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Introduction 

In [1], for any 𝛼 ∈ ℝ+ and 𝑛 ∈ ℕ, the generalized 
harmonic numbers 𝐻𝑛(𝛼) are defined by 

 

𝐻0(𝛼) = 0 and 𝐻𝑛(𝛼) = ∑
1

𝑖𝛼𝑖

𝑛

𝑖=1

   for 𝑛 ≥ 1.             (1) 

 
For 𝛼 =  1, the usual harmonic numbers are 𝐻𝑛(1) =

𝐻𝑛 and the generating function of 𝐻𝑛(𝛼) is 
 

∑ 𝐻𝑛(𝛼)𝑡𝑛

∞

𝑛=1

= −
ln (1 −

𝑡
𝛼

)

1 − 𝑡
.                                         (2) 

 
The works of Cauchy numbers of order r 𝐶𝑛

𝑟, Daehee 
numbers of order 𝑟 𝐷𝑛

𝑟, 𝑞 − Changhee numbers 𝐶ℎ𝑛,𝑞, 

𝑞 − Daehee numbers 𝐷𝑛,𝑞 are given. Their combinatorial 

identities and relations have received much attention [2-
7]. 

The Cauchy numbers of order 𝑟, denoted by 𝐶𝑛
𝑟, are 

defined by the generating function 
 

∑ 𝐶𝑛
𝑟

𝑡𝑛

𝑛!

∞

𝑛=0

= (
𝑡

ln(1 + 𝑡)
)

𝑟

           [13].                            (3) 

 
For 𝑟 = 1, 𝐶𝑛

1 = 𝐶𝑛 are called Cauchy numbers. 
The Daehee numbers of order 𝑟, denoted by 𝐷𝑛

𝑟, are 
defined by the generating function 

 

∑ 𝐷𝑛
𝑟

𝑡𝑛

𝑛!

∞

𝑛=0

= (
ln(1 + 𝑡)

𝑡
)

𝑟

         [11 − 13].                 (4) 

 

For 𝑟 = 1, 𝐷𝑛
1 = 𝐷𝑛 are called Daehee numbers. 

The Stirling numbers of the first kind 𝑆1(𝑛, 𝑘) are 
defined by 

 

𝑥𝑛 = ∑ 𝑆1(𝑛, 𝑘)𝑥𝑘 ,

𝑛

𝑘=0

 

 
and the Stirling numbers of the second kind 𝑆2(𝑛, 𝑘) 

are defined by 
 

𝑥𝑛 = ∑ 𝑆2(𝑛, 𝑘)𝑥𝑘 ,

𝑛

𝑘=0

 

 
where 𝑥𝑛 stands for the falling factorial defined by 

𝑥0 = 1 and 𝑥𝑛 = 𝑥(𝑥 − 1) ⋯ (𝑥 − 𝑛 + 1). It is known 
that 𝑆1(𝑛, 𝑘) = 0 for 𝑘 > 𝑛 and 𝑆1(𝑛, 𝑛) = 1. 

The generating function of the Stirling numbers of the 
first kind 𝑆1(𝑛, 𝑘) is given by 

 

∑ 𝑆1(𝑛, 𝑘)
𝑡𝑛

𝑛!
=

(ln(1 + 𝑡))𝑘

𝑘!
, 𝑘 ≥ 0,

∞

𝑛=𝑘

                           (5) 

 
and the generating function of the Stirling numbers of 

the second kind 𝑆2(𝑛, 𝑘) is given by 
 

∑ 𝑆2(𝑛, 𝑘)
𝑡𝑛

𝑛!
=

(𝑒𝑡 − 1)𝑘

𝑘!
, 𝑘 ≥ 0

∞

𝑛=𝑘

      [10].             (6) 

 
Let |𝑆1(𝑛, 𝑘)| be the unsigned Stirling numbers of the 

first kind given by 

http://xxx.cumhuriyet.edu.tr/
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𝑥𝑛 = ∑|𝑆1(𝑛, 𝑘)|𝑥𝑘 ,

𝑛

𝑘=0

 

 

where 𝑥𝑛 stands for the rising factorial defined by 

𝑥0 = 1 and 𝑥𝑛 = 𝑥(𝑥 + 1) ⋯ (𝑥 + 𝑛 − 1). It is clear that 
𝑆1(𝑛, 𝑘) = (−1)𝑛−𝑘|𝑆1(𝑛, 𝑘)| [5]. 

