fast [2] and Steinhaus [3] 
independently of each other. Also, statistical convergence 
was studied by Buck [4] in 1953 with the expression of 
"convergence in density". 

Fridy [5] introduced the concept of the statistical 
Cauchy sequence and presented a characterization of 
statistical convergence without needing to know the 
statistical limit. Statistical convergence was considered as 
a regular summability method, and it was discussed in 
Schoenberg [6], Connor [7] and [8] . 

Although statistical convergence is a new field of 
study, it has become an active area of research in recent 
years (see Belen et al [9], [10], Burgin and Duman [11], 
Connor and Kline [12], Çakallı and Khan [13], Et and Şengül 
[14], Freedman and Sember [15], Miller [16], Salat [17], 
Savaş and Mohiuddine [18]). Many researchers have done 
and still do studies on statistical convergence ([19], [20], 
[21] , [22]).

Ünver [23] defined the new density concept using the
Abel method and presented a definition of a new version 
of statistical convergence via this density. Ünver and 
Orhan [24] gave a new density concept according to the 
power series method and the definitions of P୮-statistical 
convergence and strong P୮-convergence via this density. 
In the study, they gave a Krovkin-type approximation 
theorem. Belen et al. [25] defined the concepts of J୮-
convergence respect to a power series method and strong 
J୮-convergence via a modulus function f. They examined 

the relationship between them. In addition, in the study, 
the concepts of J୮-statistical convergence and f-J୮-
statistical convergence were given and the relationships 
between them were examined. 

Now, let us remind the basic concepts used in this 
study. 

Let E ⊂ ℕ଴, E(n): = {k ≤ n: k ∈ E} and |E(n)| denote 
the cardinality of the set E(n). If the limit δ(E) =
୪୧୫౤→ಮ|୉(୬)|

(୬ାଵ)
 exists, then the set E ⊂ ℕ଴ is said to have the 

usual density δ(E) [4]. The real number sequence x =
(x୩) is said to be statistically convergent to the number L, 
if the limit lim

୬→ஶ

ଵ

୬ାଵ
|{k ≤ n: |x୩ − L| ≥ ε}| = 0 for each 

ε > 0; i.e., δ(Eக) = 0 where Eக: = {k ≤ n: |x୩ − L| ≥ ε} 
and denoted by st-limx = L [5]. 

Now let’s introduce the J୮ convergence given in Boss 
[26]. 

Let ℕ଴ be the set of non-negative integers. Let 
(p୩)୩∈ℕబ

 be a sequence of non-negative integers where 
p଴ > 0, satisfying  

P୬ = ∑୬
୩ୀଵ p୩ → ∞, (n → ∞) (1) 

and 

p(t) = ∑ஶ
୩ୀଵ p୩t୩ < ∞, (for 0 < t < 1) (2) 

(In other words, p(t) has radius of convergence R = 1). 
Let x = (x୩)୩∈ℕబ

 be a sequence of real numbers. In 
this case, the power series method J୮ is defined as follows: 

If for every 0 < t < 1, p୶(t) = ∑ஶ
୩ୀଵ p୩t୩x୩ converges 

and lim୲→ଵష
୮౮(୲)

୮(୲)
= L, then (x୩) is called J୮-convergent to
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L the sequence via the power series method and it is 
denoted as x୩ → L ൫J୮൯. If x୩ → L ൫J୮൯ as x୩ → L, the J୮-
method is called regular. It is known that condition (1) or, 
equivalently, condition p(t) → ∞ when t → 1ି 
guarantees the regularity of method J୮ (see, [4]). 
Therefore, assuming (1), we will consider only regular J୮-
methods. 

Let E ⊂ ℕ଴ be any set. If δ୎౦
(E) =

lim୲→ଵష
ଵ

୮(୲)
∑ p୩t୩

୩∈୉ = 0 exists, then δ୎౦
(E) is called the 

J୮-density of the set E. If lim୲→ଵష
ଵ

୮(୲)
∑ p୩t୩

୩∈୉಍
= 0 for 

every ε > 0,  i.e., δ୎౦
(Eக) = 0, then the number L of the 

sequence x = (x୩) is said to be J୮-statistically convergent. 
The set of all J୮-statistically convergent sequences will be 
denoted by st୎౦

 [24]. 
In this study, some expected properties of the J୮-

statistical convergent sequence space are examined. 

