Cumhuriyet Science Journal

csj.cumhuriyet.edu.tr |

Founded: 2002 ISSN: 2587-2680 e-ISSN: 2587-246X
Publisher: Sivas Cumhuriyet University

On Gaussian Jacobsthal-Padovan Numbers

Nusret Karaaslan ${ }^{1, a,}{ }^{*}$
${ }^{1}$ Kalkandere Dağdibi Secondary School, Rize, Türkiye.
*Corresponding author

Research Article

History

Received: 18/11/2021
Accepted: 13/04/2022
Copyright
(c) (i) $\Theta)^{-1}$
©2022 Faculty of Science,
Sivas Cumhuriyet University

Abstract

Gaussian Jacobsthal-Padovan numbers have been the central focus of this paper and firstly this number sequence has defined. Later, we have given the proof of the generating function of the Gaussian JacobsthalPadovan sequence. After that by using generating function, we have given the proof of the Binet formula for this number sequence. Additionally, we have investigated some properties such as Simson identity, summation formulas of this sequence. Finally, we have obtained some matrices whose elements are Gaussian JacobsthalPadovan numbers.

Keywords: Jacobsthal numbers, Jacobsthal-Padovan numbers, Gaussian Jacobsthal-Padovan numbers, Generating function, Binet formula
(iD) $h t t p s: / / o r c i d . o r g / 0000-0002-0244-1286$

Introduction

In recent years, there have been many studies on a variety of number sequences in the literature. Some of the famous examples are Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas etc. Details can be found in [1-5]. In [4], Jacobsthal and Jacobsthal-Lucas number sequences are given respectively by
$J_{n}=J_{n-1}+2 J_{n-2}, \quad J_{0}=0, J_{1}=1, \quad n \geq 2$, $j_{n}=j_{n-1}+2 j_{n-2}, \quad j_{0}=2, j_{1}=1, \quad n \geq 2$.

Gaussian forms of these sequences are also available in the literature. Gaussian forms of these sequences as well as their properties have been inquired into by many authors, see [6-10] for details. In [9], Jacobsthal and Jacobsthal-Lucas sequences' Gaussian forms are defined by the recursion formulas
$G J_{n}=G J_{n-1}+2 G J_{n-2}, \quad G J_{0}=\frac{i}{2}, G J_{1}=1, \quad n \geq 2$,
$G j_{n}=G j_{n-1}+2 G j_{n-2}, G j_{0}=2-\frac{i}{2} G j_{1}=1+2 i, n \geq 2$,
respectively.
Also, Cerda-Morales [11] defined Gauss third-order Jacobsthal numbers and investigated some properties of this sequence.

Additionally, the Padovan (sequence A000931 in [12]), Pell-Padovan (sequence A066983 in [12]) and JacobsthalPadovan (sequence A159284 in [12]) sequences are given, respectively, by the third-order recurrence relations
$P_{n}=P_{n-2}+P_{n-3}, \quad P_{0}=P_{1}=P_{2}=1, \quad n \geq 3$,
$R_{n}=2 R_{n-2}+R_{n-3}, \quad R_{0}=R_{1}=R_{2}=1, \quad n \geq 3$,
$J P_{n}=J P_{n-2}+2 J P_{n-3}, J P_{0}=J P_{1}=J P_{2}=1, \quad n \geq 3$.

Also, Taş̧̧ı [13] defined Gaussian Padovan and Gaussian Pell-Padovan sequences as follows:
$G P_{n}=G P_{n-2}+G P_{n-3}, \quad G P_{0}=1, \quad G P_{1}=1+i$,
$G P_{2}=1+i, \quad n \geq 3$,
$G R_{n}=2 G R_{n-2}+G R_{n-3}, \quad G R_{0}=1-i$,
$G R_{1}=1+i, G R_{2}=1+i, \quad n \geq 3$,
respectively.
Moreover, in [13], some properties of these sequences are investigated. In addition, Yaşar Kartal [14] studied the Gaussian Padovan sequence.

In this study, we extended the Jacobsthal-Padovan sequence to Gaussian Jacobsthal-Padovan sequence. Then, we have derived generating function and the Binet formula for this sequence. Also, we have found numerous sums and various equalities for Gaussian JacobsthalPadovan sequence.

