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The elasto-plastic contact problem with an unknown contact domain (UCD) has attracted mathematicians, 
mechanics and engineers for decades. So, the problem of determining the stresses in the UCD is very important 
nowadays in terms of engineering and applied mathematics. To improve the finite element model, the 
remeshing algorithm is used for the considered indentation problem. The algorithm allows the determination of 
the UCD at each step of the indentation with high accuracy. This paper presents the analysis and numerical 
solution of the boundary value problem for the Lame system, and the modeling of the contact problem for rigid 
materials. By using barycentric coordinates, the finite difference approximation of the mathematical model of 
the deformation problem with undetermined bounded is obtained and the relations between the finite 
elements and finite differences are investigated. 
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Introduction 

The mathematical model of many engineering 
problems is expressed by undetermined bounded elliptic 
equations [1-3]. The most important feature of such 
problems is that some of the boundary conditions are 
given in the form of inequalities. Therefore, the general 
solution of the boundary problem satisfies not the integral 
identity but the integral inequality called the variational 
inequality [3]. Since the boundary conditions are in the 
form of inequalities, the generalized solution of the 
problem is sought in a closed convex subset of this space, 
not in any subspace of the Sobolev space. The solution of 
the equilibrium problem of an elastic body in any closed 
convex set (displacement set) was studied by the Italian 
mathematician Antonio Signorini in 1933 by bringing the 
functional to the minimization problem [4]. His study 
contributed greatly to the analysis of the boundary value 
problems of the elasticity theory in terms of variational 
inequalities. The variational inequalities of the elasticity 
theory were examined mathematically in G. Fichera's 
monograph [5], and then, the theory of variational 
inequalities was investigated by G. Duvaut, J.L. Lions [2], 
D. Kinderlehrerand, G. Stampacchia [3], J.L. Lions [6] and 
other authors. The extensive analysis of the numerical 
solutions of variational inequalities with undetermined 
bounded was given in various studies in the literature [1,7-
9]. However, in all studies, when a numerical solution was 
found, a static mesh was used. That is, the indeterminate 
part of the boundary (contact domain) would be 
considered between the points of the static mesh. One of 
the most important difficulties of the problem is to 
determine the boundaries of the contact domain. The 

behavior of the solution at the boundary nodes for 
undetermined bounded elliptic equations was 
investigated previously [10]. The obtained results 
revealed the need to use adaptive (quasi/local-static) 
meshes in the solution of indeterminate bounded 
problems [11]. Weng P. et al. considered the elastic 
deformation of the indenter [12] in the contact process to 
establish a more accurate elastic-plastic transition model.  

This study presents the processes of obtaining the 
numerical approximation of the variational inequality 
related to an elasto-plastic plane contact problem and its 
numerical solution. The main aims of the study were to 
obtain the finite difference approximation of the 
mathematical model of the deformation problem with 
undetermined bounded by using barycentric coordinates 
and investigate the relation between the finite elements 
and finite differences. The boundary value problem for 
the Lame system is detailed, and its variational 
formulation is given in Section 2. The local stiffness matrix 
(LSM) obtained by using barycentric coordinates and the 
finite difference equation (FDE) at any point   obtained 
using the LSM are presented in Sections 3 and 4, 
respectively. Finally, the numerical solutions are 
presented, and the relations between the finite elements 
and finite differences are given in Section 5. 

