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Introduction 

Generalization of the well-known distributions have 
been widely used to get more flexible statistical models. 
For instance, the generalized gamma distribution for 
modeling the distribution of income rate is introduced in 
[1], proposed inverse Gaussian distribution is proposed in 
[2], the generalization of Pareto distributions are studied 
in [3-5] and, the generalized beta of the first and second 
kind as models for the size distribution of income is 
introduced in [6]. Beta distribution is used as a generator 
function by [7] and they propose a new class of 
distribution, which are called beta-generated (BG) 
distributions. This generalization proceeds as follows, 
𝐹(𝑥) is the cumulative distribution function (cdf) of any 
random variable  𝑋, 𝑏(𝑡) is the probability density 
function (pdf) of beta random variable then the cdf of 
beta- generated random variable 𝐺(𝑥) is defined as 

 

𝐺(𝑥) = ∫ 𝑏(𝑡)𝑑𝑡
𝐹(𝑥)

0

 (1.1) 

 

(1.2) gives the pdf of beta-generated random variable. 
 

𝑔(𝑥) =
1

𝐵(𝛼, 𝛽)
𝑓(𝑥)[𝐹(𝑥)]𝛼−1[1 − 𝐹(𝑥)]𝛽−1 (1.2) 

 

In literature, there are various types of studies including 

beta-generated distributions, see [8-13]. Kumaraswamy 

generalized distribution (KWG) by using Kumaraswamy 

distribution instead of beta distribution in (1.2) is 

introduced in [14]. Many researchers proposed some 

variations of KWG distributions, see [15-17]. 

Following the idea of generating BG distributions, a 

new technique to generate continuous probability 

distributions is proposed in [18]. This new approach is 

described as follows: 

Let 𝑋 be a random variable whose pdf is 𝑓(𝑥) and cdf 

is 𝐹(𝑥). Let 𝑇 be a continuous random variable with pdf 

ℎ(𝑡) defined on the interval [𝑎, 𝑏]. The cdf of the new 

family of distribution is defined as 

 

𝐺(𝑥) = ∫ ℎ(𝑡)𝑑𝑡

𝑊[𝐹(𝑥)]

𝑎

 
(1.3) 

 

where 𝑊[𝐹(𝑥)] is differentiable and monotonically 
non-decreasing in x. It should be also noted that 
𝑊[𝐹(𝑥)] → 𝑎  as 𝑥 → −∞ and 𝑊[𝐹(𝑥)] → 𝑏  as 𝑥 → ∞. 
The corresponding pdf of 𝑋 can be written as 

 
 

𝑔(𝑥) = {
𝑑

𝑑𝑥
𝑊[𝐹(𝑥)]} ℎ{𝑊[𝐹(𝑥)]} (1.4) 

 

In this generalization procedure, the random variable 
𝑇  is called "transformed" into a new cdf 𝐺(𝑥) through the 
function 𝑊[𝐹(𝑥)], which is called "transformer". So, 𝐺(𝑥) 
is called "Transformed-Transformer" or 𝑇 −
𝑋 distribution. Following the technique which is proposed 
and well defined in [18], we study with the transformer 
function 𝑊[𝐹(𝑥); 𝜃] which is introduced to generate a 
new life time distribution in [19]. This transformer 
function is also used to obtain a new extension of 
Generalized Extreme Value distribution which is proposed 
as a model for an earthquake data in [20].  

http://xxx.cumhuriyet.edu.tr/
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In this paper, we study to obtain new extensions of the 
three probability distributions-Normal, Kumaraswamy, 
and Weibull by transforming uniform random variable 
through the transformer function 𝑊[𝐹(𝑥); 𝜃] 

The rest of the paper is organized as follows: In Section 
2, a brief summary of the methodology is given. In Section 
3 the methodology is applied to Normal, Kumaraswamy 
and Weibull distributions to get new extensions. The 
properties of new extensions distributions such as 
moments, quantiles functions and the maximum 
likelihood (ML) equations are obtained. Some simulations 
studies are conducted to present how the new extensions 
change according to the representative values of the 
parameter (θ) of the generator function, 𝑊[𝐹(𝑥); 𝜃]. In 
Section 4, real data examples are considered to present 
the performances of the new extensions of the studied 
probability distributions. Section 5 concludes the paper. 

 

Materials and Methods 
 

The transformer function which is introduced by [19] 
is given and then recalling (1.3), the cdf of Uniform-X 
distributions is defined. 