The generating function of |𝑆1(𝑛, 𝑘)| is given by 
 

∑|𝑆1(𝑛, 𝑘)|
𝑡𝑛

𝑛!
=

(− ln(1 − 𝑡))𝑘

𝑘!
.

∞

𝑛=𝑘

 

 
The numbers associated with 𝑆1(𝑛, 𝑘) are given as 

follows: For 𝑛 <  𝑘, 
 

𝜌(𝑛, 𝑘) =
|𝑆1(𝑘, 𝑘 − 𝑛)|

(𝑘 − 1
𝑛

)
, 

 
and for 𝑛 ≥ 𝑘, 

𝜌(𝑛, 𝑘) = 𝑛! 𝜎𝑛(𝑘), 
where 𝜎𝑛(𝑥) is the Stirling polynomial [5]. The 

generating function of these numbers is 
 

∑ 𝜌(𝑛, 𝑘)
𝑡𝑛

𝑛!
= (

𝑡

1 − 𝑒−𝑡
)

𝑘
∞

𝑛=0

.                                           (7) 

 

It is clearly that 𝜌(𝑛, 𝑘) = 𝐵𝑛
(𝑘)(𝑘) is known as the 

classical Bernoulli polynomials of order 𝑘 [9]. 
Let 𝑝 be a fixed odd prime number. ℤ𝑝 , ℚ𝑝 and ℂ𝑝 will 

denote the ring of 𝑝 − adic integers, the field of 𝑝 − adic 
rational numbers and the completion of the algebraic 
closure of ℚ𝑝. The 𝑝 − adic norm |. |𝑝 is normalized by 

|𝑝|𝑝 =
1

𝑝
. Let 𝑞 be an indeterminate in ℂ𝑝 such that 

|1 − 𝑞|𝑝 < 𝑝
−1

𝑝−1. The 𝑞 − extension of number 𝑥 is 

defined as [𝑥]𝑞 =
1−𝑞𝑥

1−𝑞
. It is clear that lim

𝑞→1
[𝑥]𝑞 = 𝑥. 

The 𝑞 − Changhee polynomials 𝐶ℎ𝑛,𝑞 (𝑥)[4] are 

defined by the generating function 
 

∑ 𝐶ℎ𝑛,𝑞 (𝑥)
𝑡𝑛

𝑛!
=

1 + 𝑞

1 + 𝑞(1 + 𝑡)
(1 + 𝑡)𝑥 .

∞

𝑛=0

                  (8) 

 
When 𝑥 =  0, 𝐶ℎ𝑛,𝑞 = 𝐶ℎ𝑛,𝑞 (0) are called 𝑞 − 

Changhee numbers and when 𝑞 =  1, 𝐶ℎ𝑛 = 𝐶ℎ𝑛,1 (0) 

are called Changhee numbers. 
The 𝑞 − Daehee polynomials 𝐷𝑛,𝑞(𝑥)[7] are defined by 

the generating function 
 

∑ 𝐷𝑛,𝑞 (𝑥)
𝑡𝑛

𝑛!
=

1 − 𝑞 +
1 − 𝑞
ln 𝑞 ln(1 + 𝑡)

1 − 𝑞 − 𝑞𝑡
(1 + 𝑡)𝑥 .

∞

𝑛=0

(9) 

 
In the special case, when 𝑞 =  1, 𝐷𝑛(𝑥) = 𝐷𝑛,1(𝑥) are 

called Daehee polynomials and when 𝑥 =  0, 𝐷𝑛,𝑞 =

𝐷𝑛,𝑞(0) are called 𝑞 − Daehee numbers. 

Let 𝑓 (𝑡) be a generating function (a power series) for 
a sequence {𝐴𝑛}, the sequence of coefficients of the 

expansion of 𝑓(𝑡)𝑟 is defined by 𝐴𝑛
(𝑟)

, where 𝑟 is a fixed 
real nonzero number: 

 

𝑓(𝑡) = ∑ 𝐴𝑛

𝑡𝑛

𝑛!

∞

𝑛=0

,       𝑓(𝑡)𝑟 =  ∑ 𝐴𝑛
(𝑟) 𝑡𝑛

𝑛!

∞

𝑛=0

                   (10) 

 
absolutely convergent in a neighborhood of the origin. 