Main Results

First, we give the definition of Gaussian JacobsthalPadovan number sequence based on the recurrence relation.

Definition 1. The sequence $\left\{G J P_{n}\right\}_{n=0}^{\infty}$ of Gaussian Jacobsthal-Padovan numbers satisfies the following thirdorder recurrence relation:
$G J P_{n}=G J P_{n-2}+2 G J P_{n-3}$
with initial conditions $G J P_{0}=1, G J P_{1}=1+i, G J P_{2}=$ $1+i$ and $n \geq 3$.

Then we get the Gaussian Jacobsthal-Padovan sequence
$\left\{G J P_{n}\right\}=\{1,1+i, 1+i, 3+i, 3+3 i, 5+3 i, 9+5 i, \ldots\}$.
Also, note that for $n \geq 0$
$G J P_{n}=J P_{n}+i J P_{n-1}$
where $J P_{n}$ is the n-th Jacobsthal-Padovan numbers.
Theorem 1. The sequence $\left\{G J P_{n}\right\}_{n \geq 0}$ can be extended to negative subscripts by defining
$G J P_{-n}=-\frac{1}{2} G J P_{-(n-1)}+\frac{1}{2} G J P_{-(n-3)}$
for $\mathrm{n} \geq 1$.

Proof. From the recurrence relation of Gaussian Jacobsthal-Padovan sequence, we have
$G J P_{n-3}=\frac{1}{2} G J P_{n}-\frac{1}{2} G J P_{n-2}$.

Then, for $\mathrm{n}=-\mathrm{n}+3$, we obtain
$\mathrm{GJP}_{-\mathrm{n}}=\frac{1}{2} \mathrm{GJP}_{-\mathrm{n}+3}-\frac{1}{2} \mathrm{GJP}_{-\mathrm{n}+1}$

$$
\begin{aligned}
& =\frac{1}{2} G J P_{-(n-3)}-\frac{1}{2} G J P_{-(n-1)} \\
& =-\frac{1}{2} G J P_{-(n-1)}+\frac{1}{2} G J P_{-(n-3)}
\end{aligned}
$$

as required.
Presently, we deliver the generating function of Gaussian Jacobsthal-Padovan sequence with next theorem.
Theorem 2. The generating function of Gaussian Jacobsthal-Padovan sequence is obtained as
$g(x)=\frac{1+(1+i) x+i x^{2}}{1-x^{2}-2 x^{3}}$.
Proof. Assume that $\mathrm{g}(\mathrm{x})$ the generating function of $\left\{\mathrm{GJP}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty}$. By considering the recurrence relation of Gaussian Jacobsthal-Padovan sequence, and deriving $x^{2} \sum_{n=0}^{\infty} G J P_{n} x^{n}$ and $2 x^{3} \sum_{n=0}^{\infty} G J P_{n} x^{n}$ from $\sum_{n=0}^{\infty} G J P_{n} x^{n}$ we get

$$
\begin{aligned}
\left(1-x^{2}-2 x^{3}\right) \sum_{n=0}^{\infty} G J P_{n} x^{n} & =\sum_{n=0}^{\infty} G J P_{n} x^{n}-x^{2} \sum_{n=0}^{\infty} G J P_{n} x^{n}-2 x^{3} \sum_{n=0}^{\infty} G J P_{n} x^{n} \\
& =\sum_{n=0}^{\infty} G J P_{n} x^{n}-\sum_{n=0}^{\infty} G J P_{n} x^{n+2}-2 \sum_{n=0}^{\infty} G J P_{n} x^{n+3} \\
& =\sum_{n=0}^{\infty} G J P_{n} x^{n}-\sum_{n=2}^{\infty} G J P_{n-2} x^{n}-2 \sum_{n=3}^{\infty} G J P_{n-3} x^{n} \\
& =\left(G J P_{0}+G J P_{1} x+G J P_{2} x^{2}\right)-G J P_{0} x^{2}+\sum_{n=3}^{\infty}\left(G J P_{n}-G J P_{n-2}-2 G J P_{n-3}\right) x^{n} \\
& =G J P_{0}+G J P_{1} x+\left(G J P_{2}-G J P_{0}\right) x^{2} .
\end{aligned}
$$

