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Abstract: Fine particulate matter (PM2.5) has been linked to a number of adverse health 

effects, hence its prediction for epidemiological studies has become very crucial. In this 

study, a novel ensemble technique was proposed for the prediction of PM2.5 concentration 

in cities with high traffic noise using traffic noise as an input parameter. Air pollutants 

concentration (P), meteorological parameters (M) and traffic data (T) simultaneously 

collected from seven sampling points in North Cyprus were used for conducting the study. 

The modelling was done in 2 scenarios. In scenario I, PM2.5 was modelled using 4 different 

input combination without traffic noise as input parameter while in scenario II, traffic noise 

was added as an input variable for 4 input combinations. The models were evaluated using 

4 performance criteria including Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error 

(RMSE), Correlation Coefficient (CC) and Bias (BIAS). Modelling PM2.5 with combined 

relevant input parameters of P, M and T could improve the performance of the model 

developed with only one set of the parameters by up to 12, 17 and 29% for models 

containing only P, M and T respectively. All the models in scenario II have demonstrated 

high prediction accuracy than the corresponding model in scenario I by up to 12% in the 

verification stage. The Support Vector Regression-based Ensemble model (SVR-E) could 

improve the performance accuracy of single models by up to 17% in the verification stage. 

Özet: İnce partikül madde (PM2.5) bir dizi olumsuz sağlık etkisi ile ilişkilendirilmiştir, bu 

nedenle epidemiyolojik çalışmalar için öngörüsü çok önemli hale gelmiştir. Bu çalışmada, 

giriş parametresi olarak trafik gürültüsü kullanılarak trafik gürültüsü yüksek şehirlerde 

PM2.5 konsantrasyonunun tahmini için yeni bir topluluk tekniği önerilmiştir. Çalışmanın 

yürütülmesi için Kuzey Kıbrıs'taki yedi örnekleme noktasından eş zamanlı olarak toplanan 

hava kirletici konsantrasyonu (P), meteorolojik parametreler (M) ve trafik verileri (T) 

kullanılmıştır. Modelleme 2 senaryoda yapılmıştır. Senaryo I'de PM2.5, trafik gürültüsü 

olmadan 4 farklı giriş kombinasyonu kullanılarak giriş parametresi olarak modellenirken, 

senaryo II'de trafik gürültüsü 4 giriş kombinasyonu için giriş değişkeni olarak eklenmiştir. 

Modeller, Nash-Sutcliffe Verimliliği (NSE), Ortalama Kare Hatası (RMSE), Korelasyon 

Katsayısı (CC) ve Bias (BIAS) olmak üzere 4 performans kriteri kullanılarak 

değerlendirildi. PM2.5'in ilgili P, M ve T girdi parametreleriyle modellenmesi, yalnızca bir 

parametre seti ile geliştirilen modelin performansını yalnızca P, M ve T içeren modeller 

için sırasıyla %12, 17 ve %29'a kadar iyileştirebilir. Senaryo II'deki tüm modeller, 

doğrulama aşamasında senaryo I'deki karşılık gelen modelden %12'ye kadar yüksek tahmin 

doğruluğu göstermiştir. Support Vector Regresyon tabanlı Ensemble modeli (SVR-E), 

doğrulama aşamasında tekli modellerin performans doğruluğunu %17'ye kadar artırabilir.  

 

Introduction

Environmental air and noise pollution induced by 

vehicular traffic is harmful to human health resulting into 

many health challenges for urban residents. Incessant 

exposure to poor air in urban areas has been linked to 

some life threatening ailments such as lung cancer 

(Raaschou-nielsen et al. 2013), cardiovascular diseases 

(Newby et al. 2015), respiratory diseases (Dong et al. 

2012) and stroke (Ljungman & Mittleman 2014). 

Vehicular traffic has been identified as the major source 

of environmental noise in urban area affecting almost 125 
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million people (European Environment Agency 2014) and 

also contributing to more than 64% of particulate matter 

(PM2.5) and nitrogen oxides (NOx) in the atmosphere 

(European Environment Agency 2012). Some of the 

hazardous ambient air pollutants that are related to 

adverse health effect include PM2.5, ozone (O3), Nitrogen 

dioxide (NO2), Carbon monoxide (CO), and Sulphur 

dioxide (SO2) (Uzoigwe et al. 2013).  

The assessment of combined exposure effect to air and 

noise pollution due to increasing number of world’s 

population in urban areas is necessary and could be one of 

the major challenges of the present, due the unavailability 

of the tools to facilitate the assessments (Tenailleau et al. 

