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We construct constant mean curvature surfaces along a given spacelike curve in 3 dimensional Minkowski space. 
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the presented method is supported with illustrative examples. 
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Introduction 

The Gaussian and the mean curvature are a measure 
of how a surface curves. As an intrinsic quantity, the 
Gaussian curvature is one of the foundations of 
Riemannian geometry. In contrast, the mean curvature is 
an extrinsic quantity which measures how the surface lies 
in space. As the mean curvature is closely related to the 
character of the surface of a solid material, it is deeply 
connected to other sciences. 

The mean curvature of a surface is half of the sum of 
principal curvatures at every point of the surface. A 
minimal surface is a surface which has zero mean 
curvature at every point. A surface with non-vanishing 
constant mean curvature is obtained by minimizing the 
area of the surface while preserving its volume. It can be 
physically modeled by a soap bubble. 

We see surfaces almost in every differential geometry 
book [1-3]. There are several techniques to characterize 
surfaces. However, the construction of a surface is also an 
important issue. Current studies on surfaces have focused 
on finding surfaces with a common special curve [4 - 14]. 
Recently, Coşanoğlu and Bayram [15] obtained sufficient 
conditions for constant mean curvature surfaces through 
a prescribed curve in 3 dimensional Euclidean space. Mert 
and Karlığa [16] investigated timelike surfaces with 
constant angle in de-Sitter space. Mert and Atçeken [17] 
studied normal and binormal surfaces in hyperbolic 
3−space. 

In the present paper, analogous to Coşanoğlu and 
Bayram [15], we obtain parametric constant mean 
curvature surfaces through a given spacelike curve in 3 
dimensional Minkowski space. We present constraints for 
these types of surfaces. The method is validated with 
several examples. 

. 

Materials and Methods 

Apparatus 
The real vector space 3  endowed with the metric 

tensor  

1 1 2 2 3 3X,Y x y x y x y   
 

is called the Minkowski 3-space and denoted by 3

1 ,  

where  1 2 3X x ,x ,x ,   3

1 2 3Y y , y , y   [1] The 

Lorentzian vectorial product is defined by  
 

 2 3 3 2 1 3 3 1 2 1 1 2X Y x y x y ,x y x y ,x y x y .      

 

A vector 3

1X  is called timelike, spacelike or 

lightlike (null) if 
 

X,X 0,

X,X 0 or X 0,

X,X 0,

 


 
 


 

respectively. Similarly, a curve in 3

1  is called a 

timelike, spacelike or lightlike curve if its tangent vector 
field is always timelike, spacelike or lightlike, respectively. 

The set  T, N,B  denotes the moving Frenet-Serret 

frame through a curve  , where T, N  and B  are the 

tangent vector field, the principal normal vector field and 
the binormal vector field of the curve  , respectively. 

The unit speed spacelike curve   with timelike 

normal has spacelike vector fields T  and B  and timelike 
vector field N. For this setting we have, 

 
T N B, N B T, B T N.         
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B(s)  is the unique spacelike unit vector field orthogonal to the timelike plane  T(s), N(s)  at every point  s ,  

such that the orientation of 3

1  and  T, N,B are the same. Then, we have the following Frenet formulas [18]  

 

T N,  N T B,  B N.           

 
The arc-length spacelike curve   with spacelike normal has spacelike vector fields T  and N  and timelike vector 

field B . In this case, 
 
T N B, N B T, B=T N.        

 

The vector field B(s)  is the unique timelike unit vector field orthogonal to the spacelike plane  T(s), N(s)  at each 

point  s  so that the orientation of 3

1  and  T, N,B are the same. Then, we obtain the following Frenet formulas 

[19]  
 

T N,  N T B,  B N.           

 

The mean curvature of the surface  P s, t  is given as 

 

 
     

 
 3

2

s t ss s t st s t ttdet P , P , P G 2det P , P , P F det P , P , P E
H s, t s, t ,

2 W

  
  
  

 

 

where E, F, G  are the coefficients of the first fundamental form of the surface   2P s, t , W EG F   and  

 

 

1, if P s, t is timelike,

1, if P s, t is spacelike,


  


 

[19]. 
 