Thus, by using the initial conditions, we obtain
$\sum_{n=0}^{\infty} G J P_{n} x^{n}=\frac{1+(1+i) x+i x^{2}}{1-x^{2}-2 x^{3}}$
which is desired.
We now find the Binet formula for Gaussian Jacobsthal-Padovan sequence in the following theorem.
Theorem 3. $\mathrm{n}^{\text {th }}$ Gaussian Jacobsthal-Padovan number is
$G J P_{n}=\frac{\left(x_{1}+1\right)\left(x_{1}+i\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} x_{1}{ }^{n}+\frac{\left(x_{2}+1\right)\left(x_{2}+i\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} x_{2}{ }^{n}+\frac{\left(x_{3}+1\right)\left(x_{3}+i\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} x_{3}{ }^{n}$
where $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} are the different roots of the equation $\mathrm{x}^{3}-\mathrm{x}-2=0$ and whose roots are
$x_{1}=\sqrt[3]{1+\frac{\sqrt{78}}{9}}+\sqrt[3]{1-\frac{\sqrt{78}}{9}}, \quad x_{2}=\omega \sqrt[3]{1+\frac{\sqrt{78}}{9}}+\omega^{2} \sqrt[3]{1-\frac{\sqrt{78}}{9}}, \quad x_{3}=\omega^{2} \sqrt[3]{1+\frac{\sqrt{78}}{9}}+\omega \sqrt[3]{1-\frac{\sqrt{78}}{9}}$
where $\omega=\frac{-1+\mathrm{i} \sqrt{3}}{2}$.
Proof. Suppose that $g(x)=1-x^{2}-2 x^{3}$. Then using the roots x_{1}, x_{2} and x_{3} of the equation, we can write $g(x)$ as
$g(x)=\left(1-x_{1} x\right)\left(1-x_{2} x\right)\left(1-x_{3} x\right)$,
namely,
$1-x^{2}-2 x^{3}=\left(1-x_{1} x\right)\left(1-x_{2} x\right)\left(1-x_{3} x\right)$
Thus, we find all roots of $\mathrm{g}(\mathrm{x})$ as which $\frac{1}{\mathrm{x}_{1}}, \frac{1}{\mathrm{x}_{2}}$ and $\frac{1}{\mathrm{x}_{3}}$.
Now, we write the equation (1) and the generating function of $\left\{G J P_{n}\right\}_{n=0}^{\infty}$ as:

$$
\begin{align*}
\sum_{n=0}^{\infty} G J P_{n} x^{n} & =\frac{1+(1+i) x+i x^{2}}{1-x^{2}-2 x^{3}} \\
& =\frac{1+(1+i) x+i x^{2}}{\left(1-x_{1} x\right)\left(1-x_{2} x\right)\left(1-x_{3} x\right)} \\
& =\frac{A}{1-x_{1} x}+\frac{B}{1-x_{2} x}+\frac{C}{1-x_{3} x} \tag{2}
\end{align*}
$$

