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Let R be a commutative multiplicative hyperring. In this paper, we introduce and study the concepts of n-
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hyperideal and 6-n-hyperideal of R which are generalization of n-ideals and &-n-ideals of the in a commutative
ring. An element a is called a nilpotent element of R if there exists a positive integer n such that 0 € a™. A
hyperideal | (I # R) of R is called an n- hyperideal of R if for all a,b € R, a*b S [ and a is non-nilpotent

element implies that b € I [15]. Also, | is called a 6-n-hyperideal if for all a,b € R, ax b C I then either a is
nilpotent or b€ §(I) , where § is an expansion function over the set of all hyperideals of a multiplicative
hyperring. In addition, we give the definition of z¢-hyperideal. Some properties of n-hyperideals, §-n-hyperideals

Copyright

@IelS

©2022 Faculty of Science,
Sivas Cumhuriyet University

investigated.

a4&‘317(»:*tu/cosgun93@gma/’/. com https://orcid.org/ 0000-0003-1389-259X

Introduction

The first publications on algebraic hyperstructures, as
a natural generalization of classical algebra, are first
encountered in 1934. The group concept, the
fundamental definition of algebraic structures, was first
generalized to hypergroup theory by Marty [1]. After
Marty's definition, many concepts of algebra, especially
hypergroups, were generalized to hyperstructures.
Subsequently, applications of hyperstructures theory to
other branches of science are studied by many
researchers. A detailed examination of this theory can be
found at [2-4]. The concept of hyperring has been studied
in different ways. The definition of hyperring, given by
taking " + " hyperoperation and multiplication, was made
by Krasner and is known by his name. A class of hyperrings
is multiplicative hyperring which satisfies the axioms
similar a ring, but product replaced by hyperproduct. The
multiplicative hyperring defined by Rota in 1982 and its
properties have been studied by many mathematicians [5-
9].

In this paper, we consider the notions of n-ideal and 6-
n-ideal in commutative rings and extend these notions n-
hyperideals and &-n-hyperideals to commutative
multiplicative hyperrings. Furthermore, we characterize
for the 6-n hyperideals of commutative multiplicative
hyperring.

First of all, let us to introduce some notions and results
of algebraic hyperstructures theory, which we will need to
development our paper. Let H be a nonempty set and we
mean the set of all nonempty subsets of H by P*(H). A
map o: H X H - P*(H) is called a hyperoperation on H.
Naturally, we can extend the hyperoperation o to subsets
of H, as follows:

and z4-hyperideals of the hyperring R are presented. Finally, the relations between these notions are
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Xoy,

XEX,YyEY
= U h o y

YEY

where @ # X,Y S Hand h € H.

R is called a multiplicative hyperring with operation +
and hyperoperation o if

(R,+) isan abelian group,

(R,0) is a semihypergroup, i.e, (xoy)ez=1xo(yo
z),forallx, y, z €R,

For all x,y,z €R, wehavexo(y+2z)C (xoy)+
(xoz)and(y+2)ex S (yox)+ (zox),

Forallx,y €R, xo(=y) =(—x) oy =—(x0oy).

If in (iii) the equality holds, then R has a strongly
distributive property. Also R is called commutative if x o
y =1y ox forall x,y € R and an element e € R is said to
be a left (resp. right) scalar identity if e ox =
x,(resp. x oe =x), forallx € R. An element e is
called scalar identity element if it is both left and right
scalar identity element [10]. If 0€Ex ocyand x #0,
where Vx,y €R, then y =0, then a commutative
multiplicative hyperring R is called a strong hyperdomain
[11].

A nonempty subset | of a multiplicative hyperring R is
a hyperideal if

Xoh=Uxoh, hoY

XEX

I-1¢c1
xorUrox C] forallx €l,forallr €R
The set of all hyperideals of R is denoted by I(R). A
hyperideal I(# R) of a multiplicative hyperring R is called
prime hyperideal if for all ab€R, aobC
I impliesthata € I or b €1 [12]. Anelementais
called nilpotent element of R if there exists a positive
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integer n such that 0 € a™ where for any positive integer

n>1l,a"=aoac..oa and a' = {a} and we denoted
n-—times

the set of all nilpotent elements of R by nil(R) (for more

details see[8]).

Let (R, +,°) and (S, +', *) be two commutative
multiplicative hyperrings and g:R — S be a map. Then g
is called a homomorphism (resp. good homomorphism) if
g satisfies the following conditions for all a, b € R,

gla+b)=g(a)+gb),

g(aeb) < g(a)*g(b)
g(b))

In [10], an expansion function over the set of all
hyperideals of a multiplicative hyperring is defined as
following:

A function &:I(R) — I(R) that satisfies the following
two conditions is called an expansion function of I(R)
D16,

@)If1 <], then §(I) €68(), foralll,] € I(R)

In [13], G. Ulucak defined 6-primary hyperideal as
follows; A proper hyperideal | of R is called &-primary
hyperideal of a multiplicative hyperring (R, +,0) if for all
a,b €R, aob S impliesthat eithera €1 or b€
6(I), where & is an expansion function of I(R).

