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An alternative way of understanding physical effects in curved space time is to solve the associated particle 

equation such as the Dirac equation.  It is a first-order relativistic wave equation and defines spin-
1

2
 massive 

particles like electrons and quarks. In this study, we solved the Dirac equation in an anisotropic rainbow universe. 
Subsequently, the reduced wave equation is obtained by making use of the asymptotic property of the Whittaker 
function. In the final stage, we calculate each component of the spin current density and then graphically 
evaluate their behavior according to the rainbow function. According to our results, the spin current density only 
depends on the z component of the momentum. In addition, the sign of both spin current densities is not 
changing with time. Finally, the current density amplitude in the high energy state or high scale parameter 
(𝜖 = 0.9) is rapidly decreasing faster than in 𝜖 = 0.6 and 𝜖 = 0.3. 
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Introduction 

Generally, a well-known shortcoming of the Klein-
Gordon theory is a negative quantum probability that is 
considered to be physically meaningless[1]. To overcome 
such a challenge, Dirac proposed a first-order relativistic 
wave equation that plays an important role in many 
branches including those in nuclear and high energy 
physics. It is commonly believed that this idea is the most 
effective mathematical method to analyze the relativistic 

quantum mechanical behavior of the spin-
1

2
 particles 

(electron, proton, and their corresponding 
antiparticles)[2]. Therefore, one can easily see that there 
are lots of papers where some solutions of the Dirac 
equation are illustrated in various spacetimes[3-7].  

Investigating the effects of the rainbow functions in 
different research areas is still a very attractive topic in 
recent years. The dynamics of the photon equation are 
discussed in the cosmic string spacetime[8]. Bakke and 
Mota evaluate the Aharonov–Bohm effect in the context 
of rainbow gravity[9]. Junior and his co-authors 
investigate regular black holes in rainbow gravity [10]. Ling 
derives the kinematics of particles moving in rainbow 
spacetime[11]. The idea behind it is the Planck scale (or 
the Planck energy 𝐸𝑝𝑙  ≈ 10

19 GeV)[12]. It plays a vital 

role while determining the boundary between the 
classical and quantum gravity regimes[13-14]. However, 
the existence of such a scale forces us to consider the 
Planck energy as an invariant quantity for all observers in 
momentum space whereas the invariance of light’s speed 
c is valid in Special Relativity (SR). This result points out the 
existence of a Deformed Special Relativity (DSR)[15-16]. 
Smolin and Magueijo presented a modified energy and 
momentum relation as the following formulation[17]: 

 
𝑓2(𝜖)𝐸2 − 𝑔2(𝜖)𝑃2 = 𝑚2   (1) 
 

Here 𝜖 =
𝐸

𝐸𝑝𝑙
 is a scale parameter, where 𝐸𝑝𝑙 

represents the Plank energy, and 𝐸 denotes particle’s 
energy. Furthermore, both 𝑓(𝜖) and 𝑔(𝜖) are called 
rainbow functions obeying the following relation 

 
lim
𝜖→0

𝑓(𝜖) = lim
𝜖→0

𝑔(𝜖) = 1   (2) 

 
Thus, the DSR formalism can be reduced to the SR 

framework with the help of the above condition. In 
literature, there are several proposals[15,17] for the 
rainbow functions: 

 

1st Scenario: 𝑓(𝜖) = √1 − 𝜖2 𝑔(𝜖) = 1   (3) 
 

2st Scenario: 𝑓(𝜖) = 1  𝑔(𝜖) = 1 +
𝜖

2
 (4) 

 
Following Refs[17,18-20], one can write the rainbow 

type line-elements by making use of the transformations 

𝑑𝑡 →
𝑑𝑡

𝑓(𝜖)
 and 𝑑𝑥𝑖 →

𝑑𝑥𝑖

𝑔(𝜖)
. From this point of view, the 

energy-independent tetrads defined in the Minkowski 
spacetime are transformed mathematically into energy-
dependent ones. For this reason, in the rainbow 
formalism of gravity (RFG), the metric tensor of a given 
line-element is rewritten in terms of the energy-
dependent tetrad[17]s: 

 𝑔𝜇𝜈 = 𝑒𝜇
(𝑖)(𝜖)⊗ 𝑒𝜈

(𝑗)(𝜖)    (5) 
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where the Greek and Latin indices show the 
curved(𝜇: 0, 1, 2,3) and flat spacetime(𝑖: 0, 1, 2,3), 
respectively. Therefore, all components of energy-
dependent tetrads are divided into two main groups 
according to time and space components: 

 

𝑒0
(0)(𝜖) =

1

𝑓(𝜖)
�̃�0
(0)

    (6) 

 