Suppose 𝑓(𝑡) has a subsidiary generating function 
𝑔(𝑡) so that 

𝑓(𝑡) = (1 + 𝑔(𝑡))
−1

,     |𝑔(𝑡)| < 1       and          𝑔(𝑡)𝑛

= ∑ 𝑎𝑚
(𝑛)

∞

𝑚=𝑀(𝑛)

𝑡𝑚

𝑚!
,                                                             (11) 

where 𝑀(𝑛) is a non-negative integer. Note that 

g(𝑡) = ∑ 𝑎𝑚
∞
𝑚=0

𝑡𝑚

𝑚!
 [8]. 

In [2], let 
 

𝑎(𝑚, 𝑘) = (−1)𝑘 ∑
1

𝑛!
𝑆1(𝑛, 𝑘)

𝑀−1(𝑚)

𝑛=𝑘

𝑎𝑚
(𝑛)

,                   (12) 

 
where 𝑀−1(𝑚) indicates the inverse function of 𝑀 (in 

most cases, it is simply 𝑀−1(𝑚) = 𝑚). Then 
 

𝐴𝑚
(𝑟)

= ∑ 𝑎(𝑚, 𝑘)𝑟𝑘 , 𝑚 ≥ 1.                                (13)

𝑀−1(𝑚)

𝑘=1

 

 
Also Liu gave the sum as follows: 
 

𝐴𝑚
(𝑟)

= ∑ (
−𝑟

𝑖
) 𝑎𝑚

(𝑖)
.                                                (14)

𝑀−1(𝑚)

𝑖=0

 

 
In [3], Kim et. al. gave obvious formula for coefficients 

of the expansion of given generating function, when that 
function has a suitable form, the coefficients can be 
represented by the Daehee numbers of order r and the 
Changhee numbers of order r. By the classical method of 
comparing the coefficients of the generating function, 
some identities related to these numbers were shown. For 
example, 

 

𝐷𝑛
𝑟 = ∑ 𝐵𝑚

(𝑟)
𝑆1(𝑛, 𝑚),

𝑛

𝑚=0

 

 

where 𝐵𝑛
(𝑟)

 are the Bernoulli numbers of order 𝑟. 
In this paper, we derive new identities which are 

related to some special numbers by using the argument of 
the generating function given in [2]. For example, for any 
positive integer 𝑛 and any positive real number 𝑞 ≠ 1, 

 

∑ (
1 − 𝑞

𝑞
)

𝑖+1 𝐷𝑖

𝑖!
= ln 𝑞 (𝐷𝑛,𝑞

(1 − 𝑞)𝑛

𝑛! 𝑞𝑛
− 1) ,

𝑛−1

𝑖=0
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and for any positive integers 𝑛 and 𝑟, 
 

𝐶𝑛
𝑟 = ∑ ∑(−1)𝑘 (

𝑚

𝑘
)

𝑚

𝑘=0

𝑛

𝑚=0

(
𝑟 + 𝑚 − 1

𝑚
) 𝐷𝑛

𝑘 . 

 

Some identities with special numbers 
 
In this section, we will give some identities involving generalized harmonic numbers, Cauchy numbers of order 𝑟, 

𝑞 −Changhee numbers and 𝑞 −Daehee numbers. 
Theorem 1. For any positive integer 𝑛 and any positive real number 𝑞 > 1, we have 
 

𝐻𝑛 (
𝑞

𝑞 − 1
) = ln 𝑞 (1 − 𝐷𝑛,𝑞

(1 − 𝑞)𝑛

𝑛! 𝑞𝑛
 ). 

 
Proof. From (2) and (9), we have 
 

∑(−1)𝑛𝐷𝑛,𝑞

𝑡𝑛

𝑛!