2016). Recently, the combined exposure effect of air and 

noise pollution on human health and their spatial 

relationship have begun to attract attention of researchers 

(Khan et al. 2018). For example, Khan et al. (2020) 

studied the spatial relationship between the traffic related 

air and noise pollution in two cities and found the air-

noise correlation to be between 0.01 and 0.42. For the first 

time, Lin et al. (2018) used noise level, canyon index and 

meteorological parameters as input parameters for 

predicting the ultrafine particle concentrations and 

obtained a good result with a determination coefficient of 

0.77. Danciulescu & Bucur (2015) found a moderate 

correlation between the traffic noise and air pollutant 

concentrations. The study also highlighted noise level as 

an indicator of high air pollution. A strong correlation 

between noise level and three air pollutants (Nitrogen 

dioxide, Ozone and PAH) in urban parks was obtained in 

a study by Klingberg et al. (2017). Gan et al. (2012) 

modelled population exposure to noise and air pollution 

in large metropolitan Vancouver, Canada using land 

regression. The results show least correlation ranging 

from 0.18-0.48 between the traffic noise and the other 

traffic related pollutants including the NO, NO2, PM2.5 

and black carbon. The least correlation of 0.18 was 

obtained between the traffic noise and aerodynamic 

PM2.5. 

The estimation of PM2.5 concentration is vital for 

providing well-timed and complete references for public 

health risk minimization. It will also help the relevant 

agencies in providing sustainable countermeasures for 

future improvements. Several empirical models, one of 

which is the steady-state Gaussian plume models, for the 

estimation of various air pollutants at varying times have 

been developed. Unfortunately, due to large dataset 

required for the application of these models in addition 

to vast knowledge of the formation process, the 

empirical models were not able to provide accurate and 

reliable results due to the complexity and diversity of the 

process involved in both transportation and formation of 

the air (Arhami et al. 2013). Motivated with the 

reliability of machine learning techniques in modelling 

complex systems by handling multivariate inputs, 

uncertainty and nonlinearity between the input and the 

output parameters without requiring prior assumptions, 

several machine learning techniques were employed for 

the prediction of air quality parameters. These 

techniques have demonstrated high prediction accuracy 

(Cai et al. 2009). For instance, Suleiman et al. (2016) 

employed the use of Boosted Regression Trees (BRT) 

and Artificial Neural Network (ANN) to predict the 

particle number count (PNC), PM2.5 and PM10 

concentrations in London. The inputs parameters used 

include NO2, NOx, NO, SO2, CO, NOxbg, NObg, SO2bg, 

CObg, PM10bg, rain, temperature, relative humidity, wind 

speed, seed of vehicles, and PM10dve. The BRT model 

performed better than the ANN in terms of both error 

metrics and goodness of fit measures of the models. The 

ability of the BRT to model with high accuracy comes 

by ensemble of different regression tress and its ability 

to fit complex nonlinear relationships and automatically 

addressing the interaction effects between the 

predictions. Suleiman et al. (2019) applied three 

machine learning approaches in the prediction of PM2.5, 

and PM10, the models provided a good prediction result 

with about 95% of the predicted values falling within the 

factor of two of the observed PM2.5, and PM10 

concentrations at the edge of the road. Dunea et al. 

(2015) screened various Feed Forward Neural Network 

(FFNN) and wavelet-FFNN on the time series data of 

applied to time series of ground-level PM10 and PM2.5 

fractions, O3, and NO2 data recorded in cities of 

Romania. It was found that both FFNN and the Wavelet-

FFNN overestimated PM2.5 forecasted values in the last 

quarter of time series. Although AI models provide good 

results, the single models sometimes faced with 

overfitting and overestimation problems. 

To overcome some of the drawbacks of the single 

models as well as eliminating the difficulty in selecting 

the best model to be used for a particular area, ensemble 

and hybrid models have gained researchers attention for 

improved performance accuracy. By using these 

techniques, the unique features of single models could be 

captured and also the errors in the individual models could 

be cancelled out. For example, Sun & Li (2020) developed 

a stacking driven ensemble technique for forecasting the 

PM2.5 concentration in Beijing-Tianjin-Hebei area using 

output of the individual models (back propagation neural 

network, extreme learning machine, Improved back 

propagation neural network) as inputs parameters for 

Least squares support vector regression model. The 

developed stacking-driven ensemble model outperformed 

all the individual single models with smaller forecasting 

error and higher generalization capability. Umar et al. 

(2021) also developed a neuro-fuzzy ensemble method for 

the prediction of PM2.5 and PM10. The neuro-fuzzy 

ensemble model outperformed the single models by 3-

20% for PM10 and 4-22% for PM2.5 subject to the single. 

Suleiman et al.( 2016) developed a hybrid model for 

prediction of PM2.5, PM10 and PNC, the ANN hybrid 

models performed better compared to boosted regression 

tree models and ANN models. In this study, the level of 

traffic induced PM2.5 concentration in North Cyprus was 

modelled with support vector regression model using the 
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concentration of traffic related air pollutants, traffic data 

and meteorological data as input variables.  

The aim of this study is to determine the interaction 

between the two urban pollutants (traffic noise and PM2.5) 

and proposed a Support Vector Regression-based 

Ensemble model (SVR-E) approach for the prediction of 

PM2.5 using traffic noise as input parameter. The aim 

could be achieved by (i) identifying the relevance of 

traffic noise in modelling PM2.5 (ii) conducting a single 

and group nonlinear sensitivity analysis between the 

potential inputs and the PM2.5, and lastly (iii) developing 

an SVR-E model by combining the outputs of three single 

models (SVR, FFNN, MLR). PM2.5 modelled in this study 

has been an important parameter in defining air quality of 

an area. The selection of PM2.5 for conducting the study 

was based on its strong adverse effect on human health 

(Uzoigwe et al. 2013). It also acts as the major bench mark 

for air quality monitoring systems (Van Donkelaar et al. 