𝑒𝑖
(𝑖)(𝜖) =

1

𝑓(𝜖)
�̃�𝑖
(𝑖)

    (7) 

 
where the tilde denotes the Minkowski spacetime. 
One of the most important scenarios, where the 

effects of Quantum Gravity (QG) are tested in an 
anisotropic universe, is associated with the subsequent 
metric[21]: 

 
𝑑𝑠2 = −𝑑𝑡2 + 𝑡2(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧2  (8) 
 
Applying the procedure of RFG to the metric gives 
 

𝑑𝑠2 = −
1

𝑓2
𝑑𝑡2 +

𝑡2

𝑔2
(𝑑𝑥2 + 𝑑𝑦2) +

1

𝑔2
𝑑𝑧2 (9) 

 
As a result, we can easily write the covariant and 

contravariant forms of the metric tensor as given below 
 

𝑔𝜇𝜈 =

(

 
 
 
 

−
1

𝑓2
0 0 0

0
𝑡2

𝑔2
0 0

0 0
𝑡2

𝑔2
0

0 0 0
1

𝑔2)

 
 
 
 

  (10.a) 

 

𝑔𝜇𝜈 =

(

  
 

−𝑓2 0 0 0

0
𝑔2

𝑡2
0 0

0 0
𝑔2

𝑡2
0

0 0 0 𝑔2)

  
 

   (10.b) 

 
According to the general transport theory, spin 

current, one of the most significant physical quantities in 
quantum physics, is accompanied by a spin continuity 
equation which includes additional torque terms like the 

spin operator �̂� =
ħ

2
�̂� which are the Pauli matrices. If we 

compare 𝜌𝑒 = 𝛹
†𝑒𝛹 (charge density) with 𝜌𝑠 = 𝛹

†�̂�𝛹 
(spin density), �̂� is thought of as the spin-charge. In the 
fermion state, the spin current is converted into the Dirac 
current and it consists of the Gordon decomposition and 
spin magnetization. Further, both currents are precisely 
discussed in [22-24]. From the point of the physical 
interpretation, the Gordon current arises from a moving 
point charge while the spin magnetization one is created 
by the spin of the elementary particles.  

The layout of the study is as follows: in the second 
section, we solve the Dirac equation for the anisotropic 
universe. In the third section, we rewrite the asymptotic 
wave function. Then, the Dirac current is calculated with 

the help of the rainbow function and is graphically 
illustrated. The last section is devoted to the conclusion 
part. 

  

The Solution of Dirac Equation 
 
The Dirac equation in curved spacetime is given by [25] 
 
[𝑖𝛾𝜆(𝜕𝜆 + Г𝜆) − 𝑚]𝛹(𝑡, 𝑟) = 0  (11) 

 
where 𝑚 is the particle’s mass, 𝛹(𝑡, 𝑟)is the particle’s 

wave function, and Г𝜆  is the spinor affine connections as 
given below 

 

Г𝜆 = −
1

8
𝑔𝜇𝛼Г𝜇𝜆

𝛼 [𝛾𝜇 , 𝛾𝜈]    (12) 

 
Г𝜇𝜆
𝛼  denotes the Christoffel symbols and are defined by 

the following equation 
 

Г𝜇𝜆
𝛼 =

1

2
𝑔𝛼𝜎(𝜕𝜈𝑔𝜆𝜎 + 𝜕𝜆𝑔𝜈𝜎 − 𝜕𝜎𝑔𝜈𝜆)  (13) 

 
The non-zero components of the Christoffel symbol for 

the given line element are expressed in terms of time and 
the rainbow functions as follows 

 

Г11
0 = Г22

0 =
𝑡𝑓2

𝑔2
  

 

Г01
1 = Г10

1 =
1

𝑡
    (14) 

 

Г02
2 = Г20

2 =
1

𝑡
  

 
Substituting Eq.14 into Eq.12 gives 
 

Г0 =
𝑓

2𝑔
𝛾(0)𝛾(2),   Г1 =

𝑓

2𝑔
𝛾(0)𝛾(1)  (15) 

 
where the brackets () represents the Minkowski 

spacetime. If Eq.15 is inserted into Eq.11, the Dirac 
equation becomes 

 

[𝛾(0) (𝜕0 +
𝑓

𝑡
) +

𝑔

𝑡𝑓
(𝛾(1)𝜕1 + 𝛾

(2)𝜕2) +
𝑔

𝑓
𝛾(3)𝜕3 +

𝑖𝑚

𝑓
]𝛹 = 0 (16) 

 
Subsequently, Eq. 16 is reduced to the following form 

by setting 𝛹 = 𝑡−1𝜓 to eliminate the contribution from the 
spinor connections 

 