 

𝑊[𝐹(𝑥); 𝜃] =
exp (−𝜃𝐹(𝑥)) − 1

exp (−𝜃) − 1
 (2.1) 

 

where 𝜃𝜖𝑅. Furthermore, 𝑊[𝐹(𝑥); 𝜃] → 0 as 𝑥 → −∞ 

and  𝑊[𝐹(𝑥); 𝜃] → 1 as 𝑥 → ∞. 

 

Definition 2.1 Let 𝑋 be a random variable whose pdf is 
𝑓(𝑥);  𝑎 < 𝑥 < 𝑏  and cdf is 𝐹(𝑥). Let 𝑇  be a uniform 
random variable, whose pdf is ℎ(𝑡) = 1; 0 < 𝑡 < 1. Then 

 

𝐺(𝑥) = ∫ 𝑑𝑦 =
exp (−𝜃𝐹(𝑥)) − 1

exp (−𝜃) − 1
, 𝑎 < 𝑥 < 𝑏

exp (−𝜃𝐹(𝑥))−1
exp (−𝜃)−1

0

 
(2.2) 

 

is a cdf of the Uniform-X (Uni-X) distribution. The pdf of 
Uni-X distribution is in (2.3). 
 

(𝑥) =
𝜃𝑓(𝑥)exp (−𝜃𝐹(𝑥))

1 − exp (−𝜃)
, 𝑎 < 𝑥 < 𝑏, 𝜃𝜖𝑅 (2.3) 

 

The properties of the Uni-X distribution are as follows: 

1. For all bounded or unbounded intervals, this new 
extension of distributions inherits the properties of 
being a pdf 

2. Extensions are defined on the same interval  [𝑎, 𝑏]  
3. If θ goes to 0, the 𝑔(𝑥) defined in (2.3) converges to 

the studied pdf distribution 𝑓(𝑥)  
 

lim
𝜃→0

𝜃𝑓(𝑥)exp (−𝜃𝐹(𝑥))

1−exp (−𝜃)
→ 𝑓(𝑥). 

The moment generating function (mgf) of Uni-X 

distributions is defined as follows 

 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥
𝜃𝑓(𝑥)exp (−𝜃𝐹(𝑥))

1 − exp (−𝜃)

𝑏

𝑎

𝑑𝑥. (2.4) 

 

By substituting 𝑢 = 𝐹(𝑥), Taylor series expansion of   

𝑒𝑡𝐹−1(𝑢)𝑒−𝜃𝑢 can be considered to obtain the moments of 
the Uni-X distributions. However, the closed form of the 
moments of the studied Uni-X distributions in this study 
cannot be obtained.  

The quantile function of Uni-X distributions in (2.5) is 
obtained by using the simple inverse cdf technique. 
 

𝑄(𝑝) = 𝐹−1 {−
1

𝜃
ln (𝑝(exp (−𝜃) − 1) + 1)} (2.5) 

 

The Uni-X distributions are extensions of the studied 
distributions firstly denoted by 𝐹(𝑥) in (2.1).  In this study, we 
study normal distribution (typical example of symmetric 
distributions), Weibull distribution (representative of the 
positively skewed distributions) and Kumaraswamy 
distribution (symmetric, positively skewed and negatively 
skewed form) as 𝐹(𝑥)  and introduce their extensions which 
are called Uni-Normal, Uni-Weibull, Uni-Kumaraswamy, 
respectively in the following three sub-sections. 

Uniform-Normal Distribution   
Consider a normal distribution with pdf ∅(𝑧) and cdf 

Φ(z) where 𝑧 =
𝑥−𝜇

𝜎
, μ and σ are the location and the scale 

parameters, respectively. Recalling (2.2), the cdf of 
uniform-normal (Uni-Normal) distribution is defined as 

 

𝐺(𝑥) =
exp (−𝜃Φ(z))−1

exp (−𝜃)−1
,  −∞ < 𝑥 < ∞ (3.1) 

 
The pdf of Uni-Normal distribution is defined as 
 

𝑔(𝑥) =
𝜃∅(𝑧)exp (−𝜃Φ(z))

𝜎(1−exp (−𝜃))
, −∞ < 𝑥 < ∞   (3.2) 

 
 

 

 

Figure 1. The pdfs and cdfs of Uni-Normal 
distribution, 𝜇 = 0 and 𝜎 = 1 
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Figure 1 illustrates the pdfs and the cdfs of the Uni-
Normal distribution for different 𝜃 values. When 𝜃 tends 
to 0, the pdf reduces to the well-known normal 
distribution, when 𝜃 > 0, then the pdf becomes positively 
skewed and 𝜃 < 0 then the pdf becomes negatively 
skewed. 