 
Materials and Methods 

Formulation 
In the case of plane deformation, the equilibrium 

problem of the object deformed by the effect of a rigid 
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punch is modeled mathematically with the boundary 
value problem for the Lame equation: 

 
−(𝜆𝜆 + 𝜇𝜇)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢 − 𝜇𝜇𝜇𝜇𝜇𝜇 = 𝐹𝐹, (𝑥𝑥,𝑦𝑦) ∈ 𝛺𝛺 ⊂ ℝ2       (1) 
 

 

Figure 1. Geometry of the spherical indentation. 
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( ) ( )12 10, 0, .lu u s sσ = = ∈Γ                                  (4) 

 
Here, let ( ){ }0 , 0 , 0xx y x yΓ = ≤ < = , 

( ){ }, 0 ,u x yx y x yΓ = ≤ < = −  , 

( ){ }, , 0x yx y x yσΓ = = − < <   and 

( ){ }1 , 0, 0yx y x yΓ = = − < <  be the boundaries of 

the rectangular region 

( ){ }, 0 , 0, , 0x y x yx y x yΩ = < < − < < >     

filled by the rigid body in the Oxy  plane (Figure 1). The 
contact domain of the rigid body with the punch is at the 

unknown boundary ( ){ }, 0 , 0c x y x a yΓ = ≤ ≤ = , 

where a  is an uncertain constant, and the boundary of 
the contact domain is denoted by cΓ .  
Supposing that the material deforms as much as 0α >  
through the Oy  axis when it is compressed by the punch 
under the effect of any force P , that is, the maximal 
displacement of the apex of the punch is α , in case the 
cross-section of the punch is ( )y xϕ= , the contact 
domain of the material with the punch will be 

( ){ }, 0 , ( )c x y x a y xα ϕΓ = ≤ ≤ = − + . 

 
The components of the stress tensors are  

( ) 2 i
ii

i

udiv u
x

σ λ µ
∂

= +
∂

, ji
ij

j i

uu
x x

σ µ
 ∂∂

= +  ∂ ∂ 
, 

, 1,2i j = .  
while the components of the deformation tensors are 
 

1
2

ji
ij

j i

uu
x x

ε
 ∂∂

= +  ∂ ∂ 
. 

The Lame constants λ  and µ  are defined as follows: 

(1 )(1 2 )
Eνλ

ν ν
=

+ −
, 

2(1 )
Eµ
ν

=
+

. 

Here, E  is the modulus of elasticity, and ν  is the 
Poisson’s constant. The Lame constants λ  and µ  are 
non-linear in the case of plastic deformation, and they are 
defined depending on displacements as follows: 

2 ( ( ))
3 ue uλ λ µω= + , [ ]1 ( ( ))ue uµ µ ω= −   

where ( )ueω  is the function that characterizes the 
plasticity case [13]: 

[ ]
0

0

( )
0 ( ) 1,    

( ) 0,                               .

u u
u u

u

u u

d e e
e e e

de
e e e

ω
ω

ω
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
 = ≤

 

 
Here, 0e  is the elastic limit, and the intensity of deformation is 

{ }
1

22 2 2 2 2 2
11 22 22 33 33 11 12 13 23

2( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) 6 ( ) ( ) ( )
3ue u u u u u u u u u uε ε ε ε ε ε ε ε ε = − + − + − + + +  . 

When ( ) 0ueω =  corresponding to the elastic case, even though Equation (1) is linear, the fact that the contact domain 
is not certain causes the problem to be non-linear. 
 

Variational Formulation 
It is known from the variational principle that the solution of problem (1) is minimized by the following functional: 

( ) ( ) ( )1 ,
2

J u a u u b u= −                                                                                                                                                   (5) 
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where the bilinear and the linear parts of functional (5) are as follows, respectively: 

( )

( )

1 1 2 2 2 1 2 1, . 2 ,

, 1,2.i i i i

u v u v u u v va u v divu divv dxdy
x x y y x y x y

b v F v ds f v ds i
σ

λ µ µ
Ω

Ω Γ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

= + =

∫∫

∫∫ ∫
                                      (6)    

So, the problem turns into a minimization problem ( ) ( )min
v V

u V J u J u
∈

∃ ∈ =  in the set 

( ) ( ) ( ) ( ){ }1
00, ; ,u NV v H v s s v s s sϕ= ∈ Ω = ∈Γ ≤ ∈Γ . When the problem is being solved, the contact domain 

cΓ  is determined as in the study by A.A. Ilyushin [13]. Since the contact region is assumed to be certain at each step, 
the inequalities in the boundary conditions turn into equalities, and the problem becomes linear. 