[𝛾(0)𝜕0+
𝑔

𝑡𝑓
(𝛾(1)𝜕1 + 𝛾

(2)𝜕2) +
𝑔

𝑓
𝛾(3)𝜕3 +

𝑖𝑚

𝑓
] 𝜓 = 0 (17) 

 

By using 𝛾(3)𝛾(0)𝛾(3)𝛾(0) = 1, Eq. 17 can be easily 
expressed as a sum of two first-order differential operators 
after some mathematical steps 

 
[𝐿1 + 𝐿2]𝛷 = 0     (18) 
 
Where 

𝐿1 = 𝑡 (𝛾
(3)𝜕0 ++

𝑔

𝑓
𝛾(0)𝜕3 +

𝑖𝑚

𝑓
) 
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𝐿2 =
𝑔

𝑓
(𝛾(1)𝜕1 + 𝛾

(2)𝜕2)   (19) 

 

𝛷 = 𝛾(3)𝛾(0)𝜓 
 
We chose the following representation of the Dirac 

matrices[21]: 
 

𝛾(0) = (−𝑖𝜎
1 0

0 𝑖𝜎1
),    𝛾(1) = (

0 𝑖
𝑖 0

) (20.a) 

 

𝛾(2) = (𝜎
2 0
0 −𝜎2

)  , 𝛾(3) = (𝜎
3 0
0 −𝜎3

)       (20.b) 

 
With 
 

𝜎1 = (
0 1
1 0

),  𝜎2 = (
0 −𝑖
𝑖 0

)            (21.a) 

 

𝜎3 = (
1 0
0 −1

)                       (21.b) 

 
By using a separation constant 𝜆, Eq.18 can be written 

as 
 
𝐿1𝛷 = −𝜆𝛷     (22) 
 
𝐿2𝛷 = 𝜆𝛷     (23) 
 
Since the particle moves freely in x, y, and z coordinates, 

the spinor Φ is given by 
 

𝛷 = 𝑒𝑖(𝑘1𝑥+𝑘2𝑦+𝑘3𝑧)𝜒(𝑡)    (24) 
 
where 
 

𝜒(𝑡) = (
𝜒1
𝜒2
)       (25) 

 
If we insert Eq.25 and Eq.24 into Eq.23 and apply some 

mathematical steps, we get the following relation between 
components of the bispinor 

 

𝜒2 =
𝑘1𝜎

2

𝑖𝑘2+
𝑓

𝑔
𝜆
𝜒1     (24) 

 

where 𝜆 = ∓𝑖
𝑔

𝑓
√𝑘1

2 + 𝑘2
2. Then, if the same procedure 

is applied for Eq. 22, we find two coupled differential 
equations as below 

 
𝜕𝛷2

𝜕𝑡
+
𝜆

𝑡
𝛷2 − (

𝑔𝑘3

𝑓
+
𝑚

𝑓
)𝛷1 = 0  (27) 

 
𝜕𝛷1

𝜕𝑡
−
𝜆

𝑡
𝛷1 + (

𝑔𝑘3

𝑓
+
𝑚

𝑓
)𝛷2 = 0  (28) 

 
where the bispinor 𝜒1 is chosen by the following form 
 

𝜒1 = (
𝛷1
𝛷2
)     (29) 

 

If we perform some algebra between these coupled 
equations, we get the following second-order differential 
equation: 

 

[
𝜕2

𝜕𝑡2
+
𝜆−𝜆2

𝑡2
− {(

𝑚

2
)
2

− (
𝑔𝑘3

𝑓
)
2

}]𝛷1 = 0   (30) 

 
Defining a new variable 𝑡 = 𝛼 𝑢 takes Eq.30 to the form 

of the well-known Whittaker Equation and thus, the 
corresponding solutions are written as [26] 

 

𝛷1 = 𝑁1𝑀𝜅,𝜇(
𝑡
𝛼⁄ ) + 𝑁2𝑊𝜅,𝜇(

𝑡
𝛼⁄ )  (31) 

 
which 𝑀𝜅,𝜇  and 𝑊𝜅,𝜇 are called as Whittaker functions, 

𝜅 = 0, 𝜇 = ∓(λ −
1

2
) and 𝛼 =

𝑓

2𝑔𝑘3
(1 − (

𝑚

𝑔𝑘3
)
2

)
−1

. If we 

analyze the asymptotic behavior of Whittaker functions as 
𝑡 → ∞[26], 𝑁1 must be zero since 𝑀𝜅,𝜇 leads to the 

divergence of 𝛷1  in that limit. Therefore, Eq.31 is reduced 
to the following form 

 