The quantile function 𝑄(𝑝), 0 < 𝑝 < 1 and the 
median of the Uni-Normal distribution are defined as 

 

𝑄(𝑝) = 𝜇 + 𝜎Φ−1 {−
1

𝜃
ln (1 − 𝑝(𝑒𝑥𝑝(−𝜃) − 1))}    (3.3) 

 

 

𝑄 (
1

2
) = 𝜇 + 𝜎Φ−1 {−

1

𝜃
ln (1 −

1

2
(1 + 𝑒𝑥𝑝(−𝜃)))} 

(3.4) 

 
respectively. 
Considering (3.3), a simulation study is conducted to 

present how to change sample mean, variance, skewness 
values (SV) and kurtosis values (KV) according to the 
different values of 𝜃The random samples with size 100 are 
generated 100.000 times and the results are listed in Table 
1. 

 
Table 1. The simulation results for the Uni-Normal distribution, 𝜇 = 0 and 𝜎 = 1 

θ Mean Variance SV KV 

-5 1.082 0.767 -0.288 3.583 

-2 0.534 0.938 -0.218 3.180 

-0.001 0.001 0.997 -0.002 2.936 

0 0.000 1.000 0 3.000 

0.001 -0.001 0.997 0.001 2.938 

2 -0.534 0.937 0.224 3.185 

5 -1.081 0.767 0.289 3.534 

Table 1 indicates that θ tends to 0 the Uni-Normal 
distribution converges to the well-known normal 
distribution and θ increases, the SV and the KV increase 
and the variance decreases. 

Now, suppose 𝑍1, 𝑍2, … , 𝑍𝑛 are random variables from 
a Uni-Normal distribution defined in (3.1), then the 
likelihood function and the log-likelihood function are 
defined in (3.5) and (3.6), respectively. 

 
𝐿(𝜇, 𝜎, 𝜃)

= 𝜃𝑛𝜎−𝑛(1 − 𝑒𝑥𝑝(−𝜃))−𝑛 ∏ ∅(𝑧𝑖) ∏ exp (−𝜃∅(𝑧𝑖))

𝑛

𝑖=1

𝑛

𝑖=1

 
(3.5) 

 

 
𝑙(𝜇, 𝜎, 𝜃) = 𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛𝜎 − ln(1 − 𝑒𝑥𝑝(−𝜃)) +
∑ ln (𝑛

𝑖=1 ∅(𝑧𝑖)) − 𝜃 ∑ Φ(𝑧𝑖)𝑛
𝑖=1  . 

(3.6) 

 
By differentiating the log-likelihood function with 

respect to the unknown parameters and equating them to 
zero, we obtain the following likelihood equations. 

 

𝜕𝑙𝑛𝐿

𝜕𝜇
= ∑ 𝑧𝑖

𝑛

𝑖=1

+ 𝜃 ∑ ∅(𝑧𝑖) = 0   

𝑛

𝑖=

 

𝜕𝑙𝑛𝐿

𝜕𝜎
= −𝑛 + ∑ 𝑧𝑖

2

𝑛

𝑖=1

+ 𝜃 ∑ ∅(𝑧𝑖) = 0

𝑛

𝑖=

 

𝜕𝑙𝑛𝐿

𝜕𝜃
=

𝑛

𝜃
−

𝑛𝑒𝑥𝑝(−𝜃)

1 − 𝑒𝑥𝑝(−𝜃)
− ∑ ∅(𝑧𝑖) = 0

𝑛

𝑖=

 

(3.7) 

 

Solutions of (3.7) are called ML estimates. The 
equations need to be solved with numerical methods such 
as Newton Raphson or iteratively reweighting algorithm. 