2006). 

Materials and Methods 

The proposed methodology for conducting the study 

involves four main steps (Fig. 1). The first step involves 

data collection and processing. In the second step, SVR 

based nonlinear sensitivity analysis was performed to 

identify the relevance of each parameter as well as that of 

three categories of input parameters (i.e., pollutants, 

meteorological and traffic data) in the prediction of the 

traffic noise. In the third step, PM2.5 was modelled using 

most relevant parameters from all three inputs group 

combined together for scenario I and II. In scenario I, the 

traffic noise has not been considered as an input parameter 

for the PM2.5 prediction while all the models developed in 

scenario II contain traffic noise as one of the input 

parameters for improved prediction accuracy. The 

modelling equations were given in Equations 1-8. In step 

three, the inputs combination that provides highest 

accuracy was used to develop two additional models (that 

is FFNN and MLR models). Finally, an SVR-E was used 

for obtaining the nonlinear average of the outputs obtained 

from three data driven models (SVR, FFNN, MLR). 

 

Scenario I; 

𝑃𝑀2.5 =

{
 
 

 
 
𝑀1 = 𝑓 (𝐶𝑂2, 𝐶𝑂, 𝑆𝑂2, 𝑃𝑀10)

𝑀2 =  𝑓 (𝑊𝑆,𝑊𝑑𝑖𝑟, 𝑇𝑒𝑚𝑝, 𝑅𝐻)

𝑀3 = 𝑓 (𝑡𝑟𝑢𝑐𝑘,𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑒ℎ, 𝐵𝑢𝑠, 𝑐𝑎𝑟𝑠)
𝑀4 = 𝑓 (CO2, CO, SO2, PM10,WS,Wdir, Temp, RH, truck,medium veh, Bus, cars)

}
 
 

 
 

 

Scenario II; 

𝑃𝑀2.5 =

{
 
 

 
 
𝑀1 = 𝑓 (𝐶𝑂2, 𝐶𝑂, 𝑆𝑂2, 𝑃𝑀10, 𝐿𝑒𝑞)

𝑀2 =  𝑓 (𝑊𝑆,𝑊𝑑𝑖𝑟, 𝑇𝑒𝑚𝑝, 𝑅𝐻, 𝐿𝑒𝑞)

𝑀3 = 𝑓 (𝑡𝑟𝑢𝑐𝑘,𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑒ℎ, 𝐵𝑢𝑠, 𝑐𝑎𝑟𝑠, 𝐿𝑒𝑞)
𝑀4 = 𝑓 (CO2, CO, SO2, PM10,WS,Wdir, Temp, RH, truck,medium veh, Bus, cars, 𝐿𝑒𝑞)

}
 
 

 
 

 

Data collection 

For conducting the study, data from 7 different data 

collection points in Northern Cyprus (Fig. 2) were 

collected between 10th - 24th January 2020 from 9am to 

7pm. The parameters measured at each of the data 

collection points include air pollutants concentration 

(CO2, CO, NO2, SO2, PM2.5, PM10), meteorological 

parameters (atmospheric pressure, relative humidity, 

temperature, wind direction, and wind speed), traffic data 

(cars, trucks, buses, and medium vehicles) and equivalent 

noise level (Leq). The air pollutants and meteorological 

parameters were measured using the HIM6000 HAZ-

SCANNER (HIM6000, USA) having up to 12 sensors. 

The HAZ-SCANNER was placed on flat surface at 1 m 

height at each of the data collection points which are 

located along the roadside. Simultaneously with the air 

pollutants, 15 minutes equivalent continuous noise level 

was recorded using a digital Sound Level Meter (SLM) 

placed at 1.2 m above the ground level and a distance of 

not more than 3m from the pavement edge. The traffic 

data was obtained by video recording the traffic flow at 

the data collection points. A total of 75 observations were 

recorded and each observation was measured for 15min. 

The equivalent sound level in the study area varies from 

58 to 80.1 dBA which is higher than the indorsed level of 

55 dB set for the European countries (Ilgurel et al. 2016). 

The PM2.5 concentration in the study area ranges from 2-

106 µg/m3 with an average value of 30.28 µg/m3 which is 

high exceeding the optimal guideline value of 15 µg/m3 

(24-hour mean) recommended by the World Health 

Organization (Sun & Li 2020). The statistical summary of 

the data is given in Table 1. The data has a good range 

which makes it suitable for modelling. 
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Fig. 1. Schematic diagram of the proposed methodology 

 

Fig. 2. Data collection points 
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Table 1. Statistical summary of observed data 

Parameters Mean 
Standard 

Deviation 
Min. Max. 