𝛷1 = 𝑊0,𝜇(
𝑡
𝛼⁄ )                       (32.a) 

 

𝛷2 =
𝑓

𝑚−𝑔𝑘3
(𝜕𝑡 +

λ

𝑡
)𝑊0,𝜇(

𝑡
𝛼⁄ )            (32.b) 

 
With the help of the differential definition of the 

Whittaker function[26], the explicit form of Eq.32 can be 
written as 

 

𝛷1 = 𝑊0,𝜇(
𝑡
𝛼⁄ )            (33.a) 

 

𝛷2 =
𝑓

𝑚−𝑔𝑘3
[(

1

2𝛼
−
λ

𝑡
)𝑊0,𝜇(

𝑡
𝛼⁄ ) −

1

𝑡
𝑊1,𝜇(

𝑡
𝛼⁄ )](33.b) 

 
Similarly, if we use the asymptotic property of the 

Whittaker function[26] for Eq. 33, we get 
 

𝛷1 = 𝑒
−
𝑡

2𝛼            (34.a) 
 

𝛷2 = 𝛽𝑒
−
𝑡

2𝛼           (34.b) 
 
where  
 

𝛽 = √
𝑘3+

𝑚

𝑔

𝑘3−
𝑚

𝑔

     (35) 

Thus, the total associated Dirac wave function is in the 
following form: 

 

𝛹(𝑡, 𝑟) = 𝑁(

1
𝛽
−𝛾𝛽
𝛾

)
𝑒
(𝑖�⃗⃗⃗�.�⃗⃗⃗�−

𝑡
2𝛼)

𝑡
   (36) 

 

where 𝛾 =
𝑖𝑔𝑘1

𝑖𝑔𝑘2+𝑓 λ
 and 𝑁 is a normalization coefficient 

as follows  
 



Kangal / Cumhuriyet Sci. J., 43(1) (2022) 132-136 

135 

𝑁 = 𝑖√
𝑔3

𝛼(1+𝛽2)(1+|𝛾|2)
    (37) 

 

Spin Current Density 
 
From the quantum mechanical perspective, the spin 

current density associated with the flow of its probability 
is known as the Dirac current and is given by [27,28] 

 
𝐽𝐷
𝜇
= 𝐽𝐺

𝜇
+ 𝐽𝑀

𝜇
     (38) 

 
With 
 
𝐽𝐺
𝜇
= 𝑖𝑒[�̅�𝜕𝜇𝛹 −𝛹𝜕𝜇�̅�]   (39) 

 
𝐽𝑀
𝜇
= 𝑖𝑒𝜕𝜈[�̅�𝛾

𝜇𝛾𝜈𝛹− �̅�𝛾𝜈𝛾𝜇𝛹]  (40) 
 

where �̅� = 𝛹†𝛾(0), G, and M denote the Gordon and 
spin magnetization current. If we calculate the spin 
current for the line element given in Eq.9, we obtain 

 

𝐽𝐷
𝜇
= 𝑒 (

𝑔

𝑓
)
2 𝑒

−
𝑔
𝑓
𝑘3𝑡

𝑡2
𝑘𝑠𝑢𝑚   (41) 

 
where 𝑘𝑠𝑢𝑚 = 𝑘1 + 𝑘2 + 𝑘3 > 0 and also 𝑘3 must be 

positive because this enables us to avoid divergence of 
spin current in high time. If making a plot of Eq.41 in terms 
of charge value(e = 1 and e = −1) by considering two 
rainbow scenarios, we get the following figüre: 

 

Figure 1. In the both figures, dashed line shows                   
e=1(positron) state while line indicates 
e=−1(electron) one at k3=0.5  and ksum=1. 
Furthermore, red(high scale), green(medium one), 
and blue(low one) color of both dashed and line 
represent ϵ = 0.9, ϵ = 0.6 and ϵ = 0.3 and 
respectively 

 

It can be seen that the current density defined for both 

positron and electron decreases over time. However, the 

second scenario’s slope is much bigger than the first one 
since Eq.40 is linearly dependent on g while it is inversely 

proportional to f. Also, any particle creation is not observed 

in either of the scenarios since they do not have any critical 

turning point whose sign-magnitudes lead to change 

through the time axis in both current densities. 

 

 
 

Conclusion 
 

In this work, we propose a solution to the Dirac 

equation in the anisotropic rainbow universe. By rewriting 

the Dirac wave function considering the asymptotic 

property of the Whitaker function, we calculate the spin 

current density using the asymptotic limit. According to 

our results, no particle creation event occurred in any of the 
rainbow scenarios. To understand their effects on particle 

creation, we, therefore, need to discuss the different 

rainbow scenarios listed in the literature. 
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