 

Uniform-Kumaraswamy Distribution 

Let 
( )f x

and 
( )F x

be the pdf and the cdf of 
Kumaraswamy distribution, respectively. Based on the 
Definition 2.1, the cdf of the Uniform-Kumaraswamy (Uni-
Kums) distribution is obtained 

𝐾(𝑥) =
exp (−𝜃𝐹(𝑥)) − 1

exp (−𝜃) − 1

=
exp(−𝜃[1 − (1 − 𝑥𝑎)𝑏]) − 1

exp (−𝜃) − 1
 

(3.9) 

 

𝑘(𝑥) =
𝜃𝑓(𝑥)𝑒𝑥𝑝(−𝜃𝐹(𝑥))

1−exp (−𝜃)
=

𝜃𝑎𝑏𝑥𝑎−1(1−𝑥𝑎)𝑏−1exp (−𝜃[1−(1−𝑥𝑎)𝑏])

1−exp (−𝜃)
                               

(3.10) 

 

where      0 < 𝑥 < 1,     𝑎, 𝑏 > 0  
Figure 2 demonstrates the pdfs and the cdfs of Uni-

Kums distribution for different values of  𝜃. The Uni-Kums 
distribution becomes more skewed (positively or 
negatively) according to the parameter 𝜃 values. 

 

 

 
 

Figure 2. The pdfs and cdfs of Uni-Kums distribution, 𝑎 =
2 and 𝑏 = 2.5 
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The quantile function 𝑄(𝑝), 0<p<1 and the median of 
the Uni-Kums distribution are defined as respectively. 

 

𝑄(𝑝) = (1 − [1 +
ln (1+𝑝(exp (−𝜃)−1))

𝜃
]

1

𝑏
)

1

𝑎

                
(3.11) 

 

 

𝑄 (
1

2
) = (1 − [1 +

ln (1+0.5(exp (−𝜃)−1))

𝜃
]

1

𝑏
)

1

𝑎

                
(3.12) 

 

 
Considering (3.11), the simulation procedure in sub-

section 3.1 is applied to Uni-Kums distribution with the 
parameters 𝑎 = 2 and 𝑏 = 2. The results are listed in 
Table 2 indicate that θ tends to 0, the Uni-Kums 
distribution converges to the well-known Kumaraswamy 
distribution and when θ values increases the SV and the 
KV also increases. 

 

 
Table 2. The simulation results for the Uni-Kums distribution, a=2, b=2 

θ Mean Variance SV KV 

-5 0.766 0.143 -1.056 4.348 

-2 0.652 0.199 -0.640 2.840 

-0.001 0.533 0.221 -0.123 2.193 

0 0.533 0.221 -0.123 2.193 

0.001 0.533 0.221 -0.123 2.193 

2 0.412 0.208 0.375 2.466 

5 0.290 0.159 0.763 3.745 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are random variables from the 
Uni-Kums distribution defined in (3.9) and the likelihood 
function and the log-likelihood functions of this random 
sample are obtained as follows, respectively. 

𝐿 = (𝑎, 𝑏, 𝜃) = ((1

− exp (−𝜃))−𝑛𝜃𝑛𝑎𝑛𝑏𝑛exp (−𝜃 ∑ 1

𝑛

𝑖=1

− (1 − 𝑥𝑖
𝑎)𝑏)) ∏ 𝑥𝑖

𝑎−1

𝑛

𝑖=1

∏(1

𝑛

𝑖=1

− 𝑥𝑖
𝑎)𝑏−1 

(3.13) 

 

 
𝑙(𝑎, 𝑏, 𝜃) = −𝑛𝑙𝑛(1 − exp (−𝜃)) + 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑎 +
𝑛𝑙𝑛𝑏 + ∑ (𝑎 − 1)𝑙𝑛𝑥𝑖

𝑛
𝑖=1 + ∑ (𝑏 − 1)ln (1 − 𝑥𝑖

𝑎𝑛
𝑖=1 ) −

𝜃 ∑ [1 − (1 − 𝑥𝑖
𝑎)𝑏]𝑛

𝑖=1   . 