Main Results 

In this section, we prove that if a sequence x = (x୩) is J୮-
statistical convergent then there is a subsequence of x =
(x୩) which is convergence to the same number in ordinary 
sense. Also, we show that the J୮-statistical limit is unique, 
and we give the relationship between J୮-statistical Cauchy 
sequences and J୮-statistical convergent sequences. 

Theorem 2.1 A real sequence x = (x୩) is J୮-statistical 
convergent to a number ℓ if and only if there exists a 
subset K: = {k ∈ ℕ: k = 1,2, . . . } such that δ୎౦

(K) = 1 
and 

lim
୩→ஶ
୩∈୏

x୩ = ℓ 

Proof. Necessity. Let x = (x୩) be J୮-statistical convergent 
to ℓ. 

K୰: = ൜k ∈ ℕ: |x୩ − ℓ| ≥
1

r
ൠ 

and 

M୰: = ൜k ∈ ℕ: |x୩ − ℓ| <
1

r
ൠ , r = 1,2, . ..  . 

In this case, we get δ୎౦
(K୰) = 0 and 

Mଵ ⊃ Mଶ ⊃ ⋯ ⊃ M୧ ⊃ M୧ାଵ ⊃ ⋯ (3) 

δ୎౦
(M୰) = 1. (4) 

Now, we have to show that (x୩) converges to ℓ for k ∈
M୰. Assume that (x୩) is not convergent to ℓ. In this case, 
there is an ε > 0 for the infinitely many terms, such that  

|x୩ − ℓ| ≥ ε. 

Define 

Mக = {k: |x୩ − ℓ| < ε} and ε >
1

r
 (r = 1,2, . . . ). 

Hence 

δ୎౦
(Mக) = 0 (5) 

and M୰ ⊂ Mக from (3). So we have δ୎౦
(M୰) = 0, which is 

a contradiction with (4). Then (x୩) is convergent to ℓ. 
 Sufficiency. Suppose that there is a subset K: = {k ∈
ℕ: k = 1,2, . . . } such that δ୎౦

(K) = 1 and 

lim
୩→ஶ
୩∈୏

x୩ = ℓ 

Therefore, for every ε > 0 there is a N ∈ ℕ such that 
|x୩ − ℓ| < ε, ∀k ≥ N and k ∈ K. 

Since 
Kக = {k: |x୩ − ℓ| ≥ ε} ⊆ ℕ − ൛k୒ା୨: j ∈ ℕ and k୒ା୨ ∈ Kൟ 

we have 
δ୎౦

(Kக) ≤ 1 − 1 = 0. 

Thus, x = (x୩) is statistically convergent to ℓ. 

Theorem 2.2 Let the sequence x = (x୩) be J୮-statistical 
convergent to a number L. In this case, there is a sequence 
y that converges to the number L and a sequence z that 
J୮-statistical convergences to zero such that x = y + z.  
Proof. Let the sequence x = (x୩) be J୮-statistical 
convergent to a number L. For the set 

E୨ = ൜k ≤ n: |x୩ − L| ≥
1

j
ൠ 

with N଴ = 0 and n ≥ N୨(j = 1,2, . . . ), we can find an 
increasing sequence of positive numbers ൫N୨൯ such that 

δ ె౦
൫E୨൯ <

ଵ

୨
. Now let’s define the y and z sequences as

follows. Take z୩ = 0 and y୩ = x୩ when N଴ < k ≤ Nଵ. For 
ଵ

୨
≥ 1, let N୨ < k ≤ N୨ାଵ. z୩ = 0 and y୩ = x୩ when 

|x୩ − L| <
ଵ

୨
 and finally, when |x୩ − L| ≥

ଵ

୨
, let z୩ = x୩ −

L and y୩ = L. It is clear that we can write x = y + z. Now, 
we claim that the sequence y is convergent to L. Let ε > 0 
be given, let us choose j such that ε >

ଵ

୨
. For k ≤ N୨, if

|x୩ − L| ≥
ଵ

୨
 then |y୩ − L| = |L − L| = 0

and if 

|x୩ − L| <
ଵ

୨
 then |y୩ − L| = |x୩ − L| <

ଵ

୨
< ε

so lim
୩

y୩ = L is obtained. Now, let us see st୎౦
− limz = 0. 