 
Obtaining Local Stiffness Matrix by Using Barycentric Coordinates 

Suppose that the region Ω  in which the problem is defined is divided into quadrilateral finite elements. In this case, 
we define the equal-step mesh as follows: 

 ( ){ ( ) ( ) ( ) ( ){ }1 1 1 1, , , , 0, , , ,0 , 1, 1, 1, 1 .h i j i i j j y N M xx y x x h y y x y x y i N j Mτω τ+ += = + = + = − = = − = −    

In the quadrilateral finite elements, the barycentric coordinates are equal to the form function, which is the 

projection of the Lagrange basis function ( ),ij x yξ  on the finite element ( ){ }1 1, ,mn m m n ne x y x x x y y y+ += ≤ ≤ ≤ ≤ , 

and it can be defined as 

( ) ( ), , , 1,2,3,4
mn

q ij e
L x y x y qξ= = .                                                                                                                          (7)    

Since this form function is the same as the barycentric coordinates in the quadrilateral finite element, it can be 
written in general with single indices as follows [14-15]: 

( ), , 1,2,3,4.q q q q
q

a b x c y d xy
L x y q

S
+ + +

= =                                                                                                          (8)  

Here, q  is the local number of the vertices of the finite quadrilateral element mne  (from down to up and from left 
to right), and S  is the area of this finite element. It is ascertained that 

1 1 1 1 1 1 1 1

2 1 2 2 1 2

3 1 3 1 3 3

4 4 4 4

, , , 1;
, , , 1;

, , , 1;
, , , 1;

i j j i

i j j i

i j j i

i j j i

a x y b y c x d
a x y b y c x d
a x y b y c x d
a x y b y c x d

+ + + +

+ +

+ +

= = − = − =

= − = − = = −

= = = = −

= = − = − =

                                                                                                          (9) 

for the finite quadrilateral elements ije , since the components of the local stiffness matrix corresponding to the finite 

element mne  are calculated with the help of the bilinear form ( ), ,a u v   
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Given that  

                                                                               (10)  

( ) ( ), , , , 1,2,3,4i i i i
i i

b d y c d xL x y L x y i
x S y S

+ +∂ ∂
= = =

∂ ∂
. 

The expressions for the components of the local stiffness matrix are obtained as follows: 
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where p,q=1,2,3,4.  

Finally, considering (9) for any finite element mne , the components of the local stiffness matrix A  defined as 

11 12

21 22
8 8ijA A
×

 
 = =   

 

A A

A A
 

are obtained as follows: 
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Obtaining the Finite Difference Equation (FDE) at Any Point   Using the Local Stiffness Matrix  

 

Figure 2. The interlayer finite elements. 

 
In order to obtain the approximating expression of both normal Nσ  and tangential Tσ  components of the stresses, 

ijA  needs to be multiplied by iju  and ijv , where iju  and ijv  are the displacement vectors on the x-axis and y-axis 
directions, respectively. Then, the results of these multiplications need to be summed up. 

Firstly, the normal component of the stresses  ( )22 2N
v u
y x

σ σ λ µ λ∂ ∂
= = + +

∂ ∂
 has to be obtained. For the sake of 

simplicity, the top and bottom parts are considered separately in Figure 2. For this purpose, the FDE for the stress 
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tensors N N Nσ σ σ− += +  is obtained in the normal direction by processing the relevant lines of the local stiffness matrix 

A  and grouping them according to the displacement vectors u  and v . So, to obtain the FDE of Nσ − , the 6th and 8th lines 
of the local stiffness matrix A  have to be multiplied by unknown vectors belonging to each finite element i, j 1e −  and 

i 1, j 1e − − , respectively (Figure 3). 
 

 

Figure 3. The bottom parts of interlayer finite elements. 