(3.14) 

 

 
By differentiating the log-likelihood function with 

respect to the unknown parameters and equating them to 
zero we obtain the following likelihood equations 

𝜕𝑙𝑛𝐿

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑛𝑥𝑖 − (𝑏 − 1) ∑

1

1 − 𝑥𝑖
𝑎 𝑥𝑖

𝑎𝑙𝑛𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝜃 ∑ 𝑏(1 − 𝑥𝑖
𝑎)𝑏−1𝑥𝑖

𝑎

𝑛

𝑖=1

𝑙𝑛𝑥𝑖 

𝜕𝑙𝑛𝐿

𝜕𝑏
=

𝑛

𝑏
+ ∑ ln(1 − 𝑥𝑖

𝑎)

𝑛

𝑖=1

+ 𝜃 ∑(1 − 𝑥𝑖
𝑎)𝑏ln (1 − 𝑥𝑖

𝑎)

𝑛

𝑖=1

 

𝜕𝑙𝑛𝐿

𝜕𝜃
=

𝑛

𝜃
−

𝑛𝑒𝑥𝑝(−𝜃)

1 − 𝑒𝑥𝑝(−𝜃)
− ∑[1 − (1 − 𝑥𝑖

𝑎)𝑏]

𝑛

𝑖=1

 

 

(3.15) 

 

 

Solutions of (3.16) are called ML estimates and which 
are obtained by solving the equations with numerical 
methods. 

Uniform-Weibull Distribution 
In this sub-section, we consider ℎ(𝑥) and 𝐻(𝑥) as the 

pdf and cdf of Weibull distribution, respectively. 
Considering the Definition 2.1, the cdf and pdf of the 
Uniform-Weibull (Uni-Weib) distribution are obtained as, 
respectively. 

𝑉(𝑥) =
exp (−𝜃𝐻(𝑥))−1

exp (−𝜃)−1
=

𝑒
−𝜃[1−exp (−(

𝑥
𝜆

)𝑘)]
−1

exp (−𝜃)−1
,     𝑥, 𝜆, 𝑘 > 0               

(3.16) 

 
 

𝑣(𝑥) =
𝜃ℎ(𝑥) exp(−𝜃𝐻(𝑥))

1 − exp(−𝜃)

=

𝜃
𝑘
𝜆

(
𝑥
𝜆

)
𝑘−1

exp (− (
𝑥
𝜆

)
𝑘

) exp (−𝜃 [1 − exp (𝑒−(
𝑥
𝜆

)
𝑘

)])

exp(−𝜃) − 1
,    

𝑥, 𝜆, 𝑘 > 0    

(3.17) 

 

The quantile function and the median of the Uni-Weib 
are defined, respectively. 

𝑄(𝑝) = 𝜆 [−𝑙𝑛 (1 +
𝑙𝑛(𝑝(exp (−𝜃) − 1) + 1)

𝜃
)]

1
𝑘

 
(3.18) 

 

 

𝑄(
1

2
) = 𝜆 [−𝑙𝑛 (1 +

𝑙𝑛 (
1
2

(exp (−𝜃) − 1) + 1)

𝜃
)]

1
𝑘

 
(3.19) 

 

 
Figure 3 illustrates the pdfs and the cdfs of the Uni-

Weib distribution for some skewness parameter  . 
Same simulation procedure in the previous sub-

sections is applied to Uni-Weib distribution with 
parameters λ=1 and 𝑘 = 1.5. The results for 
representative θ values are listed in Table 3.  When θ 
tends to 0, the Uni-Weib distribution converges to the 
well-known Weibull distribution, as Figure 3 supports the 
results. 
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Figure 3. The pdfs and cdfs of Uni-Weib distribution, λ=1 and 
k=1.5 

Same simulation procedure in the previous sub-
sections is applied to Uni-Weib distribution with 
parameters λ=1 and 𝑘 = 1.5. The results for 
representative θ values are listed in Table 3.  When θ 
tends to 0, the Uni-Weib distribution converges to the 
well-known Weibull distribution, as Figure 3 supports the 
results. 

 
Table 3. The simulation results for the Uni-Weib 

distribution, λ=1 and k=1.5 

  Mean Variance SV KV 

-5 1.631 0.636 0.486 3.438 

-2 1.238 0.661 0.632 3.376 

-0.001 0.903 0.610 1.003 4.044 

0 0.904 0.610 1.003 4.036 

0.001 0.904 0.610 1.006 4.052 

2 0.606 0.484 1.512 5.953 

5 0.352 0.291 1.862 8.406 

 
Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are random variables from the 

Uni-Weib distribution defined in (3.20).  The likelihood 

and log-likelihood functions are given, respectively in 
(3.22) and (3.23). 