We should show that 
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lim
୲→ଵష

1

p(t)
෍ p୩t୩

୩∈୉౰

= 0 

for E୸ = {k ≤ n: z୩ ≠ 0}. Since 
 

{k ≤ n: |z୩| ≥ ε} ⊂ {k ≤ n: z୩ ≠ 0} 
 
for every ε > 0, we have 
 
δ୎౦

({k ≤ n: |z୩| ≥ ε}) ≤ δ୎౦
({k ≤ n: z୩ ≠ 0}). 

 
Now if δ > 0, j ∈ ℕ and ଵ

୨
< δ we have to show that 

δ୎౦
({k ≤ n: z୩ ≠ 0}) < δ for every n > N୨. Let N୨ < k ≤

N୨ାଵ, then z୩ ≠ 0 is possible only with |x୩ − L| ≥
ଵ

୨
. So if 

N୨ < k ≤ N୨ାଵ then 
 
{k ≤ n: z୩ ≠ 0} = ቄk ≤ n: |x୩ − L| ≥

ଵ

୨
ቅ. 

 
Therefore, if N୴ < k ≤ N୴ାଵ and v > j implies that 
 

δ୎౦
({k ≤ n: z୩ ≠ 0}) ≤ δ୎౦

ቀቄk ≤ n: |x୩ − L| ≥
ଵ

୴
ቅቁ <

ଵ

୴
<

ଵ

୨
< δ. 

 
Thus, the proof is complete.  
 
Corollary 2.1 If the sequence x = (x୩) is J୮-statistical 
convergent to the number L, then ∃(x୬ౡ

) ⊂ (x୬) ∋ x୬ౡ
→

L.  
 
Theorem 2.3 If x = (x୩) be a sequence such that st୎౦

−

limx = L, then L is determined uniquely.  
Proof. Assume that x = (x୩) is J୮ -statistically convergent 
to two different numbers L and K. i.e., st୎౦

− limx = L 
and st୎౦

− limx = K. Let us choose L < K. If we choose 

ε =
୏ି୐

ଷ
, then 

 
(L − ε, L + ε) ∩ (K − ε, K + ε) = ∅. 
 
Also, since st୎౦

− limx = L and st୎౦
− limx = K   

 
δ୎౦

({k ≤ n: |x୩ − L| ≥ ε}) = 0

δ୎౦
({k ≤ n: |x୩ − K| ≥ ε}) = 0

 

 
then  
 

 
δ୎౦

({k ≤ n: |x୩ − L| < ε}) = 1

δ୎౦
({k ≤ n: |x୩ − K| < ε}) = 1.

 

 
Hence, we get {k ≤ n: |x୩ − L| < ε} ∩ {k ≤ n: |x୩ − K| <
ε} ≠ ∅. This is a contradiction, as the sets are disjoint. 
Hence the theorem is proved.  
The following theorem shows that the statistical 
convergence method is linear. 
 

Theorem 2.4 Let x = (x୩) and y = (y୩) be two real 
sequences. 
(i)  st୎౦

− limx = Lଵ and st୎౦
− limy = Lଶ implies 

st୎౦
− lim(x + y) = Lଵ + Lଶ. 

(ii)  st୎౦
− limx = Lଵ and α ∈ R implies st୎౦

−

lim(αx) = αLଵ.  
 
Proof. (i) Let st୎౦

− limx = Lଵ and st୎౦
− limy = Lଶ. For 

the set Aଵ = ቄk ≤ n: |x୩ − Lଵ| ≥
க

ଶ
ቅ since δ୎౦

(Aଵ) = 0, 

there is kଵ ∈ ℕ such that |x୩ − Lଵ| <
க

ଶ
 for every k > kଵ 

and k ∈ (ℕ − Aଵ) when ε > 0. For the set Aଶ = ቄk ≤

n: |y୩ − Lଶ| ≥
க

ଶ
ቅ since δ୎౦

(Aଶ) = 0, there is kଶ ∈ ℕ such 

that |y୩ − Lଶ| <
க

ଶ
 for every k > kଶ and k ∈ (ℕ − Aଶ) 

when ε > 0. Let define k଴: = max{kଵ, kଶ}. Let show 
|x୩ + y୩ − Lଵ − Lଶ| < ε for every and every k ∈ ൫ℕ −

(Aଵ ∩ Aଶ)൯ and every k > k଴. Since δ୎౦
(Aଵ) = 0 and 

δ୎౦
(Aଶ) = 0, then δ୎౦

(Aଵ ∩ Aଶ) = 0. In that case for k >

k଴   
 
|x୩ + y୩ − Lଵ − Lଶ| < |x୩ − Lଵ| + |y୩ − Lଶ|

ε

2
+

ε

2
= ε

 

 
and for every ε > 0   
 
δ୎౦

({k ≤ n: |x୩ + y୩ − Lଵ − Lଶ| ≥ ε}) = 0. 
 