RH (%) 41.22 7.87 31.00 60.60 

Temp (ºC) 15.33 1.17 13.80 17.40 

Wdir (deg) 151.47 92.34 36.00 356.40 

WS (kph) 2.62 2.05 0.00 6.62 

Traffic 121.64 29.54 57.00 191.00 

Cars 111.77 29.14 50.00 178.00 

Bus 3.27 2.96 0.00 14.00 

Medium veh. 4.32 3.26 0.00 21.00 

Truck 2.29 1.95 0.00 9.00 

P 4.68 2.95 0.00 14.47 

CO2 (ppm) 483.62 9.56 467.40 504.00 

CO (ppm) 0.03 0.05 0.00 0.22 

NO2 (ppb) 6.25 6.65 2.00 25.00 

SO2 (ppb) 198.79 130.35 0.00 574.00 

PM10 (µg/m3) 79.61 70.10 4.00 255.00 

Noise 70.28 4.53 58.70 80.10 

PM2.5(µg/m3) 30.28 23.03 2.00 106.00 

Relative humidity (RH), Temperature (Temp), Wind direction (Wdir), 

Wind speed (WS), Traffic volume (Traffic), Volume of cars (cars), 

Volume of Buses (Bus), Volume of medium vehicles (medium veh), 
volume of trucks (truck), Percentage of heavy vehicles (P), Carbon 

dioxide (CO2), Carbon monoxide (CO), Nitrogen oxide (NO2), Sulphur 

(IV) oxide (SO2), Particulate matter 10 (PM10), Equivalent noise level 
(Leq) 

Sensitivity analysis 

Sensitivity analysis has been used as one of the most 

important tools for removing less important and irrelevant 

input parameters in modelling. Excluding the irrelevant 

input parameters in modelling is very essential as it 

reduces the model’s complexity and computation time 

(Nourani et al. 2020b). In this study, two forms of SVR-

based nonlinear sensitivity analysis were used. The first is 

the single-input single-output sensitivity analysis. Here 

each parameter is used to model PM2.5 using the SVR 

model and the corresponding Nash-Sutcliffe Efficiency 

(NSE) value is recorded, the parameter that gives highest 

NSE value with PM2.5 is considered to be the most 

relevant and vice-versa. In the second form of the 

sensitivity analysis which is the group sensitivity analysis, 

all factors in a particular group (traffic) are used to model 

the PM2.5 and the corresponding NSE value is computed, 

the group of data that gives higher NSE value is 

considered as a dominant group for the prediction of 

PM2.5.  

Machine learning methods 

Feed Forward Neural Network (FFNN) 

FFNN is one the most widely used ANN models used 

for bagging the complex and the nonlinearity relationship 

between the independent and dependent parameters 

(Jahani & Mohammadi 2019). In FFNN, information is 

transmitted and flows only in the in forward direction 

(Ghaffari et al. 2006). The FFNN is generally accepted 

owing to its simplicity in capturing and modelling 

complex and nonlinear pattern in problems (Rumelhart et 

al. 1986). The appropriateness of the model to establish a 

pattern in the data by learning from experience and 

capture the interaction between the inputs and the target 

parameter without the need to identify the physical 

connection between the variables makes it suitable and 

essential in modelling complex engineering problems 

(Kumar et al. 2014). The collaborative link amongst 

neurons in the FFNN is utilized to process the info and 

create a relationship rather than creating any multifaceted 

mathematical model. Generally, backpropagation 

algorithms are used in training FFNN. To train the FFNN 

model, several adjustable weights are primed and 

multiplied by the inputs, the cumulative sum then goes 

through an activation function which handle the 

nonlinearity of the data before yielding out the output 

result (Ghaffari et al. 2006). The optimum number of 

hidden neurons is chosen by trial-and-error method. The 

structure that gives lowest root mean square error between 

the observed and the predicted data is considered to be the 

optimum.  

Support vector regression (SVR) 

SVM was developed using statistical learning theory. 

The fundamental principle of the SVM execution in 

pattern recognition is the linear or non-linear mapping of 

the input vectors into a potentially higher dimension of 

feature space. The type of kernel function determines the 

mapping process. Then, an optimal hyperplane was built 

to achieve a maximum separation of two classes. In other 

words, SVM training was developed to address the issue 

of over-fitting and it excels at processing a large number 

of features. The readers can refer to Wang et al. (2015) 

and Nourani et al. (2020b) for more details about SVR 

modelling. The SVR equation can be expressed as (Wang 

et al. 2015): 

y = f(x) = ꞷφ (xi) + b    (1) 

where ꞷ denotes the m-dimensional weight vector, φ(xi) 

signifies feature spaces, x stands for the non-linearity 

mapped from input vector and b represent the bias (Wang 

et al. 2015). 