 
𝐿(𝑘, 𝜆, 𝜃) = (1 −

exp (−𝜃))−𝑛𝜃𝑛𝑘𝑛𝜆−𝑛exp (−𝜃 ∑ [1 −𝑛
𝑖=1

exp (−(
𝑥𝑖

𝜆
)𝑘)]) ∏ (

𝑥𝑖

𝜆
)

𝑘−1
exp (− ∑ (

𝑥𝑖

𝜆
)

𝑘−1
𝑛
𝑖=1 )𝑛

𝑖=1   

(3.22) 

 

 

𝑙(𝑘, 𝜆, 𝜃) = −𝑛𝑙𝑛(1 − exp (−𝜃)) + 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑘 −

𝑛𝑙𝑛𝜆 + ∑ (𝑘 − 1)𝑙𝑛 (
𝑥𝑖

𝜆
)𝑛

𝑖=1 − ∑ (
𝑥𝑖

𝜆
)

𝑘
− 𝜃𝑛

𝑖=1 ∑ [1 −𝑛
𝑖=1

exp (−(
𝑥𝑖

𝜆
)𝑘)].  

(3.23) 

 

After differentiating the log-likelihood function with 
respect to the parameters and equating them to zero 
following likelihood equations are obtained. 

 
𝜕𝑙𝑛𝐿

𝜕𝑘
=

𝑛

𝑘
+ ∑ (

𝑥𝑖

𝜆
)𝑛

𝑖=1 − ∑ (
𝑥𝑖

𝜆
)

𝑘
𝑛
𝑖=1 𝑙𝑛 (

𝑥𝑖

𝜆
) +

𝜃 ∑ exp (−(
𝑥𝑖

𝜆
)𝑘) (

𝑥𝑖

𝜆
) 𝑙𝑛 (

𝑥𝑖

𝜆
)𝑛

𝑖=1 . 

 
𝜕𝑙𝑛𝐿

𝜕𝜆
= −𝑛 − ∑

(𝑘−1)

𝑥𝑖

𝑛
𝑖=1 + 𝑘 ∑ (

𝑥𝑖

𝜆
)

𝑘−1
𝑛
𝑖=1 +

𝜃𝑘 ∑ exp (−(
𝑥𝑖

𝜆
)𝑘) (

𝑥𝑖

𝜆
)

𝑘−1
𝑛
𝑖=1 . 

               
                  
𝜕𝑙𝑛𝐿

𝜕𝜃
= −

𝑛

𝜃
−

𝑛exp (−𝜃)

1−exp (−𝜃)
− ∑ (1 − exp (−(

𝑥𝑖

𝜆
)𝑘))𝑛

𝑖=1 . 

 

(3.24) 

 

Results and Discussion 
 

In this section, we compare the results which are 
obtained by fitting distributions to the real data sets.  Each 
extension which are introduced in Section 3 and their 
original distributions are fitted to the data, separately. 
Akaike Information Criterion (AIC) and log-likelihood 
(loglik) values are calculated to compare fitting 
performances of the original distribution and their 
extensions. 

 

FG Scores Data 
The first data set refers the Ferriman–Gallwey (FG) 

scores which are studied by [21].  FG score is a method of 
evaluating and quantifying hirsutism in women. The data 
set consists of FG scores of the women living in different 
areas of Turkey. The data set is 28.774; 27.958; 39.751; 
22.659; 31.232; 32.990; 34.408; 34.920; 35.822; 23.685; 
41.101; 35.879; 9.811; 24.689; 13.217; 22.343; 28.273; 
27.340; 25.214; 14.960; 39.724; 35.557; 37.173; 25.412; 
46.286; 31.564; 13.321; 29.606; 25.112; 18.158; 33.057; 
22.683; 36.380; 31.451; 37.919; 25.729.  The descriptive 
statistics of the FG Scores data are listed in Table 4. 

  
Table 4. Descriptive Statistics for FG Scores Data 

Mean Std. Dev. Skewness Kurtosis 

29.004 8.509 -0.374 2.816 

 
Maximum likelihood estimates of Normal and Uni-

Normal distributions are listed in Table 5. The Uni-Normal 
distribution gives best fit over Normal distribution 
according to the calculated log-likelihood and AIC values 
(see Table 5). Figures 4 also illustrates this conclusion. 
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Table 5. The ML Estimates, Values of Loglik and AIC for Normal 

and Uni-Normal Distributions 

 �̂� �̂� �̂� loglik AIC 

Normal 21.004 8.509 - -127.66 259.32 

Uni- 
Normal 

28.941 11.866 0.581 -109.27 224.54 

 

 