(resp. glaoh) = g(a) *

n-Hyperideals of the Multiplicative Hyperring

In this section, the definitions of n-ideal and 6-n-ideal
given in [14] and [13], respectively, will be generalized to
a commutative multiplicative hyperrings. Now we give a
definition of n- hyperideal and some properties of this
concept which is in [15]. For the safe of completeness, we
will give the proofs of Theorem 2.1. and Theorem 2.2.
Throughout this paper, unless otherwise stated, (R, +,%)
will be taken as a commutative multiplicative hyperring.

Definition 2.1. Let | be a hyperideal of (R, +,%) and I #
R. For all a,b €R, if axb S Iand a is non-nilpotent
element implies that b € I then |is called a n-hyperideal
of R.

Example 2.1. Let (Z,, +, .) be a ring and I = {0, 2} be
an ideal of Z,. We define hyperoperation o in Z,. For all

mnezL, mon=mn+l
o 0 1 2 3
0 I I I I
1 I 1+1 I 1+1
2 I I I I
3 I 1+1 I 1+1

Then (Z,, +,°) is a multiplicative hyperring and H =
{0,2}is a hyperideal of Z,. Since m o7 € H and m is
non-nilpotent implies thatn € H, for all m,n € Z,. Then
H is a n-hyperideal of Z,.

Example 2.2. Let (Z,+,* )be a multiplicative
hyperring with respect to hyperopretion * defined by

axb={a.b,2a.b,3a.b,...}, for all a,b € Z in [4].
27 is a hyperideal of Z but it is not n-hyperideal. Because
4 « 3 C 27Z and 4 is a non-nilpotent but 3 & 27Z.

Theorem 2.1. Let K ={I, : k € 0} be a nonempty
family of n-hyperideals of a multiplicative hyperring (R, +,
*). Then Ngeq I is @ n-hyperideal of R and if K is a chain,
then Uyeq Ik is a n-hyperideal of R.

Proof.  Ngeqlxis a n-hyperideal, it is clear from
Definition 2.3. We will show that Ugeqliis a n-
hyperideal. Let K be a chain. Since I, € Rand I, # @ for
keQ. Upealy ERand Upegl, #@. For all x,y €
Ukea I andr € R, then there existi,j € Q suchthat x €
I;, y€l. Suppose I[; S I; then x €l; since [jis a
hyperideal, x —y €I; and xx*rUr=*x<S1I. Hence
X—=Y€E€Upealry andx*rUr*x © Upeqly. Let x*
Y € Ugeq Ix and x is non-nilpotent element for x,y € R.
x*Y C Upeqlxy ® FIEQx*y S ;. Since I; is a n-

hyperideal and x is non-nilpotent,y € I;. Hence y €
Uxkea Ix and Ugeq Iy is a n-hyperideal of R.
Theorem 2.2. Let f: (R, +, 0)=>(S, +', *¥) be a good

homomorphism. Then

If J isa n-hyperideal of S, then f~1(J) is a n-hyperideal
of R.

If fis an isomorphism and I is a n-hyperideal of R,
then f(I) is a n-hyperideal of S.

Proof. i. Since J is a hyperideal and f homomorphism,
YD) ={reR:f(r) €]} # @ isa hyperideal of R. Let
us show that f~1(J) is a n-hyperideal. Letr; 01, € f~1(J)
and ry is a non-nilpotent element. Thenforalln €N, 0 &
(rp™ so 0g = f(0) & f(ry)™, thus f(r;) is a non-nilpotent
element in S. Since norn, Sf(J) and f is a
homomorphism, f(ryory) = f(ry )+« f(ry) €
f(f‘l(])) CJ. Therefore f(r,) €] because J is a n-
hyperideal and f(r;) is a non-nilpotent element. Hence
1, € f71(J) and so f~1(J) is a n-hyperideal of R.

ii. It is clear that f(I) ={f(r):rel}cS is a
hyperideal of S. Now, we will show that f(I) is a n-
hyperideal. Foralls;,s, € S,s; * s, € f(I) ands; is non-
nilpotent. Since  fis an isomorphism,  f(r) =
s, and f(r,) =s,, forsome 1,7, € R.Since s; is non-
nilpotent, for all n € N,0 & f(r,)" = f((r,)") and 0 &
()", i.e, 1 is non-nilpotent. f(r;or,) € f(I) =
r;or, € I. From the definition of n-hyperideal, r, € I.
Hence s, = f(r,) € S, thus f(I) is a n-hyperideal of S.

The set ann(x) ={r e R:0 € r xx} is called the
annihilator of x in (R, +, *) and x is said to be a zerodivisor
element of R if ann(x) # 0. The set of all zerodivisor
elements of R denoted by z; (R).