Hence,
$1+(1+i) x+i x^{2}=A\left(1-x_{2} x\right)\left(1-x_{3} x\right)+B\left(1-x_{1} x\right)\left(1-x_{3} x\right)+C\left(1-x_{1} x\right)\left(1-x_{2} x\right)$.
Then, for $\mathrm{x}=\frac{1}{\mathrm{x}_{1}}$, we have $1+(1+\mathrm{i}) \frac{1}{\mathrm{x}_{1}}+\mathrm{i} \frac{1}{\mathrm{x}_{1}{ }^{2}}=\mathrm{A}\left(1-\frac{\mathrm{x}_{2}}{\mathrm{x}_{1}}\right)\left(1-\frac{\mathrm{x}_{3}}{\mathrm{x}_{1}}\right)$. From here, we find
$\mathrm{A}=\frac{\mathrm{x}_{1}{ }^{2}\left[1+(1+\mathrm{i}) \frac{1}{\mathrm{x}_{1}}+\mathrm{i} \frac{1}{\mathrm{x}_{1}{ }^{2}}\right]}{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)}=\frac{\mathrm{x}_{1}{ }^{2}+(1+\mathrm{i}) \mathrm{x}_{1}+\mathrm{i}}{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)}=\frac{\left(\mathrm{x}_{1}+1\right)\left(\mathrm{x}_{1}+\mathrm{i}\right)}{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)}$.
In a similar way, we obtain
$B=\frac{\left(x_{2}+1\right)\left(x_{2}+i\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}, \quad C=\frac{\left(x_{3}+1\right)\left(x_{3}+i\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}$.
Consequently, we can write the equation (2) as in the following way
$\sum_{n=0}^{\infty} G J P_{n} x^{n}=A\left(1-x_{1} x\right)^{-1}+B\left(1-x_{2} x\right)^{-1}+C\left(1-x_{3} x\right)^{-1}$
$=A \sum_{n=0}^{\infty} x_{1}{ }^{n} x^{n}+B \sum_{n=0}^{\infty} x_{2}{ }^{n} x^{n}+C \sum_{n=0}^{\infty} x_{3}{ }^{n} x^{n}$
$=\sum_{n=0}^{\infty}\left(A x_{1}{ }^{n}+B x_{2}{ }^{n}+C x_{3}{ }^{n}\right) x^{n}$.
Thus, we obtain for all $\mathrm{n} \geq 0$

$$
\begin{aligned}
G J P_{n} & =A x_{1}{ }^{n}+B x_{2}{ }^{n}+C x_{3}{ }^{n} \\
& =\frac{\left(x_{1}+1\right)\left(x_{1}+i\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} x_{1}{ }^{n}+\frac{\left(x_{2}+1\right)\left(x_{2}+i\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} x_{2}{ }^{n}+\frac{\left(x_{3}+1\right)\left(x_{3}+i\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} x_{3}^{n}
\end{aligned}
$$

as required.
The following theorem gives the Simson formula for Gaussian Jacobsthal-Padovan sequence.
Theorem 4. For $n \in \mathbb{Z}$, we have

Proof. We show the proof of this theorem by induction over n. For $n=1$, the statement is true. In fact
$\left|\begin{array}{ccc}\mathrm{GJP}_{3} & \mathrm{GJP}_{2} & \text { GJP }_{1} \\ \mathrm{GJP}_{2} & \mathrm{GJP}_{1} & \text { GJP }_{0} \\ \mathrm{GJP}_{1} & \mathrm{GJP}_{0} & \mathrm{GJP}_{-1}\end{array}\right|=-2+2 \mathrm{i}=-2^{1}(1-\mathrm{i})$.
Now, let this statement be true for $\mathrm{n}=\mathrm{k}$. That is,
$\left|\begin{array}{ccc}\operatorname{GJP}_{k+2} & \text { GJP }_{k+1} & \text { GJP }_{k} \\ \operatorname{GJP}_{k+1} & \text { GJP }_{k} & \operatorname{GJP}_{k-1} \\ G J P_{k} & \text { GJP }_{k-1} & G J P_{k-2}\end{array}\right|=-2^{k}(1-i)$.

Finally, we must show that the statement is correct for $\mathrm{n}=\mathrm{k}+1$. We obtain from induction hypothesis and the properties of determinant function.

$\mathrm{GJP}_{\mathrm{k}+3}$	GJP $\mathrm{P}_{\mathrm{k}+2}$	$\mathrm{GJP}_{\mathrm{k}+1}$		$\mathrm{GJP}_{\mathrm{k}+1}+2 \mathrm{GJP} \mathrm{P}_{\mathrm{k}}$	GJP $\mathrm{P}_{\mathrm{k}+2}$	GJP ${ }_{\text {k }+1}$
GJP $\mathrm{P}_{\mathrm{k}+2}$	GJP ${ }_{\text {k }+1}$	$\mathrm{GJP}_{\mathrm{k}}$	$=$	$\mathrm{GJP}_{\mathrm{k}}+2 \mathrm{GJP}_{\mathrm{k}-1}$	GJP ${ }_{\text {k }+1}$	$\mathrm{GJP}_{\mathrm{k}}$
GJP $\mathrm{P}_{\mathrm{k}+1}$	GJP ${ }_{\text {k }}$	$\mathrm{GJP}_{\mathrm{k}-1}$		$\mathrm{GJP}_{\mathrm{k}-1}+2 \mathrm{GJP}_{\mathrm{k}-2}$	GJP ${ }_{\mathrm{k}}$	GJP ${ }_{\text {k }-1}$