This gives st୎౦

− lim(x + y) = Lଵ + Lଶ 
(ii) If α = 0, we have nothing to prove. Let us assume that 
α ≠ 0.  
 
δ୎౦

({k ≤ n: |αx୩ − αLଵ| ≥ ε}) = δ୎౦
({k ≤ n: |α||x୩ − Lଵ| ≥ ε})

≤ δ୎౦
൬൜k ≤ n: |x୩ − Lଵ| ≥

ε

|α|
ൠ൰

= 0

. 

 
So st୎౦

− lim(αx) = αLଵ is obtained.  
 
Theorem 2.5 The space st୎౦

∩ ℓஶ is a closed subspace of 
the normed space ℓஶ.  
Proof. Let x(୬) ∈ st୎౦

∩ ℓஶ and x(୬) → x ∈ ℓஶ. Since x୩ ∈

st୎౦
∩ ℓஶ there are real numbers a୬ such that 

 
st୎౦

− lim
୩

x୩
(୬)

= a୬(n = 1,2, . . . ). 

 
Since x(୬) → x, for every ε > 0, there is a number N =
N(ε) ∈ ℕ such that 
 
หx(୮) − x(୬)ห < ε/3    (6) 
 
 where p ≥ n ≥ N. Here, |. | denotes the norm in a vector 
space. From Theorem 2.1, ℕ has a subset of Kଵ with  
δ୎౦

(Kଵ) = 1 and  
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lim
୩

 ౡ∈ేభ

x୩
(୬)

= a୬.     (7) 

Since δ୎౦
(Kଵ) = 1, let us take kଵ ∈ Kଵ. From (7), 

ቚ𝑥௞భ

(௣)
− 𝑎௣ቚ < 𝜀/3.    (8) 

 
TThus, for every 𝑝 ≥ 𝑛 ≥ 𝑁 from (6), we have 
 

ห𝑎௣ − 𝑎௡ห ≤ ቚ𝑎௣ − 𝑥௞భ

(௣)
ቚ + ቚ𝑥௞భ

(௣)
− 𝑥௞భ

(௡)
ቚ + ห𝑥௞భ

(௡)
− 𝑎௡ห

<
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀. 

 
Therefore (𝑎௡) is a Cauchy sequence and hence (𝑎௡) is 
convergent. Let 
 
𝑙𝑖𝑚

௡
𝑎௡ = 𝑎.     (9) 

 
We should show that 𝑥 is 𝐽௣-statistical convergence to 𝑎. 
Since 𝑥(௡) → 𝑥, for every 𝜀 > 0, there is a 𝑁ଵ(𝜀) such that 
 
ห𝑥௝

(௡)
− 𝑥௝ห < 𝜀/3 

 
where every 𝑗 ≥ 𝑁ଵ(𝜀). Also, from (9), for every 𝜀 > 0 
there is a 𝑁ଶ(𝜀) ∈ ℕ such that  
 
ห𝑎௝ − 𝑎ห < 𝜀/3 
 
where every 𝑗 ≥ 𝑁ଶ(𝜀). Again, since 𝑠𝑡௃೛

𝑙𝑖𝑚𝑥(௡) = 𝑎௡, 
there is a set 𝐾 ⊆ ℕ with 𝛿 ಻೛

(𝐾) = 1 and 𝑁ଷ(𝜀) ∈ ℕ for 

every 𝜀 > 0 such that  
 
ห𝑥௝

(௡)
− 𝑎௡ห < 𝜀/3 

 
when 𝑗 ∈ 𝐾 and all 𝑗 ≥ 𝑁ଷ(𝜀). Let us say 
𝑚𝑎𝑥{𝑁ଵ(𝜀), 𝑁ଶ(𝜀), 𝑁ଷ(𝜀)} = 𝑁ସ(𝜀). In this case 
 