∞

𝑛=0

=
1 − 𝑞

1 − 𝑞 + 𝑞𝑡
+

1 − 𝑞

ln 𝑞

1 − 𝑡

1 − 𝑞 + 𝑞𝑡

ln(1 − 𝑡)

1 − 𝑡
 

=
1 − 𝑞

1 − 𝑞 + 𝑞𝑡
−

1 − 𝑞

ln 𝑞

1 − 𝑡

1 − 𝑞 + 𝑞𝑡
∑ 𝐻𝑘

∞

𝑘=0

𝑡𝑘 

=
1 − 𝑞

1 − 𝑞 + 𝑞𝑡
+

1

ln 𝑞

1 − 𝑞

1 − 𝑞 + 𝑞𝑡
(∑ 𝐻𝑘

∞

𝑘=0

𝑡𝑘+1 − ∑ 𝐻𝑘

∞

𝑘=0

𝑡𝑘) 

and by ∑ 𝑥𝑘∞
𝑘=0 =

1

1−𝑥
, equals to 

∑(−1)𝑛
𝑞𝑛

(1 − 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 +
1

ln 𝑞
∑(−1)𝑛

𝑞𝑛

(1 − 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 (∑ 𝐻𝑘−1

∞

𝑘=1

𝑡𝑘 − ∑ 𝐻𝑘

∞

𝑘=0

𝑡𝑘) 

= ∑(−1)𝑛
𝑞𝑛

(1 − 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 −
1

ln 𝑞
∑(−1)𝑛

𝑞𝑛

(1 − 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 ∑ 𝐻𝑘

∞

𝑘=0

𝑡𝑘 +
1

ln 𝑞
∑(−1)𝑛

𝑞𝑛

(1 − 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 ∑ 𝐻𝑘−1

∞

𝑘=1

𝑡𝑘 

and by some combinatoric operations, 

∑(−1)𝑛𝐷𝑛,𝑞

∞

𝑛=0

𝑡𝑛

𝑛!
 

= ∑(−1)𝑛
𝑞𝑛

(1 − 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 −
1

ln 𝑞
∑ ∑(−1)𝑘

𝑞𝑘

(1 − 𝑞)𝑘

𝑛

𝑘=0

∞

𝑛=0

𝐻𝑛−𝑘𝑡𝑛 +
1

ln 𝑞
∑ ∑(−1)𝑘

𝑞𝑘

(1 − 𝑞)𝑘

𝑛−1

𝑘=0

∞

𝑛=1

𝐻𝑛−𝑘−1𝑡𝑛 

= ∑ ((−1)𝑛
𝑞𝑛

(1 − 𝑞)𝑛
+

1

ln 𝑞
∑(−1)𝑘+1

𝑞𝑘

(1 − 𝑞)𝑘

𝑛−1

𝑘=0

1

𝑛 − 𝑘
)

∞

𝑛=0

𝑡𝑛 . 

 
Hence, by comparing the coefficients of 𝑡𝑛 above gives 
 

𝐷𝑛,𝑞

𝑛!
=

𝑞𝑛

(1 − 𝑞)𝑛
+

1

ln 𝑞
∑(−1)𝑛+𝑘+1

𝑞𝑘

(1 − 𝑞)𝑘

𝑛−1

𝑘=0

1

𝑛 − 𝑘
. 

 
Thus, from (1), the desired result is obtained. 
Corollary 1. For any positive integer 𝑛 and any positive real number 𝑞 ≠  1, we have 
 

∑ (
1 − 𝑞

𝑞
)

𝑖+1 𝐷𝑖

𝑖!
 

𝑛−1

𝑖=0

= ln 𝑞 (𝐷𝑛,𝑞

(1 − 𝑞)𝑛

𝑛! 𝑞𝑛
− 1). 
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Proof. From Theorem 1, we obtain 
 

ln 𝑞 (1 − 𝐷𝑛,𝑞

(1 − 𝑞)𝑛

𝑛! 𝑞𝑛
) = ∑

(−1)𝑖(1 − 𝑞)𝑖

𝑖𝑞𝑖
 

𝑛

𝑖=1

= − ∑
(−1)𝑖(1 − 𝑞)𝑖+1

𝑞𝑖+1
 

𝑛−1

𝑖=0

𝑖!

(𝑖 + 1)!
, 

 

and by Daehee number 𝐷𝑛 =
(−1)𝑛

𝑛+1
𝑛!, 

 

ln 𝑞 (𝐷𝑛,𝑞

(1 − 𝑞)𝑛

𝑛! 𝑞𝑛
− 1) = ∑ (

1 − 𝑞

𝑞
)

𝑖+1 𝐷𝑖

𝑖!
 

𝑛−1

𝑖=0

, 

 
as claimed. 
Theorem 2. For any positive integers 𝑛 and 𝑟, we have 
 

𝜌(𝑛, 𝑟) = ∑  

𝑛

𝑖=0

∑  

𝑛

𝑚=0

∑  (−1)𝑘+𝑛

𝑖

𝑘=0

(𝑟 + 𝑖 − 1
𝑖

) (
𝑖
𝑘

) 𝑆2(𝑛, 𝑚)𝐶𝑚
𝑘 . 