$$
\begin{aligned}
& =-2\left|\begin{array}{ccc}
G J P_{k+2} & G J P_{k} & G J P_{k+1} \\
G J P_{k+1} & G^{\prime} P_{k-1} & G J P_{k} \\
G J P_{k} & G J P_{k-2} & G J P_{k-1}
\end{array}\right| \\
& =2\left|\begin{array}{ccc}
G J P_{k+2} & G J P_{k+1} & G J P_{k} \\
G^{G} P_{k+1} & \text { GJP }_{k} & G J P_{k-1} \\
G J P_{k} & \mathrm{GJP}_{k-1} & G J P_{k-2}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[-2^{\mathrm{k}}(1-\mathrm{i})\right] \\
& =-2^{\mathrm{k}+1}(1-\mathrm{i}) .
\end{aligned}
$$

Therefore, the statement is also correct for $\mathrm{n}=\mathrm{k}+1$.
In the next theorem, we give some summation formulas of Gaussian Jacobsthal-Padovan sequence.
Theorem 5. For $n \geq 1$, we have the following sums:
i. $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{GJP}_{\mathrm{n}}=\frac{1}{2}\left(G J P_{\mathrm{n}+2}+G J P_{\mathrm{n}+3}\right)-(2+\mathrm{i})$,
ii. $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{GJP}_{2 \mathrm{k}}=\frac{1}{2} \mathrm{GJP}_{2 \mathrm{n}+3}-(3+\mathrm{i})$,
iii. $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{GJP}_{2 \mathrm{k}-1}=\frac{1}{2} \mathrm{GJP}_{2 \mathrm{n}+2}-(1+\mathrm{i})$.

Proof (i). From the recursive relation of Gaussian Jacobsthal-Padovan sequence, we have
$G J P_{n-3}=\frac{1}{2} G J P_{n}-\frac{1}{2} G J P_{n-2}$.
Thus, we have from the equation (3)
$\mathrm{GJP}_{1}=\frac{1}{2} \mathrm{GJP}_{4}-\frac{1}{2} \mathrm{GJP}_{2}$
$\mathrm{GJP}_{2}=\frac{1}{2} \mathrm{GJP}_{5}-\frac{1}{2} \mathrm{GJP}_{3}$
$\mathrm{GJP}_{3}=\frac{1}{2} \mathrm{GJP}_{6}-\frac{1}{2} \mathrm{GJP}_{4}$
$G J P_{n}=\frac{1}{2} G J P_{n+3}-\frac{1}{2} G J P_{n+1}$.

After performing necessary calculations, we obtain
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{GJ} \mathrm{P}_{\mathrm{k}}=\frac{1}{2}\left(\mathrm{GJ} \mathrm{P}_{\mathrm{n}+2}+\mathrm{GJP} \mathrm{P}_{\mathrm{n}+3}\right)-\frac{1}{2}\left(\mathrm{GJP}_{2}+\mathrm{GJP}_{3}\right)$
$=\frac{1}{2}\left(G J P_{n+2}+G J P_{n+3}\right)-(2+i)$
which is desired.
The proof of (ii) and (iii) can be done similarly to the proof of (i).
Theorem 6. For $n \in \mathbb{Z}^{+}$, we have
$\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)^{n} \cdot\left(\begin{array}{c}1+\mathrm{i} \\ 1+\mathrm{i} \\ 1\end{array}\right)=\left(\begin{array}{c}\mathrm{GPJ}_{\mathrm{n}+2} \\ \mathrm{GPJ}_{\mathrm{n}+1} \\ \mathrm{GPJ}_{\mathrm{n}}\end{array}\right)$.
Proof. We can prove the theorem by induction on n. For $n=1$, we get

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{1} \cdot\left(\begin{array}{c}
1+\mathrm{i} \\
1+\mathrm{i} \\
1
\end{array}\right)=\left(\begin{array}{l}
3+\mathrm{i} \\
1+\mathrm{i} \\
1+\mathrm{i}
\end{array}\right)=\left(\begin{array}{c}
\mathrm{GPJ}_{3} \\
\mathrm{GPJ}_{2} \\
\mathrm{GPJ}_{1}
\end{array}\right) .
$$