 
Here, the unknown vectors iju , ijv  belonging to the finite elements i, j 1e −  and i 1, j 1e − −  on the nodal points ( , )i jx y are 

as follows: 

i 1, j 1 i 1, j 1 i 1, j i, j 1 i, j i 1, j 1 i 1, j i, j 1 i, je         (u , u , u , u , v , v , v , v )− − − − − − − − − −⇒
, 

i, j 1 i, j 1 i, j i 1, j 1 i 1, j i, j 1 i, j i 1, j 1 i 1, je         (u , u , u , u , v , v , v , v )− − + − + − + − +⇒
. 

Then, the results of these multiplications have to be summed up, and Nσ −  is obtained as follows: 
 

61 , 1 62 , 63 1, 1 64 1, 65 , 1 66 , 67 1, 1 68 1,

81 1, 1 82 1, 83 , 1 84 , 85 1, 1 86 1, 87 , 1 88 ,

N i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

A u A u A u A u A v A v A v A v
A u A u A u A u A v A v A v A v

σ −
− + − + − + − +

− − − − − − − −

= + + + + + + +

+ + + + + + + +
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ), , , , 1 , ,2 212 2
2 6 6

i j i j i j i j i j i j
y x xy xx xx yxxh v u u v v h v

λ µµλ µ λ τ λ µ τ − + 
= + + − + − + + 

 
 

.               
Similarly, in order to obtain the FDE  of Nσ + , the relevant lines (5th and 7th) of the local stiffness matrix A  have to be 

multiplied by unknown vectors for the finite elements i, je  and i 1, je − , respectively (Figure 4). 
 

 

Figure 4. The top parts of interlayer finite elements. 

 

i 1, j i 1, j i 1, j 1 i, j i, j 1 i 1, j i 1, j 1 i, j i, j 1e         (u , u , u , u , v , v , v , v )− − − + + − − + +⇒
 

i, j i, j i, j 1 i 1, j i 1, j 1 i, j i, j 1 i 1, j i 1, j 1e         (u , u , u , u , v , v , v , v )+ + + + + + + +⇒
 

 
Then, the results of these multiplications have to be summed up as above, and Nσ +  is obtained as follows: 
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51 , 52 , 1 53 1, 54 1, 1 55 , 56 , 1 57 1, 58 1, 1

71 1, 72 1, 1 73 , 74 , 1 75 1, 76 1, 1 77 , 78 , 1
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 

.    
 
Hence, 0N N Nσ σ σ− += + =  is satisfied for the normal component of the stresses, and 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

, , , , 1 , ,2

, , , , 1 , ,2

212 2
2 6 6

212 2 0.
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Secondly, the FDE of the tangential component of the stresses 12T
u v
y x

σ σ µ
 ∂ ∂

= = + ∂ ∂ 
 is obtained. Tσ  is calculated 

so that T T Tσ σ σ− += + , by the same way as Nσ . In order to obtain the FDE of Tσ
− , the 2nd and 4th lines of the local stiffness 

matrix A  have to be multiplied by unknown vectors belonging to each finite element i, j 1e −  and i 1, j 1e − − , respectively. 

Then, the results of these multiplications have to be summed up, and Tσ
−  is obtained as follows: 

 

21 , 1 22 , 23 1, 1 24 1, 25 , 1 26 , 27 1, 1 28 1,

41 1, 1 42 1, 43 , 1 44 , 45 1, 1 46 1, 47 , 1 48 ,

T i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

A u A u A u A u A v A v A v A v
A u A u A u A u A v A v A v A v

σ −
− + − + − + − +

− − − − − − − −

= + + + + + + +

+ + + + + + + +
   

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ), , , , 1 , ,21 12 2
6 2

i j i j i j i j i j i j
y x yxx xx xx yxh u v h u u u vµ µ τ λ µ τ λ µ−  = + + − + + − +   

 

. 
Likewise, to obtain the FDE of Tσ

+ , the relevant lines (1st and 3rd) of the local stiffness matrix A  have to be multiplied 
by unknown vectors for i, je  and i 1, je − , respectively, followed by summing up the results of these multiplications. 