 

Proof. For 𝑓(𝑡) =
𝑡

1−𝑒−𝑡, by (11) and Binomial theorem, we have 

 

𝑔(𝑡)𝑖 = (
𝑒−𝑡 − 1

ln(1 + (𝑒−𝑡 − 1))
− 1)

𝑖

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) (
𝑒−𝑡 − 1

ln(1 + (𝑒−𝑡 − 1))
)

𝑘

. 

 
From (3) and (6), we have 
 

𝑔(𝑡)𝑖 = ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) ∑ 𝐶𝑚
𝑘

(𝑒−𝑡 − 1)𝑚

𝑚!
 

∞

𝑚=0

 

= ∑  

∞

𝑛=0

∑  

𝑛

𝑚=0

∑  (−1)𝑖−𝑘+𝑛

𝑖

𝑘=0

(
𝑖
𝑘

) 𝐶𝑚
𝑘 𝑆2(𝑛, 𝑚)

𝑡𝑛

𝑛!
, 

 
and by (11), 
 

𝑎𝑛
(𝑖)

= ∑  

𝑛

𝑚=0

∑  (−1)𝑖−𝑘+𝑛

𝑖

𝑘=0

(
𝑖
𝑘

) 𝐶𝑚
𝑘 𝑆2(𝑛, 𝑚). 

 
Note that for integers 𝑟 ≥ 1 and 𝑗 ≥ 0, 

 
(

−𝑟
𝑗 ) = (−1)𝑗 (

𝑟 + 𝑗 − 1
𝑗

).                                                                                                                                                             (15) 

 
Then, by (14), we have 
 

𝐴𝑛
(𝑟)

= ∑  

𝑛

𝑖=0

∑  

𝑛

𝑚=0

∑  (−1)𝑘+𝑛

𝑖

𝑘=0

(𝑟 + 𝑖 − 1
𝑖

) (
𝑖
𝑘

) 𝑆2(𝑛, 𝑚)𝐶𝑚
𝑘 . 

 
 (7) and (10) give that 
 

∑ 𝐴𝑛
(𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
= (

𝑡

1 − 𝑒−𝑡
)

𝑟

= ∑ 𝜌(𝑛, 𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
.  

 

Thus, comparing the coefficients of  
𝑡𝑛

𝑛!
, the desired result is obtained. 

Theorem 3. For any positive integers 𝑛 and 𝑟, we have 
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𝐶𝑛
𝑟 = ∑  

𝑛

𝑖=0

∑  (−1)𝑘

𝑖

𝑘=0

(𝑟 + 𝑖 − 1
𝑖

) (
𝑖
𝑘

) 𝐷𝑛
𝑘 . 

 

Proof. We take 𝑓(𝑡) =
𝑡

ln(1+𝑡) 
 for using (11). From Binomial theorem and (4), we have 

𝑔(𝑡)𝑖 = (
ln(1 + 𝑡)

𝑡
− 1)

𝑖

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) (
ln(1 + 𝑡)

𝑡
)

𝑘

 

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) ∑ 𝐷𝑛
𝑘

∞

𝑛=0

𝑡𝑛

𝑛!
= ∑ ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) 𝐷𝑛
𝑘

∞

𝑛=0

𝑡𝑛

𝑛!
, 

 
which equals by (11), 
 

𝑎𝑛
(𝑖)

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) 𝐷𝑛
𝑘 . 

 
From here, by (14) and (15), we obtain that 
 

𝐴𝑛
(𝑟)

= ∑ ∑  (−1)𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) (𝑟 + 𝑖 − 1
𝑖

) 𝐷𝑛
𝑘

𝑛

𝑖=0

, 

 
and from (7) and (10), 
 

∑ 𝐴𝑛
(𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
= ∑ 𝐶𝑛

𝑟

∞

𝑛=0

𝑡𝑛

𝑛!
. 

 
Thus, we have the proof. 
 