Figure 4. The histogram of FG Scores data with fitted pdfs 

 

Failure Times Data 
The second data refers the times of failure and running 

times for a sample of devices from a field-tracking study 
of a larger system. At a certain point in time, 30 units were 
installed in normal service conditions. Two causes of 
failure were observed for each unit that failed: the failure 
caused by an accumulation of randomly occurring damage 
from power-line voltage spikes during electric storms and 
failure caused by normal product wear. The data is studied 
by [222].  They proposed to fit Weibull distribution to the 
data. The times are 275, 13, 147, 23, 181, 30, 65, 10, 300, 
173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 293, 88, 
247, 28,143, 300, 23, 300, 80, 245, 266. The descriptive 
statistics of the Failure Times data are summarized in 
Table 6. 
 
Table 6. Descriptive Statistics for Failure Times Data 

Mean Std. Dev. Skewness Kurtosis 

178.142 112.971 -0.323 1.449 

 

The ML estimates of Weibull and its extension Uni-
Weibull are obtained, and values of log-likelihood and AIC 
are listed in Table 7.  

 
Table 7. The ML Estimates, Values of Loglik and AIC for 

Weibull and Uni-Weib Distributions 

 �̂� �̂� �̂� loglik AIC 

Weibull 188.041 1.265 - -184.041 372.08 

Uni- 
Weib 

184.855 1.264 -0.5182 -165.835 337.67 

 

Figure 5. The histogram of Failure Times data with fitted pdfs 

 
Table 7 and Figure 5 indicate that Uni-Weibull 

distribution gives best fit to the studied data over the well-
known Weibull distribution. 

 

Petroleum Reservoir Data 
The last example has been studied by [23] and is about 

the shape measurements of 48 rock samples from a 
petroleum reservoir. The data set is: 0.09032, 0.14862, 
0.18331, 0.11706, 0.12241, 0.16704, 0.18965, 0.16412, 
0.20365, 0.16239, 0.15094, 0.14814, 0.22859,0.23162, 
0.17256, 0.15348, 0.20431, 0.26272, 0.20007, 0.14481, 
0.11385,0.29102, 0.24007, 0.16186, 0.28088, 0.17945, 
0.19180, 0.13308, 0.22521, 0.34127, 0.31164, 0.27601, 
0.19765, 0.32663, 0.15419, 
0.27601,0.17696,0.43871,0.16358,0.25383,0.32864,0.23
008, 0.46412, 0.42047, 0.20074, 0.26265, 0.18245, 
0.20044.  

Table 8 summarizes the descriptive statistics of the 
Petroleum Reservoir data. 

 
Table 8. Descriptive Statistics for Petroleum Reservoir 

Data  

Mean Std. Dev. Skewness Kurtosis 

0.218 0.083 1.208 4.372 

 
Table 9. The ML Estimates, Values of Loglik and AIC for 

Kumaraswamy and Kums Distributions 
 �̂� �̂� 𝜃 loglik AIC 

Kumaraswamy 2.710 44.04 - 52.49 -100.98 
Uni-Kums 2.729 24.701 -0.771 60.56 -115.13 

 

 

Figure 6. The histogram of Shape Measurements data with 
fitted pdfs 
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According to the results in Table 9 and the 
demonstration by Figure 6, the Uni-Kumaraswamy 
distribution can be proposed to model shape 
measurements data over the Kumaraswamy distribution. 

 

Discussion and Conclusion 
 

In this paper, we proposed a general extension form of 
T - X family of distributions with an additional parameter. 
We consider -T- as Uniform distribution, then call the new 
extensions of distributions as Uniform-X distributions.  
Three examples of Uniform-X distributions which are 
Uniform-Normal (Uni-Normal), Uniform-Kumaraswamy 
(Uni-Kums) and Uniform-Weibull (Uni-Weib) distributions 
are introduced. The properties of these distributions such 
as the density functions, the medians and the quantile 
functions are examined. Simulation studies are conducted 
for demonstrating the sample behavior for the mean, the 
variance, the skewness and the kurtosis for new 
distributions. Simulation results show that if the 
additional parameter θ tends to 0, the Uniform-X 
distributions converges to the original distributions. In the 
application section of the paper, the considered 
probability distributions and their extensions are 
compared in point of the fitting performances.  For all the 
considered data sets, new extensions give better fit over 
the considered well-known probability distributions. 
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