Multi linear regression 

Linear regression analysis is a common technique 

used by scientist to simulate and analyze dependency 

between distinct parameters. Regression analysis benefits 

to cognize how a certain value of the regressor parameter 

deviates when any one of the predictors changed, when 

the other predictors were kept unchanged. It also help in 

exploring the direct interactions describing the 

relationship between the parameters (Doǧan & Akgüngör 

2013). The predictors and regressor parameters are related 

by (Elkiran et al. 2018): 

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +⋯+ 𝑏𝑖𝑥𝑖 + 𝜉          (2) 

where 𝑥𝑖 is the value of the 𝑖𝑡ℎ predictor, 𝑏0 is the 

regression constant, 𝑏𝑖 is the coefficient of the 𝑖𝑡ℎ 

predictor and 𝜉 is the error term. 
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Ensemble technique 

Ensemble technique as post-processing technique has 

demonstrated ability in improving model’s prediction by 

combining outputs of several models. It was found to be 

less risky to use a combination of relatively simple models 

than to use a single complex and expensive model (Winkler 

and Makridakis 1983). In this paper, SVR based ensemble 

and Simple Average Ensemble (SA-E) techniques were 

developed using the output of the single models.  

In the SA-E, the mean of the outputs (PM2.5 

concentration) of the SVR, FFNN and MLR models is 

considered as the predicted PM2.5 concentration and given 

as:  

𝑃𝑀̅̅̅̅̅ =
1

𝑁
 ∑ 𝑃𝑀𝑖

𝑛𝑚
𝑖=1        (3) 

in which 𝑃𝑀̅̅̅̅̅ shows the result of simple average ensemble 

method (PM2.5 concentration), nm is the number of single 

models used (in this study, nm =3) and Ni stands for the 

outcome of the ith method (i.e., SVR, FFNN and MLR). 

Data preprocessing and performance evaluation 

Data preparation such as normalization, 

standardization etc. is required prior to the development 

of data driven models for obtaining accurate results. 

Normalization was performed on all the data including the 

inputs and the target parameters to bring all data into same 

range between unity and zero (0 and 1). This helps prevent 

that data with higher numeric values to dominate over 

those with lower values and to also remove the 

dimensions of the data. Normalization also improves the 

model’s accuracy by reducing the complexity, 

computational requirement, redundancy in the data and 

also time required to attain the global minima (Nourani et 

al. 2020a). The data was normalized using:  

Nnorm = 
𝑁−𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛
       (4) 

where Nnorm is the normalized value, N, Nmax and Nmin are 

the observed, maximum and minimum values, respectively.  

The efficiency of the models was evaluated using 

NSE, Root Mean Square Error (RMSE), Coefficient of 

Correlation (CC) and BIAS. The NSE values ranges from 

-∞ to 1 and it is a parameter that indicates how well the 

model fits the observed values. A perfect model has an 

NSE value of 1 and the model efficiency decreases as the 

value moves far from 1 and vice versa. RMSE as one of 

the best measures for computing the model’s performance 

is used for measuring the average error produced by the 

models. The RMSE value ranged between 0 and +∞ and 

is zero in the best model (Nourani & Sayyah 2012). The 

CC ranges from -1 to 1, the correlation increases as the 

values moves away from 0. The strength of the correlation 

is not dependent on the direction or sign. A positive value 

shows direct proportionality between the parameters 

while a negative correlation shows an inverse 

proportionality. For BIAS, the closer it approaches, the 

better the model. The performance evaluations mentioned 

can be computed using Equations 5 - 8, respectively.   

𝑁𝑆𝐸 = 1 −

∑ (𝑁𝑜𝑏𝑠𝑖
−𝑁𝑝𝑟𝑒𝑖)

2
𝑛

𝑖=1

∑ (𝑁𝑜𝑏𝑠𝑖
−𝑁𝑜𝑏𝑠𝑖
̅̅ ̅̅ ̅̅ ̅̅ )

2
𝑛

𝑖=1

     (5) 

RMSE = 
√∑ (𝑁𝑜𝑏𝑠𝑖

−𝑁𝑝𝑟𝑒𝑖)
2

𝑛

𝑖=1

𝑛
     (6) 

CC=  
∑ (𝑁𝑜𝑏𝑠𝑖

−𝑁𝑜𝑏𝑠𝑖
̅̅ ̅̅ ̅̅ ̅̅ )(𝑁𝑝𝑟𝑒𝑖−𝑁𝑝𝑟𝑒𝑖

̅̅ ̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

√∑ (𝑁𝑜𝑏𝑠𝑖
−𝑁𝑜𝑏𝑠𝑖

)
2

𝑛
𝑖=1 ∑ (𝑁𝑝𝑟𝑒𝑖−𝑁𝑝𝑟𝑒𝑖)

2
𝑛
𝑖=1

    (7) 

BIAS =  
√∑ (𝑁𝑜𝑏𝑠𝑖

−𝑁𝑝𝑟𝑒𝑖)
2

𝑛

𝑖=1

𝑛
   ..(8) 

where, n is the number of observations, 𝑁obs is the mean 

observed value, Nobs is the observed value, and Npre is the 

predicted value. 

