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In this manuscript, we firstly find the Korovkin test functions for the Baskakov operators, secondly, we find the
generalized Baskakov-Durrmeyer-Stancu type operators. Thirdly, we give the modulus of continuity for the
generalized Baskakov-Durrmeyer-Stancu type operators. Then, the asymptotic approach of these operators has
been studied by using the Voronovskaja-type theorem. Finally, it is demonstrated that the generalized Baskakov-

Durrmeyer-Stancu type operators converge to the considered function by plotting the graphs. Moreover, the
convergence of the generalized Baskakov-Durrmeyer-Stancu type operators is compared with that of some
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Introduction

Weierstrass approximation theorem has played a key
role in the development of approximation theory [1]. With
the help of this theorem, the approximation theory of
linear positive operators has emerged by using suitable
sequences defined by several mathematicians.

In [2], Bernstein defined the linear positive operators and
showed that these operators converged smoothly to a
continuous function in a closed interval.

In [3], for f € C[0,1], Stancu introduced the following
linear positive operators

st =y 1 (g (Dra-o @
k=0

where x € [0,1], the parameters a and 8 satisfy the
conditions 0 < a < . He examined the convergence
properties of the operators (1), which are called Bernstein-
Stancu type operators, in the interval [0,1].
In [4], for f € C[0,), n € N, Baskakov defined the
linear positive operators as follows:

3,60 = 1 (5) rato @
k=0

where P, (x) = ( x*(1 +x)"k, x €[0,0)

is the core of the Baskakov operators.

n+llz—1)

other operators to the same function.
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The convergence theorems of the bounded and
continuous functions for the operators (2) were studied by
Baskakow.

In [5], Mihesan introduced the generalized Baskakov
operators with a constant a = 0 independent of n and
defined as follows:

C k
BE(F0) = ) W (5) 3
k=0
where
W00 = e 97 D ey 4 yynk @
and
: k
P =) (}) (n); ak~) (5)
=0
with M)y =1, (); =n(n+1DM+2).(n+j—-1)
for j > 1.

He proved that these operators converged uniformly
on [0, b] for functions that had exponential growth. Also,
he discussed a pointwise estimate. In addition, Wafi and
Khatoon [6] calculated the rate of convergence of the
operators (3) and obtained the Voronovskaja-type
theorem. Erencin and Bascanbaz-Tunca [7] studied the
weighted approximation properties and estimated the
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order of approximation in terms of the usual modulus of
continuity for the operators (3). They derived a recurrence
relation for the moments of these operators.

To approximate the space of the integrable functions,
Durrmeyer [8] defined Durrmeyer operators, which is an
integral type generalization of Bernstein operators, and
Lupas [9] developed these operators independently.

In [10], for f € C5[0,2), n € N, Erencin introduced the
Durrmeyer-type modification of the operators (3) as
follows:

L“(f,x)
k

1 [t
Z wie ) pry 1,n)0f o/ Odt (6)

where Cy[0, o) stands for the space of all bounded-

continuous functions on the interval [0, ), and this space

is equipped with the norm ||f]| = IG‘I%(?X)V(X)L and the
pd ,DO

beta function B(k + 1,n) is given by

[oe]

B(x,y) =0f a0

tx—l

_TM)ry)
T Tx+y)’

x,y >0 (7)

In this study, Erencin gave some approximation properties
of the operators (6).

Some Auxiliary Lemmas

Furthermore, the approximation properties of the
modified forms of the operators (6) have been reviewed
by Agrawal et al. [11].

In [12], Kumar et al. defined the following Stancu-type
generalization of the Durrmeyer-type modification of the
operators (6) for f € Landn €N,

WA
nk+a

ZW#"(X)B(R+1 n)f (1+t)"+k+1f(n+ﬂ)dt ®)

where @ and 8 are non-negative numbers with 0 < a <
B, and L denotes the class of all Lebesque measurable

If ()l
function such that n >m with [ (L(t))m dt < oo,
AR
They studied some direct local approximation properties
of the operators (8). They obtained local direct results in
terms of the second-order modulus of smoothness, the
rate of convergence in terms of the modulus of continuity.
Several studies have been carried out some approximation
properties for these types of operators are given
in [14-17].
In this study, we examined the asymptotic behavior of the
generalized Baskakov-Durrmeyer-Stancu type operators
defined by (8) with the help of the Voronovskaja-type
theorem.

me

In this section, some lemmas will be given for examining the approximation properties of the generalized
Baskakov-Durrmeyer-Stancu type operators defined by (8). The proofs of Lemma 2.1 and Lemma 2.2 given

below are routine

Lemma 2.1 For W, (x) given by (4), we have the following equation:

> Wi =1
k=0

The Korovkin test functions for the Baskakov operators expressed in (3) are given below.

Lemma 2.2 Let e, (t) = t™, for m = 0,1,2,3,4. For n € N and a is a non-negative integer, we have the following

equations:

(i) Bi(eo (D), x) = 1.
{1+x }

(iii) B3 (e,(1),x) = X_z{

(i) Bii(e,(1),x) =

(14x)2

3a%n

. X 3
(v Bies(t),x) = —3{(1+X)3+(1+x)2

+ 3X a?
a+ x)2

3a(n+1)

+Zﬂ+n(n+ 1)} —{i+n}.