ห𝑥௝ − 𝑎ห ≤ ห𝑥௝

(௡)
− 𝑥௝ห + ห𝑥௝

(௡)
− 𝑎௡ห + ห𝑎௝ − 𝑎ห

<
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀 

 
is obtained for a given 𝜀 > 0 and all 𝑗 ≥ 𝑁ସ(𝜀), 𝑗 ∈ 𝐾. 
Therefore 𝑠𝑡௃೛

𝑙𝑖𝑚𝑥 = 𝑎, i.e., 𝑥 ∈ 𝑠𝑡௃೛
∩ ℓஶ. So 𝑠𝑡௃೛

∩ ℓஶ 
is a closed subspace of ℓஶ.  
 
Theorem 2.6 The space 𝑠𝑡௃೛

∩ ℓஶ is nowhere dense in ℓஶ.  
Proof. Since every closed subspace of an arbitrary normed 
space 𝑆 different from 𝑆 is nowhere dense in 𝑆 (Neubrum 
et al. 1968), it is sufficient to show that it is only 𝑠𝑡௃೛

∩

ℓஶ ≠ ℓஶ. Let  
 

𝑝௞ = ൜
1, 𝑘 = 𝑛ଶ, 𝑛 ∈ ℕ଴

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 
and 

𝑥௞ = ൜
1, 𝑘 = 𝑛ଶ, 𝑛 ∈ ℕ଴

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
. 

 

Then 𝑥 is not 𝐽௣-statistical convergent but bounded. 
Hence, 𝑠𝑡௃೛

∩ ℓஶ ≠ ℓஶ.  
Definition 2.1 𝑥 = (𝑥௞) is said to be 𝐽௣-statistical Cauchy 
sequence if for every 𝜀 > 0 there exists a 𝑁(𝜀) ∈ 𝑁 such 
that 𝛿௃೛

({𝑘 ≤ 𝑛: |𝑥௞ − 𝑥ே| < 𝜀}) = 1.  
 
Theorem 27 A sequence 𝑥 = (𝑥௞) is 𝐽௣ −statistical 
convergent if and only if 𝑥 = (𝑥௞) is 𝐽௣ −statistical 
Cauchy.  
Proof. Let (𝑥௞) be 𝐽௣ −statistical convergent to 𝐿. In this 
case, 𝛿௃೛

({𝑘 ≤ 𝑛: |𝑥௞ − ℓ| ≥ 𝜀}) = 0 for every 𝜀 > 0. Let 
us choose 𝑁 as |𝑥ே − ℓ| ≥ 𝜀 and define the sets as 
 

Aக = {k ≤ n: |x୩ − x୒| ≥ ε},

Bக = {k ≤ n: |x୩ − ℓ| ≥ ε},

Cக = {k = N ≤ n: |x୒ − ℓ| ≥ ε}
 

 
In this case, it is clear that Aக ⊆ Bக ∪ Cக. From here, 
δ୎౦

(Aக) ≤ δ୎౦
(Bக) + δ୎౦

(Cக) = 0 is obtained. So x is J୮-
statistical Cauchy sequence. Conversely, let x be J୮-
statistical Cauchy, but not J୮ −statistical convergent. In 
this case, there exists N such that δ୎౦

(Aக) = 0. Therefore, 
 
δ୎౦

({k ≤ n: |x୩ − x୒| < ε}) = 1. 
Specifically, if |x୩ − ℓ| < ε/2 we can write  
 
|x୩ − x୒| ≤ 2|x୩ − ℓ| < ε.   (10) 
 
Since x is not J୮-statistical convergent, δ୎౦

(Bக) = 1. That 
is  
 
δ୎౦

({k ≤ n: |x୩ − ℓ| < ε}) = 0. 
 
Thus from (10),   
 
δ୎౦

({k ≤ n: |x୩ − x୒| < ε}) = 0 
 
i.e., δ୎౦

(Aக) = 1. This is a contradiction. So, x is 
J୮ −statistical convergent.  
 
Conclusion 
 

In this study, different characterizations of Jp-
statistically convergent sequences are given. The main 
features of Jp-statistical convergent sequences are 
investigated and the relationship between Jp-statistical 
convergent sequences and Jp-statistical Cauchy 
sequences is examined.  
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