Assume that the equality holds for $\mathrm{n}=\mathrm{k}$, namely,

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{\mathrm{k}} \cdot\left(\begin{array}{c}
1+\mathrm{i} \\
1+\mathrm{i} \\
1
\end{array}\right)=\left(\begin{array}{c}
\mathrm{GP}_{\mathrm{k}+2} \\
\mathrm{GP}_{\mathrm{k}+1} \\
\mathrm{GP}_{\mathrm{k}}
\end{array}\right) .
$$

Now, we need to show that it is true for $n=k+1$. Hence, we obtain

$$
\left.\begin{array}{rl}
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{\mathrm{k}+1} \cdot\left(\begin{array}{c}
1+\mathrm{i} \\
1+\mathrm{i} \\
1
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \cdot\left[\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{\mathrm{k}} \cdot\left(\begin{array}{c}
1+\mathrm{i} \\
1+\mathrm{i} \\
1
\end{array}\right)\right] \\
& =\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\mathrm{GPJ}_{\mathrm{k}+2} \\
\mathrm{GPJ}_{\mathrm{k}+1} \\
\mathrm{GPJ}_{\mathrm{k}}
\end{array}\right) \\
& =\binom{\mathrm{GPJ}_{\mathrm{k}+1}+2 \mathrm{GJP}_{\mathrm{k}}}{\mathrm{GPJ}_{\mathrm{k}+2}} \\
& =\left(\begin{array}{c}
\mathrm{GPJ}_{\mathrm{k}+1}
\end{array}\right) \\
\mathrm{GPJ}_{\mathrm{k}+3} \\
\mathrm{GPJ}_{\mathrm{k}+1}
\end{array}\right) . ~ \$
$$

The proof is completed.

Conflicts of interest

The authors state that did not have conflict of interests.

References

[1] Koshy T., Fibonacci and Lucas numbers with applications New York: John Wiley and Sons Inc., (2001).
[2] Hoggatt V.E. Jr., Fibonacci and Lucas numbers. Boston: Houghton Mifflin Company, (1969).
[3] Koshy T., Pell and Pell-Lucas numbers with applications. New York: Springer, (2014).
[4] Horadam A.F., Jacobsthal Representation Numbers, Fibonacci Quarterly, 34 (1) (1996) 40-54.
[5] Koshy T., Jacobsthal and Jacobsthal-Lucas numbers with applications. New York: John Wiley and Sons Inc., (2001).
[6] Jordan J.H., Gaussian Fibonacci and Lucas Numbers, Fibonacci Quarterly, 3 (1965) 315-318.
[7] Halıcı S., Öz S., On Some Gaussian Pell and Pell-Lucas Numbers, Ordu University Journal of Science and Technology, 6 (1) (2016) 8-18.
[8] Gökbaş H., Köse H., On Complex K-Horadam and Gaussian KHoradam Sequences, International Journal of Mathematics and Computer Science, 6 (11) (2018) 1938-1942.
[9] Aşçı M., Gürel E., Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas Numbers, Ars Combinatoria, 111 (2013) 5363.
[10] Özkan E., Taştan M., A New Families of Gauss k-Jacobsthal Numbers and Gauss k-Jacobsthal-Lucas Numbers and Their Polynomials, Journal of Science and Arts, 4 (53) (2020) 893908.
[11] Cerda-Morales G., On Gauss Third-Order Jacobsthal Numbers and Their Applications, Annals of the Alexandru Ioan Cuza University-Mathematics, 67 (2) (2021) 231-241.
[12] Sloane N.J.A., The Online Encyclopedia of Integer Sequences. Available at: http://oeis.org/.
[13] Taşçı D., Gaussian Padovan and Gaussian Pell-Padovan Sequences, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67 (2) (2018) 82-88.
[14] Kartal M.Y., Gaussian Padovan and Gaussian Perrin Numbers and Properties of Them, Asian-Eiropean Journal of Mathematics, 12 (6) (2019) 2040014.