Accordingly, Tσ
+  is obtained as follows: 

11 , 12 , 1 13 1, 14 1, 1 15 , 16 , 1 17 1, 18 1, 1

31 1, 32 1, 1 33 , 34 , 1 35 1, 36 1, 1 37 , 38 , 1

T i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

A u A u A u A u A v A v A v A v
A u A u A u A u A v A v A v A v

σ +
+ + + + + + + +

− − + + − − + +

= + + + + + + +

+ + + + + + + +
 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ), , , , , 1 ,21 12 2
6 2

i j i j i j i j i j i j
y x yxx xx xx yxh u v h u u u vµ µ τ λ µ τ λ µ+  = − + + + + + + +   

 

  . 
Hence, the tangential component of the stresses 0T T Tσ σ σ− += + =  is satisfied, and 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

, , , , 1 , ,2

, , , , , 1 ,2

1 12 2
6 2

1 12 2 0.
6 2

i j i j i j i j i j i j
T T y x yxx xx xx yx

i j i j i j i j i j i j
y x yxx xx xx yx

h u v h u u u v

h u v h u u u v

σ σ µ µ τ λ µ τ λ µ

µ µ τ λ µ τ λ µ

−− +

+

  + = + + − + + − + +   
  − + + + + + + + =   

 

 

 
 

Numerical Results    

The numerical solution of the problem is obtained 
using barycentric coordinates for the quadrilateral finite 
elements. The size mesh x yN N×  as 50xN =  and 

21yN =  is considered in the rectangular region Ω   to 
obtain the numerical solution. A local adaptive mesh is 
used to find the contact area cΓ with less error, and 
therefore, the mesh steps are considered smaller in the 
area close to the contact area (number of points in the 
contact area is 19

caN = ). 

For the numerical experiments, the modules of 
elasticity, Poisson’s constant and elasticity limit of these 
materials are 210E GPa= , 0.3ν =  and 0 0.027e = , 
respectively. The geometric parameters of the region and 
the punch are then defined as 20.2 10R m−= × , 

21.5 10xl m−= × , 21 10yl m−= ×  such that 

2 2( )x R xϕ = − . In the case where the punch deforms 

the rigid body by 40.5 10 mα −= × , the initial value of the 
contact zone is taken as 30.2 10ca m−= × , and the contact 

zone is found as 33.1935 10ca m−= ×  in seven iterations. 
Since the force acting on the punch to deform the rigid 
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body by as much as 40.5 10 mα −= ×  is defined as 

[ ]
( )

( )
c

NP u dx
α

α σ
Γ

= ∫ , it is found to be 

2( ) 4.953 10P GPaα −= × . The values of the stress tensors 

Nσ  and Tσ  are calculated in each layer of the mesh 
defined in the region, and it is determined that the 

equilibrium conditions are satisfied (
2( ) 4.9532 10P GPaα+ −= ×  and
2( ) 4.9584 10P GPaα− −= × ). 

The plots of the functions Nσ  and Tσ  at the top of the 
deforming body and the thickness 0.65y =  are given in 
Figure 5. (a) and (b), respectively ( 0.65 23yN = ).

 

 
(a) 

 
(b) 

Figure 5. The plots of the functions (a) 𝜎𝜎𝑁𝑁 and (b) 𝜎𝜎𝑇𝑇 at the top of the deforming body and y=0.65. 

 

 

Figure 6. The distribution of plasticity in the rigid body. 

 
Conclusion 

Finite difference equations of the mathematical model 
of the elasto-plastic plane contact problem with 
undetermined bounded corresponding to the Lame 
equation system were obtained by using barycentric 
coordinates. Then, the geometric interpretations of the 
numerical solution obtained with the help of the prepared 
computer program were presented. 
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