Results and Discussion 

Constant Mean Curvature Surfaces Along A Spacelike Curve 

Let  s  be a spacelike curve with timelike normal arc-length regular curve with curvature   s  and torsion  s .  

Also, assume that  s 0,   s.  Parametric surfaces possessing  s  can be written as 

 

               P s, t s u s, t T s v s, t N s w s, t B s ,            (1) 

  

1 2 1 2L s L , T t T ,     where       T s , N s ,B s  is the Frenet-Serret frame of   2s . C  functions 

     u s, t , v s, t , w s, t  are known as marching-scale functions. Note that, choosing distinct marching-scale functions 

corresponds to distinct surfaces along the curve  s .   

To simplify the calculations, we suppose that the curve  s  is a t-parameter curve on the surface in Eqn. (1). So, 

we have 
 

     0 0 0u s, t 0, v s, t 0, w s, t 0    

 

for some t T ,T .
0 1 2

 
 

  

We make the following calculations required for the mean curvature. 
 

          

            

        

s s

s

s

P s, t 1 u s, t s v s, t T s

s u s, t v s, t s w s, t N s

s v s, t w s, t B s ,
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             t t t tP s, t u s, t T s v s, t N s w s, t B s ,    

 

   s 0P s, t T s ,  

 

             t 0 t 0 t 0 t 0P s, t u s, t T s v s, t N s w s, t B s ,    

 

     ss 0P s, t s N s ,   

 

            

            

        

st 0 ts 0 ts 0 t 0

t 0 ts 0 t 0

t 0 ts 0

P s, t P s, t u s, t s v s, t T s

s u s, t v s, t s w s, t N s

s v s, t w s, t B s

   

    

  

  

 

             tt 0 tt 0 tt 0 tt 0P s, t u s, t T s v s, t N s w s, t B s ,    

 

          s 0 t 0 ss 0 t 0det P s, t ,P s, t ,P s, t s w s, t ,   

 

               

       

   

s 0 t 0 st 0 t 0 t 0 ts 0

t 0 t 0 ts 0

t 0

det P s, t ,P s, t ,P s, t v s, t v s, t s w s, t

w s, t u s, t s v s, t

s w s, t ,

  

  



 

 

              s 0 t 0 tt 0 t 0 tt 0 t 0 tt 0det P s, t ,P s, t ,P s, t v s, t w s, t w s, t v s, t ,   

where subscript denotes the partial derivative with respect to the parameter in question. Hence, the surface  P s, t  

in Eqn. (1) has the following mean curvature along the curve  s  

 

 
     

  
 3

2

2 2 2

t t t t t t t ts t t ts t t tt t tt

0 0
2 2

t t

w u v w 2u v v w w u v w w v v w
H s, t s, t .

2 v w

               


 
 

 

Theorem 1 : The surface  P s, t  in Eqn. (1) has constant mean curvature along the spacelike curve  s  with 

spacelike binormal if one of the following conditions is satisfied: 
 

i)                0 0 0 t 0 tt 0 t 0 t 0u s, t v s, t w s, t w s, t w s, t 0 u s, t v s, t , s         constant, 

ii)                0 0 0 t 0 tt 0 t 0 t 0u s, t v s, t w s, t v s, t v s, t 0 u s, t w s, t , s         constant, 

iii)              t 0 0 0 0 t 0 t 0 tt 0v s, t 0 u s, t v s, t w s, t u s, t w s, t w s, t ,        

iv)                 t 0 0 0 0 t 0 t 0 tt 0w s, t 0 u s, t v s, t w s, t u s, t v s, t v s, t , s          constant, 

 

If   1 2s , L s L    is a spacelike curve with timelike binormal arc-length regular curve having curvature  s   and 

torsion  s ,  then we have the theorem below. 