+n(m+ 10+ 2)}

+n(n + 1)} 1{L+n}

1+x
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{ a* 4a3n 6an(n+1) 4an(n+1)(n+2)
(1+x)*  (1+x)3 (1+x)2 1+x

(v) Bi(es(D),x) =
as 3a’n
1+0° T A+x2
a® 2an

—+_
1+x)? 1+x

6x3
+n(n+ 1)+ 2)(n+3)}+— {
3a(n+1)
+—
1+x
+n(n+ 1} +—

7x?
+n(n+ 1)+ 2)} +n_4{

+ n}
i
Now, we give the following lemmas that give the Korovkin test functions and continuity modules for the generalized

Baskakov-Durrmeyer-Stancu type operators defined in (8).
For the sake of shortness, the following abbreviations will be used in the next steps,
S

Mgm) = (m+B) , Ug(n) = H(n —.
i=1
Lemma 2.3 Let e, (t) = t™ for m = 0,1,2,3,4, and we get the following equations for the fo“f(f(t),x) operators
defined in (8):

() G (eg(0),%) = 1.

i o,B _ n ~a n a

(i) Gn'a (ex (D)%) = X{Ms(n)Ul(n) (1+x + n)} + Mg(n)U, (n) + Mg(n) *

o, — 2 n? 2an {4n2+2na(n—2) a }
() Gna (0200 =x {[MB(H)]ZUZ(D) ((1+x)2 TR D)} [Mp(] U () (1+x + n)

2n? + 2na(n — 2) o?
Z + Z
[Mg] U, (m)  [Mg()]

; a,f _ .3 n3 ad 3a®n 3an(n+1)
(iv) Gy (e3(0),x) =x {[Mg(n)]3U3(n) ((1+X)3 + T +n(n+ 1)(n+2))}

,|9n® +3n%a(n - 3)( a2 - 2an ' n(n + 1))}
[Mp(m]*Us(m) \(1+%)?
18n +12n a(n—3)+3na2(n—2)(n—3) a }
(5=
[Mp ()] U3 (n) Tx
+{6n3+6n a(n—3)+3na2(n—2)(n—3)+ ad }

3 3
[Mg()] U3 () [Mg(n)]
B — n* a* 4a’n 6a’n(n+1)
(v) Gpa (e4(),%) = {[Mg(n)]4U4(n) ((1+X)4 @ T e

4an(n+ 1)(n+ 2)
1+x

5 |16n* + 4n* a(n — 4-)( a3 N 3an
[MB(n)]4U4(n) (1+x)3 ({1A+x)?

+n(n+ D(n+ 2))}

+n(n+1)(n+2)(n+3)

3an(n+ 1)
1+x
2 {72n4 + 36n%a(n —4) + 6n2a?(n — 3)(n— 4) ( a2
i [Mp()] U, () (1+x?
2an a 96n* + 72n a(n —4)
+F +n(n+ 1))} (1 o+ n){ [0
24n2a2(n —3)(n—4) + 4na®(n—2)(n—3)(n— 4)}
[Ms(n)] Uy(n)
24—n + 24n%a(n—4) + 12n2a?(n — 3)(n — 4)
[Mp(m)]*Us(n)
4na(n—2)(n—3)(n—4) a*
[Mg(m)] U, () [Mpm)]"
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Proof: (i) Takinge,(t) =t™, m = 0 in operators Gf:_'f(eo (t),x) and using the beta functionin (7) and Lemma 2.1,
we can write the foIIowing equation:
tk

17 ;
va (eo(0), X)‘Z Gy L) @+om t

(oo}

1
Z nk(X)mB(k-Fl ,n) = 1.

k=0

(ii) Substituting e, (t) = t™ for m = 1 in operators fof(em(t),x), we have

tk nt + a)

1
(e1(t) X) = Z k(X)B(k+ 1'n)0 1+t n+k+1<n +B

Using the beta function in (7) we get

e (0,9 = Z 2

1 { k+1)

B(1<+1 nm+p)| (- 7B+ 1m) +aB(k + 1,n)}.

Hence, we find

0o, (0, ) = (n+s){ 1)2 k(x)(k+1)+az k(x)}
1

“N® {Ul B0 + 11+ )

_ n a n a
= X{Mﬁ(n)Ul(n) (Tt “)} MU M)

Similarly, (iii)-(v) equations are obtained.