Results 

Sensitivity analysis result 

The use of the relevant input parameter in any data 

driven model is essential for obtaining efficient and 

accurate result. This is because inclusion of nonrelevant 

parameters will increase the computational requirement of 

the model and in some cases reduced the performance of 

the models (Nourani & Sharghi 2020). In the first stage of 

the study, a single-input single-output sensitivity analysis 

was conducted using the SVR model. The result of the 

single-input single-output is given in Table 2. It can be 

seen from the result that Wdir, NO2, PM10, RH%, Leq, 

Temp have highest relevance for the PM2.5 prediction with 

an NSE of at least 40%. The high relevance of three 

parameters in the meteorological parameters group 

indicates that, the distribution of the PM2.5 is significantly 

influenced by Temp, RH% and Wdir. The result was 

supported by a study reported by Whalley and Zandi 

(2016) where meteorological parameters such as 

temperature, wind speed and direction, relative humidity 

and solar radiation were identified among the major 

factors affecting particulate matter concentration. For 

example, cold temperatures increase the chances of 

inversion layer formation which prevents the upward 

movement of air from the layers below it hence traps the 

particulate matter near the ground and results in higher 

particulate matter concentration. An inverse correlation 

was also found between particulate matter and humidity 

when rainfall is intense at high relative humidity. The 

result of the sensitivity analysis is in line with findings 

obtained in other parts of the world. High correlation and 

dependency between the meteorological parameters has 

been established by several studies (Lou et al. 2017, Wang 

& Ogawa 2015, Wang et al. 2019). The high correlation 

between the PM2.5 and the NO2 has also been obtained by 

other studies such as the study of Yangyang et al. (2015) 

in determining the correlation between spatial distribution 

of PM2.5 and other air pollutants in 31 Chinese provincial 

capital cities. The t-test performed between the observed 
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and the predicted PM2.5 obtained from the single-input 

single-output sensitivity analysis shows that all the 

parameters are significant with the exception of the WS 

and CO which are found to be statistically insignificant.  

Table 2. Single-input single-output sensitivity analysis result. 

Group  Parameters NSE 

Meteorological  

RH (%) 0.45 

Temp (ºC) 0.40 

Wdir (deg) 0.52 

WS (kph) 0.06 

Traffic  

Traffic 0.19 

Cars 0.25 

Bus 0.12 

Medium veh 0.13 

Truck 0.35 

P 0.22 

Air pollutants 

CO2 (ppm) 0.10 

CO (ppm) 0.05 

NO2 (ppb) 0.49 

SO2 (ppb) 0.17 

PM10 (µg/m3) 0.47 

Traffic noise Leq 0.44 

Relative humidity (RH), Temperature (Temp), Wind direction 
(Wdir), Wind speed (WS), Traffic volume (Traffic), Volume of cars 

(cars), Volume of Buses (Bus), Volume of medium vehicles (medium 

veh), volume of trucks (truck), Percentage of heavy vehicles (P), Carbon 

dioxide (CO2), Carbon monoxide (CO), Nitrogen oxide (NO2), Sulphur 

(IV) oxide (SO2), Particulate matter 10 (PM10), Equivalent noise level 

(Leq) 

Followed by the single-input single-output sensitivity 

analysis, the group sensitivity analysis was conducted for 

two scenarios. The SVR model was used for the group 

sensitivity analysis in this stage due to its high 

performance as mentioned by (Nourani & Sharghi 2020). 

In scenario I, traffic noise was not added as input 

parameter for the models while in scenario II, all the 

model includes traffic noise as an input parameter. The 

results of the group sensitivity analysis for scenario 1 were 

presented in Table 3. Air pollutants in M1 model were 

found to predict the PM2.5 with higher prediction accuracy 

than meteorological parameters and the traffic data with 

an NSE value of 0.7620 in the training stage and BIAS 

value of 0.4218 in the verification stage. The 

meteorological parameters modelled PM2.5 with better 

accuracy in the testing stage showing that air pollution is 

significantly influenced by weather conditions. The M3 

which is the model with traffic data as its input parameters 

was the least to predict PM2.5 with poor NSE coefficient 

of 0.2116 in the verification stage which is unsatisfactory 

(NSE<0.5) based on the ranking given by Moriasi et al. 

(2007). Combining the three sets of the data as in M4 

shows a significant increase in the NSE value (0.8118) 

and decrease in RMSE in the verification stage compared 

to the models M1-3. Combining the three sets of input 

parameters in M4 has improved the performance accuracy 

of M1, M2, M3 by 19%, 14%, 60%, respectively in the 

verification stage. The data is more compressed along the 

diagonal bisector lines of the charts (Fig.3) for M4 

signifying better goodness of fit when all the parameters 

were used to predict the concentration of PM2.5 in the 

atmosphere. 

In scenario II, four models (M5-8) were also 

developed to model the PM2.5 and the result was presented 

in Table 4. It can be seen that M5 which uses the air 

pollutants and traffic noise as input parameters model the 

PM2.5 with higher prediction accuracy than the models 

developed using meteorological parameters (M6) and 

traffic data (M7) as inputs with NSE and RMSE values of 

0.7399 and 0.0810, respectively in the verification stage. 

The M8 model which combined all the three groups of 

datasets and the traffic noise gave higher prediction 

accuracy than all the models with single group as input 

variables. Combining all the data in the M8 model has 

improved the performance of M5, M6 and M7 models by 

12%, 16% and 19%, respectively in the verification stage. 