Theorem 4. For any positive integers 𝑛 and 𝑟, we have 
 

∑(−1)𝑛𝑆2(𝑛, 𝑖)𝐶𝑖
𝑟

𝑛

𝑖=0

= ∑ ∑(−1)𝑘 (
𝑖
𝑘

) (𝑟 + 𝑖 − 1
𝑖

) 𝜌(𝑛, 𝑘)

𝑖

𝑘=0

𝑛

𝑖=0

. 

 
Proof. By (11), we note that 
 

𝑓(𝑡) =
𝑒−𝑡 − 1

ln(1 + (𝑒−𝑡 − 1))
  and  𝑔(𝑡) =

𝑡 − 1 + 𝑒−𝑡

1 − 𝑒−𝑡
. 

 
From Binomial theorem, (6) and (7) , we have 
 

𝑔(𝑡)𝑖 = (
𝑡

1 − 𝑒−𝑡
− 1)

𝑖

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) (
𝑡

1 − 𝑒−𝑡
)

𝑘

 

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) ∑ 𝜌(𝑛, 𝑘)

∞

𝑛=0

𝑡𝑛

𝑛!
 

= ∑ ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) 𝜌(𝑛, 𝑘)

∞

𝑛=0

𝑡𝑛

𝑛!
, 

 
and using (11), 
 

𝑎𝑛
(𝑖)

= ∑  (−1)𝑖−𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) 𝜌(𝑛, 𝑘). 
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Hence, (14) and (15) yield that 
 

𝐴𝑛
(𝑟)

= ∑ ∑  (−1)𝑘

𝑖

𝑘=0

(
𝑖
𝑘

) (𝑟 + 𝑖 − 1
𝑖

) 𝜌(𝑛, 𝑘)

𝑛

𝑖=0

. 

 
From (3), (6) and (10), we obtain that 
 

∑ 𝐴𝑛
(𝑟)

∞

𝑛=0

𝑡𝑛

𝑛!
= 𝑓(𝑡)𝑟 = (

𝑒−𝑡 − 1

ln(1 + (𝑒−𝑡 − 1))
)

𝑟

 

= ∑ 𝐶𝑖
𝑟

∞

𝑖=0

(𝑒−𝑡 − 1)𝑖

𝑖!
= ∑ 𝐶𝑖

𝑟

∞

𝑖=0

∑(−1)𝑛𝑆2(𝑛, 𝑖)

∞

𝑛=𝑖

𝑡𝑛

𝑛!
 

= ∑ ∑(−1)𝑛𝑆2(𝑛, 𝑖)𝐶𝑖
𝑟

𝑛

𝑖=0

∞

𝑛=0

𝑡𝑛

𝑛!
. 

 

Thus, comparing the coefficients of  
𝑡𝑛

𝑛!
, we have the proof. 

Now, for any positive integers 𝑟, we have 𝑞 − numbers (
𝑛 + 𝑟 − 1

𝑟 − 1
) 𝐶ℎ𝑛,𝑞 given by 

 

(
1 + 𝑞

𝑞(1 + 𝑡) + 1
)

𝑟

= ∑ (𝑛 + 𝑟 − 1
𝑟 − 1

) 𝐶ℎ𝑛,𝑞

∞

𝑛=0

𝑡𝑛

𝑛!
.                                                                                                        (16) 

 
Theorem 5. For any positive integers 𝑛 and 𝑟, we have 
 

(
𝑟
𝑛

) ∑ (
𝑟 − 𝑛
𝑖 − 𝑛

) 𝑞𝑖

𝑟

𝑖=0

=
(1 + 𝑞)𝑟

𝑛!
𝐶ℎ𝑛,𝑞 ∑ ∑(−1)𝑘 (

𝑖
𝑘

)

𝑖

𝑘=0

(𝑟 + 𝑖 − 1
𝑖

) (𝑛 + 𝑘 − 1
𝑘 − 1

)

𝑛

𝑖=0

. 

 

Proof. For 𝑓(𝑡) =
𝑞(1+𝑡)+1

1+𝑞
, by (11), we have 

 

𝑔(𝑡) =
−𝑞𝑡

𝑞(1 + 𝑡) + 1
. 