To obtain approximation velocities of generalized Baskakov-Durrmeyer-Stancu type operators with Voronovskaja
type theorem, Lemma 2.4, which gives the continuity modules of these operators, will be given first as follows:

Lemma 2.4 We have the following limits;

(i) rli_{g)nt:”,f(t—x,x)=(1;:X+1—B)X+a+1,

(ii) r{lrg) n Gg”f((t —x)%,x) = 2x% +x,

(i) lim n? G¥P((t — 0% x) = 12x* — (“—“ - 24)x — (602 — 6a — 12)x2.
n—-oo 4

Proof: (i) Using the linearity property of the Gg:g(t; X) operators from Lemma 2.3, we have

lim ntl"E(t—x, X) = limn{x( A + n’ - 1) + 1 P }'
s " O me! P\ T+ MU () Mp(m)U; (n) MUy (1) Mg(n)

&LrgnG (t—x X)—(ﬁ+1—[3)x+a+ 1.

(ii) Similarly, using linearity and Lemma 2.3, we obtain

OB (k= )2 3) = 1 a%n? N 2an? e 1 < 2na N an) N 1}){2
na ’ [MB(U)]2U2 (n) 1+x)?2 (1+x) Mg(n)U; (n) \1 +x
{A}n2 +2n(n—2)0(( a )_ 2n . 2a }x+2n2 +2n(n—2)a+ l
[Mp()]“U,(n) 1+ Mp(U; () Mgm)™ "~ [Mgm)]'v,(m)  [Mpm]]
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When necessary arrangements are made in the last equation, the equation is multiplied by n, and the limit is taken
as n approaches infinity, we get

(a’n?)

1
lim nG,’ ((t —x)?%,x) = lim
n—o0o

n—oo [MB(n)r]l U, (n) [{(1 + x)2

+ ) (4an? + 4anP — 2an®B) + 2n® + n?p? + 2n*p

n? — 3np? — 4nf + 2p*x? + {(1 )

+4af — 4np — 4na+2n’a + 2n*B + 4n? + 2n® — 6naf + 2naflx
+n%a? + 2n%a + 2n? — 3na® — 4na + 20%}]=2x% + 2x.

(4an? — 4ana + 2ana)

(iv) Equation (iii) is easily obtained when the operations in (i) and (ii) are similarly performed in
Ggf((t —x)4,%).

We give the weighted Korovkin- type theorems which were proved by Gadzhiev [13]. Let B;[ 0,0 ) be the space of

all g functions with real values, where function g satisfies the growth condition [g(x)| < Ngo(x) and o(x) =1 + X2,

N, is a constant dependent on g. According to the llgll; = sup {lg(( ))l X € ]R} norm, B,[ 0,00 ) is a normed space. It is
a subspace of B[ 0,00 ) space, with C;*[0,00) being a space of continuous functions satisfying the condition

lg(x)|

|x|>00 O'(X)'
Now, using Lemma 2.3 and Lemma 2.4 we give the following Voronovskaja-type theorem for Gg:f(g(t),x).
Theorem 2.5: Forany g € C,;"[ 0,00 ) suchthat g’, g"" € C;"[0,00) we have the following limit:

1
lim n( Gyt (g(t); %) — g(x)) = g'() {(— +1-B)x+a+1}+ 58/00{2x% + ).
Proof: From the Taylor’s expansion of g, we get
1
8 =) +g' (1t —x) +5g" (- x)? + 8(t,x) (t — x)? €)]

where 8(t,x) » 0 as t — x. If we apply operators G to equation (9) using the linearity property of the operators

G then we obtain

628 (g0 — 800 = £/ (GRSt~ 053) + 8" GIGEE (=023 +GLEBENC -0 (10)

Then, if the Gg:E(S(t, x)(t — x)?; x) term of the equation (10) is multiplied by n and the Cauchy- Schwarz inequality
is applied, we find

1 1
nGef (860t — 0% %) < (Gfs(t 0% x)? (nGab (1 — 0% %))’ (11)
We have lim fo’f(S(t, x)%;x) = 0, and from (iii) of Lemma 4, we have
n-—-oo 4

limn? fo’f((t —x)*;x) is finite.

n—oo 4
Then, taking the limit of the inequality (11) while n approaching infinity, we get

lim n G*¥(8(t, %) (t — x)%x) = 0.
n—-oo 4
Therefore, when the limit of both sides of (10) is taken for n approaching infinity, we get
] 1
rlllm n(G (g(t) x)—gx) =g'(x) {(— +1- B) x+a+ 1} + Eg”(x){sz + x}.

As a result, it is seen that the proof is complete.
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Some Graphical Analysis
In this section, the graphs below show the convergence of the of the Generalized Baskakov-Durmeyer- Stancu type
Operators to the considered function

gx) = Vxe

For different values of n, k, a, o and B.

0.3

n=10,

k=20

025

o 1 2 3

4

Figure 1. Convergence of G;‘"E (g; x) for different values of n, k, a, o, and 8

The graph below shows the convergence of BZ(g, x) (BO), L% (g, x) (BDO) and Gr‘ff (g; x) (BDSO) to the g(x) function
forn =20,k =40,a=10,a=1,andf = 7.

0.3 n=20, k=40,

01

a=10, alpha=1 and beta=7

BO
BDO
BDSO
)

a8

. i 2 3

n=20k=40,a=10,a=1andf =7

P

5

Figure 2. Convergence of B#(g,x), L% (g, x), G,f,f(g; x) to g(x) for
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