The models’ goodness fit in the verification stages were 

presented in Fig. 4. It can be clearly observed that the data 

is compressed more along the diagonal bisector line for 

the M8 model in both training and verification stage. The 

result of the group sensitivity analysis has demonstrated 

higher relevance of the air pollutants followed by the 

meteorological parameters and lastly the traffic data. The 

result also indicated that inclusion of traffic noise into 

PM2.5 in models M5, M6, M7 and M8 could improve the 

performance of M1, M2, M3 and M4 for the prediction of 

PM2.5 by up to 11.23%, 2.17%, 36.54%, 5.24%, 

respectively in the verification stage. 

Table 3. Results of the PM2.5 concentration model using different input groups without traffic noise (scenario I) 

MODELS Inputs  

Training Verification 

NSE RMSE CC BIAS NSE RMSE CC BIAS 

M1 P 0.7620 0.1190 0.8776 0.2310 0.6276 0.0917 0.5577 0.4218 

M2 M 0.6674 0.1407 0.8227 0.2801 0.6713 0.0862 0.6874 0.4253 

M3 T 0.5517 0.1006 0.5180 0.4676 0.2116 0.2166 0.5265 0.4805 

M4 P, M, T 0.8155 0.1048 0.9082 0.1508 0.8118 0.0652 0.7997 0.3069 
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Fig. 3. Scatter plots between computed and observed data in the verification stage for a) M1, b) M2 and c) M3 d) M4. 

Table 4. Results of PM2.5 concentration model using different input groups with traffic noise (scenario II) 

MODELS Inputs  

Training Verification 

NSE RMSE CC BIAS NSE RMSE CC BIAS 

M5 P, Leq 0.7969 0.1178 0.8742 0.2271 0.7399 0.0810 0.6779 0.3680 

M6 M, Leq 0.7438 0.1305 0.8592 0.2620 0.6930 0.0873 0.6168 0.4217 

M7 T, Leq 0.6390 0.1525 0.7739 0.2757 0.5770 0.1012 0.3577 0.4671 

M8 P, M, T, Leq 0.8827 0.0577 0.9207 0.2572 0.8642 0.0993 0.8536 0.1509 

Taylor diagram was used to compare the performances 

of all the models in scenarios I and II (see Fig. 5). Taylor 

diagram contrasts three statistical measure [standard 

deviation, RMSE and correlation (CC)] graphically. 

Therefore, it gives clear and a reliable evaluation of the 

relative performance and efficiency of four different 

machine learning models. In the Taylor diagram, the 

radial distance from the origin is directly proportional to 

the standard deviation of the data, the azimuthal position 

of the test field gives the correlation between the 

measured and observed PM2.5 while the centered RMSE 

value is related to the distance between the observed and 

the predicted PM2.5 with the same units as the standard 

deviation (Taylor 2001). The RMSE value is inversely 

related to the correlation, hence the RMSE increases with 

decrease in correlation between the observed and the 
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predicted PM2.5. A perfect model is set apart by the 

reference point with the CC equivalent to 1 (Yaseen et al. 

2018). In the Taylor diagram, it can be seen that M8 

outperformed all the models with highest CC value and 

lowest RMSE value, the standard deviation is also less 

than that of the actual data indicating that the good result 

obtained in M8 does not have high risk of overestimation. 

 

Fig. 4. Scatter plots between observed and computed and PM2.5 concentration in the verification stage for a) M5, b) M6 

and c) M7 d) M8. 

Single models result 

Furthermore, for comparing the performance of the 

SVR in the prediction of the PM2.5 with other models, two 

additional models using the FFNN and MLR were 

developed with the combined inputs parameters in 

scenario II which were found to be more effective in PM2.5 

predictions. Several models of the FFNN models were 

developed by changing the modelling structure. The 

optimum FFNN model was obtained with 13-16-1 

structure trained with Levenberg-Marquardt algorithms at 

50 epochs. The results were shown in Table 5. It was seen 

that both FFNN and MLR predicted the PM2.5 with good 

accuracy (NSE > 0.65). However, from the comparative 

result, it was obvious that the SVR model predict the 

PM2.5 with higher accuracy (NSE =0.8642). The SVR 

improved performance accuracy of the FFNN and the 

MLR model in the verification stage by 5% and 14%, 

respectively. Findings from the study indicate that SVR 

performed better in predicting PM2.5 in the study area than 

the other data driven models used. The MLR gives the 

least NSE value since it only captures the linear pattern in 

leaving the nonlinear relationship uncaptured. Radar plot 

(Fig. 6) was also used for graphical comparison of the 

models in training and verification stage and better 

performance was seen in the SVR model. A high stability 

was also observed by the models where a small difference 

was obtained between the NSE values in training and 

verification stage of the models. 
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Fig. 5. Taylor diagram comparing the performance of the developed models 

Table 5. Comparison between SVR, FFNN and MLR modelling results for PM2.5 prediction 