 
From Binomial theorem, we have 
 

𝑓(𝑡)𝑟 = (
𝑞(1 + 𝑡) + 1

1 + 𝑞
)

𝑟

=
1

(1 + 𝑞)𝑟
(𝑞(1 + 𝑡) + 1)𝑟 

=
1

(1 + 𝑞)𝑟
∑ (

𝑟
𝑖
) 𝑞𝑖(1 + 𝑡)𝑖

𝑟

𝑖=0

=
1

(1 + 𝑞)𝑟
∑ ∑ (

𝑟
𝑖
) (

𝑖
𝑛

) 𝑞𝑖𝑡𝑛

𝑟

𝑖=0

∞

𝑛=0

                                                                                         (17) 

 
which, by Binomial theorem and (16), we write 
 

𝑔(𝑡)𝑖 = (
1 + 𝑞

𝑞(1 + 𝑡) + 1
− 1)

𝑖

= ∑(−1)𝑖−𝑘 (
𝑖
𝑘

) (
1 + 𝑞

𝑞(1 + 𝑡) + 1
)

𝑘𝑖

𝑘=0

 

= ∑ ∑(−1)𝑖−𝑘 (
𝑖
𝑘

) (𝑛 + 𝑘 − 1
𝑘 − 1

) 𝐶ℎ𝑛,𝑞

𝑖

𝑘=0

∞

𝑛=0

𝑡𝑛

𝑛!
.  

 
Hence, with the help of (11), by comparing coefficients of 𝑡𝑛, we obtain that 
 

𝑎𝑛
(𝑖)

= ∑(−1)𝑖−𝑘 (
𝑖
𝑘

) (𝑛 + 𝑘 − 1
𝑘 − 1

) 𝐶ℎ𝑛,𝑞

𝑖

𝑘=0

. 

 
By (10), (14) and (15), we get 
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𝐴𝑛
(𝑟)

= ∑ ∑(−1)𝑘 (
𝑖
𝑘

) (𝑟 + 𝑖 − 1
𝑖

) (𝑛 + 𝑘 − 1
𝑘 − 1

) 𝐶ℎ𝑛,𝑞

𝑖

𝑘=0

𝑛

𝑖=0

, 

 
and 
 

𝑓(𝑡)𝑟 = ∑ ∑ ∑(−1)𝑘 (
𝑖
𝑘

) (
𝑟 + 𝑖 − 1

𝑖
) (

𝑛 + 𝑘 − 1
𝑘 − 1

) 𝐶ℎ𝑛,𝑞

𝑖

𝑘=0

𝑛

𝑖=0

∞

𝑛=0

𝑡𝑛

𝑛!
.                                                                                    (18) 

 
Finally, (17) and (18) give that 
 

∑ (
𝑟
𝑖
) (

𝑖
𝑛

) 𝑞𝑖

𝑟

𝑖=0

=
(1 + 𝑞)𝑟

𝑛!
𝐶ℎ𝑛,𝑞 ∑ ∑(−1)𝑘 (

𝑖
𝑘

)

𝑖

𝑘=0

(
𝑟 + 𝑖 − 1

𝑖
) (

𝑛 + 𝑘 − 1
𝑘 − 1

)

𝑛

𝑖=0

. 

 

By the equality (
𝑟
𝑖
) (

𝑖
𝑛

) = (
𝑟
𝑛

) (
𝑟 − 𝑛
𝑖 − 𝑛

), we have the proof. 

 
Theorem 6. For any positive integers 𝑛 and 𝑟, we have 
 

∑ ∑ ∑(−1)𝑘 (
𝑖
𝑘

) (
𝑘
𝑗

)

𝑘

𝑗=0

(
𝑟 + 𝑖 − 1

𝑖
) (

𝑛 + 𝑗 − 1
𝑗 − 1

)
𝑞𝑗

(1 + 𝑞)𝑘

𝑖

𝑘=0

𝑛

𝑖=1

= (1 + 𝑞)𝑟−𝑛 ∑(−1)𝑘 (
𝑟
𝑘

) (
𝑛 + 𝑘 − 1

𝑘 − 1
)

𝑞𝑘

(1 + 𝑞)𝑘

𝑟

𝑘=0

. 

 

Proof. The proof is similar to the proof of above theorems, taking 𝑓(𝑡) = (1 + 𝑞)
1+𝑡

1+𝑞+𝑡
 and using the generating 

function 
 

∑ (𝑛 + 𝑟 − 1
𝑟 − 1

)
(−1)𝑛

(1 + 𝑞)𝑛

∞

𝑛=0

𝑡𝑛 =
(1 + 𝑞)𝑟

(1 + 𝑞 + 𝑡)𝑟
. 
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