Theorem 2 : The surface  P s, t  in Eqn. (1) has constant mean curvature along the spacelike curve  s  with 

timelike binormal if one of the following conditions is satisfied : 
 

i)                0 0 0 t 0 tt 0 t 0 t 0u s, t v s, t w s, t w s, t w s, t 0 u s, t v s, t , s         constant, 

ii)                  0 0 0 t 0 tt 0 t 0 t 0u s, t v s, t w s, t v s, t v s, t 0 u s, t w s, t , s s           constant, 

iii)              t 0 0 0 0 t 0 t 0 tt 0v s, t 0 u s, t v s, t w s, t u s, t w s, t w s, t ,         

iv)                t 0 0 0 0 t 0 t 0 tt 0w s, t 0 u s, t v s, t w s, t u s, t v s, t v s, t , s          constant, 
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Example 1 : In this example, we construct surfaces with constant mean curvature along a given spacelike curve with 
timelike normal vector field. The unit speed spacelike curve with timelike normal  

      2s1 1

2 2 2
s cosh 2s , , sinh 2s   has the following Frenet apparatus : 

     

      

     

   

2 2 2
T s sinh 2s , , cosh 2s ,

2 2 2

N s cosh 2s ,0,sinh 2s ,

2 2 2
B s sinh 2s , , cosh 2s ,

2 2 2

s 1, s 1.

 
   
 



 
    
 

    

 

Marching-scale functions      u s, t v s, t t, w s, t 0    and 
0t 0,  satisfies Theorem 1 (i) and the surface 

       

   

1

1 t 2 2
P s, t t cosh 2s sinh 2s , s t ,

2 2 2

1 t 2
t sinh 2s cosh 2s ,

2 2

 
     

 
      

 

1 s 1, 0 t 1      with constant mean curvature  H s,0 1   along the spacelike curve  s  is obtained (Figure 1).  

Choosing marching-scale functions      u s, t w s, t t, v s, t 0    and 
0t 0,   satisfies Theorem 1 (ii) and we 

immediately get the surface 

       2

1 2 1
P s, t cosh 2s , s 2t , sinh 2s ,

2 2 2

 
   
 

 

with constant mean curvature  H s,0 1  along the curve  s  (Figure 2) .  

Example 2  The spacelike curve with timelike binormal  

     
4 4 5

s sinh 3s , cosh 3s , s
9 9 3

 
   

 
 

 has the following Frenet apparatus : 

     

      

     

   

4 4 5
T s cosh 3s , sinh 3s , s ,

3 3 3

N s sinh 3s ,cosh 3s ,0 ,

5 5 4
B s cosh 3s , sinh 3s , ,

3 3 3

s 4, s 5.

 
  
 



 
    
 

    

 

Choosing marching-scale functions      v s, t t, u s, t w s, t 0   and 
0t 0,  satisfies Theorem 2 (iii)  and we 

obtain the surface 

     3

4 4 5
P s, t t sinh 3s , t cosh 3s , s ,

9 9 3

    
      

    
 

1 s 1, 0 t 1      with constant mean curvature  H s,0 0  along the curve  s  (Figure 3) .   

If we choose      u s, t v s, t 0,w s, t t   and 
0t 0,  Theorem 2 (iv) is satisfied and we obtain the surface 

         4

4 5 4 5 5s 4t
P s, t sinh 3s t cosh 3s , cosh 3s t sinh 3s , ,

9 3 9 3 3

 
   
 

 

1 s 1, 0 t 1      with constant mean curvature  H s,0 2   along the curve  s  (Figure 4). 
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Figure 1. Constant mean curvature surface P1 (s,t) along the spacelike 

curve α(s) 

 

 

Figure 2. Constant mean curvature surface P2 (s,t) along the spacelike 

curve α(s) 

 

 

Figure 3. Constant mean curvature surface P3 (s,t) along the spacelike 

curve α(s) 
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Figure 4. Constant mean curvature surface P4 (s,t) along the spacelike 

curve α(s) 
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