MODELS Inputs  

Training Verification 

NSE RMSE CC BIAS NSE RMSE CC BIAS 

SVR All 0.8827 0.0577 0.8536 0.2572 0.8642 0.0993 0.9207 0.1509 

FFNN All 0.8159 0.1047 0.9007 0.2096 0.8156 0.0645 0.7895 0.3352 

MLR All 0.7476 0.1225 0.8593 0.2561 0.7233 0.0791 0.6786 0.3759 

 
Fig. 6. Radar plots comparing the NSE values for SVR, 

FFNN and MLR in PM2.5 prediction in testing and 

verification stage 

Ensemble models result 

In the last stage of the modelling, an ensemble approach 

was used by combining the outputs of the two nonlinear 

models and the linear model. SVR kernel was used for 

obtaining the ensemble output of the three models. SVR 

kernel was used for the ensemble considering its superiority 

over the FFNN and MLR in the base modelling. The 

techniques combine the unique features of the individual 

models (linear and nonlinear strength) hence improving 

prediction accuracy. The results (Table 6) show higher 

performance of the nonlinear ensemble techniques over the 

linear ensemble models and are supported by Nourani et al. 

(2020a) where they mentioned that, nonlinear averaging or 

ensembles provides better results than the linear averaging 

techniques. The results show that the SVR-E improved the 

prediction accuracy in both training and verification stage. 

The SVR-E outperformed the SA-E by 11% in the training 

stage and 7% in the verification stage. Also, in terms of 

RMSE, R and BIAS, SVR-E performed better than the SA-

E. The SVR-E could improve the performance accuracy of 

the SVR, FFNN and MLR models by 3%, 8% and 17%, 

respectively, in the verification stage. 
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Table 6. Ensemble modelling results. 

MODELS 

Training Verification 

NSE RMSE CC BIAS NSE RMSE CC BIAS 

SVR-E 0.9535 0.0526 0.9756 0.0836 0.8914 0.0539 0.8682 0.2240 

SA-E 0.8440 0.0963 0.9217 0.1000 0.8273 0.0624 0.8060 0.3000 

 

Table 7. t-Test: Paired Two Sample for Means 

  Observed M1 M2 M3 M4 M5 M6 M7 M8 

Mean 0.2719 0.2719 0.2722 0.2693 0.2639 0.2705 0.2760 0.2332 0.2644 

Variance 0.0490 0.0490 0.0232 0.0300 0.0312 0.0272 0.0241 0.0139 0.0310 

Pearson 

Correlation 
 0.8751 0.8577 0.7749 0.9241 0.8713 0.8271 0.5389 0.9107 

t Stat  -0.0585 0.0249 -0.1589 -0.7699 -0.1038 0.2727 -1.7719 -0.6701 

P(T<=t) one-tail  0.4767 0.4901 0.4371 0.2219 0.4588 0.3929 0.0403 0.2525 

t Critical one-tail  1.6663 1.6663 1.6663 1.6663 1.6663 1.6663 1.6663 1.6663 

P(T<=t) two-tail  0.9535 0.9801 0.8742 0.4438 0.9176 0.7858 0.0806 0.5049 

t Critical two-tail   1.9935 1.9935 1.9935 1.9935 1.9935 1.9935 1.9935 1.9935 

 

A t-test was performed, on the best performing model, 

with the null hypothesis that the sample means of the 

observed and the predicted PM2.5 values for the testing 

dataset are not different. The value of t-stat was calculated 

and compared with t-critical (Table 7). The value of t-stat 

is less than t-critical (at a 5% significance level), 

indicating that the alternative hypothesis can be rejected 

and null hypothesis retained. These results show that the 

values of PM2.5 predicted using the proposed models fit 

well with the observed data. 

Conclusions 

In this study, the significance of using a traffic noise 

as an input parameter in the prediction of particulate 

matter PM2.5 was evaluated. The dataset used for 

conducting the study contains air pollutants, 

meteorological parameters, traffic data and traffic noise 

level simultaneously collected from seven sampling 

points in North Cyprus. The average traffic noise in the 

study area exceeds the recommended noise level of 

55dBA for European countries. Also, the average PM2.5 

concentration in the area is higher than the optimal level 

of 15 µg/m3 (24-hour mean) recommended by World 

Health Organization (WHO). The modelling results show 

that, all models in scenario II demonstrated high 

prediction accuracy than the corresponding models with 

in scenario I by up to 12% in the verification stage 

indicating relevance of the traffic noise as an input 

parameter for the prediction of PM2.5 in areas with high 

traffic noise. The models combining all the parameters 

from the three inputs class (P, M and T) as input 

parameters provide higher prediction accuracy than the 

models with input from one category of the input 

parameters and could provide an improved performance 

of up to 12, 17 and 29% for models containing only P, M 

and T-category, respectively. The SVR-E could improve 

the performance accuracy of the SVR, FFNN and MLR 

models by 3%, 8% and 17%, respectively in the 

verification stage. The data used in this study was 

obtained at straight tangents of the road which are 

reasonably far from intersections, future studies could 

study the traffic noise at intersections. The interaction 

between traffic noise and other traffic induced air 

pollutants such NO2 and CO could also be explored in 

future studies. 
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