Definition 2.2. Let | be a proper hyperideal of (R, +, *).
We say that | is a z;-hyperideal, precisely when,
whenever a,b € R with a = b C I implies that ann(a) #
{0}orb €l

Example 2.3. Let (Zg, +,.) be a ring. We define the
following hyperoperation * on Zg: For all abe Ze,

a*b ={2.b,2a.b,32.b,4.2.b,53.b }. Then (Z, +,*)
is a commutative multiplicative hyperring. H = {6, 5,4_}
is a z4-hyperideal of Zg.

Example 2.4. Let (Z,+,* ) be a multiplicative
hyperring w.r.t hyperoperation in Example 2.2. Then 4Z
is a hyperideal of Zbut it is not z;-hyperideal. Because
4x3C47 but ann(4) = 0 and 3¢4Z.
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Theorem 2.3.
hyperideal.

Proof. Let|be n-hyperideal of R. Assume that r * s C
Iand ann(r) = 0 forr,s € R. Then0 ¢ r" foralln € N.
Since | is a n-hyperideal of R and r is non-nilpotent
elementinR, s € I. Hence, | is a z;-hyperideal of R.

Example 2.5 shows that the converse of the Theorem
2.3 is not true.

Example 2.5. Consider the commutative multiplicative
hyperring Z¢ in Example 2.3. H = {6} is a z4-hyperideal of
Z¢ but H is not n-hyperideal.

Proposition 2.1. If Ris a strong hyperdomain, then {0}
is a n-hyperideal of R.

Proof. Leta * b € 0 and a is a non nilpotent element
fora,b € R.Thena*b S 0and0 & a™ foralln € N and
so a # 0. Since R is a strong hyperdomain and 0 € a *
b, b = 0. Therefore b € 0 and so {0} is a n-hyperideal.

In [12], Dasgupta defined the radical of the arbitrary
hyperideal I as the intersection of all prime hyperideals
containing I and denoted by Rad(I) =+vI. He also
showed that D € Rad(I) by defining a set D ={r €
R:r™ C [ for somen € N} for an arbitrary hyperideal
I. We will denote this set D by D(I) for any hyperideal .

In [16], Anbarloei showed that for a € R, (I:a) =
{reR:rxac I} is a hyperideal of R. The following
proposition prove that n-hyperideal can be
characterization with (I: a).

Proposition 2.2. Let | be a proper hyperideal of R. lisa
n-hyperideal of R if and only if I = (I:a) for every a &
D(0).

Proof. Suppose lis a n-hyperideal of R. Then x *
a € I,forallx € I. Thereforex € (I:a) andsol S (I: a).
let u€ (I:a) and a & D(0). Then a*u<SI. By
Definition 2.1, u € I. Thus (I:a) €I and so I = (I: a).
Conversely, let I = (I:a), for every a € D(0). Suppose
a*u <[ forall a,u €R, ais anon-nilpotent. Then u €
(I:a) = I and so | is a n-hyperideal.

Proposition 2.3. Let N be a proper hyperideal of (R, +,*
) with identity 1. Then N is a n-hyperideal if and only if
forU,V €I(R), U=V SN,with Un (R=D(0)) #
@ impliesV € N.

Proof. Suppose that U*V € N with Un (R—
D(O)) # @ for hyperideals U and V of R. Since UN

(R - D(O)) # @, there exists x € U such that x ¢ D(0).

Thenx *V € Nandso V € (N:x). Therefore,V € N by
Proposition 2.2. Conversely, u*v € N and u is non-
nilpotent element for all u,v € R. Then u ¢ D(0). Let
U=<u>andV=<v>ThenUx V =<u>x<v>
cS<uxv>c Nand Un (R—D(0)) # @. Therefore
V € Nandsob € N. Thus, N is a n-hyperideal of R.

Theorem 2.4. Let K be a hyperideal of (R, +,*) withK N

(R - D(O)) # (. The following statements are hold:

If J,,], are n-hyperideals of Rwith J; * K = ], * K,
then ], =J,.

If ] x K isan-hyperideal of R, then ] * K =].

Proof. i. Since J; is a hyperideal, J; * K = J, *x K C J;.
Then J, € J;,by Proposition 2.3. Because J; is a n-

Every n-hyperideal of R is a z4-

hyperideal, J,*K & J; and
Similarly, J; € J,.Thus, J; = J,.

ii. Let J * K be a n-hyperideal of R. Then J x K is a
hyperideal and so J * (J * K) € ] * K. Since ] *K is a n-
hyperideal and Kn (R—D(0)) #0, J<] =K.
Therefore J =] *xK.

Kn (R-D(0)) # @.

In Theorem 2.5, another characterization will be given
for prime hyperideals to be n-hyperideal.

Theorem 2.5. Let (R, +, *) be a commutative
multiplicative hyperring with scalar identity (1) and Q be a
prime hyperideal of Rwith Q N D(0) # @ Then Qisan
n-hyperideal if and only if Q = D(0).

Proof. D(0) € Q is trivial. Now, we assume that Q &
D(0). Then there exist a € Q such that 0 ¢ a™, for all
n € N and so a is non-nilpotent. Since Q is a n-hyperideal
anda=a*x1<€ Q,1€ Qand a*x 1< Q, foralla€
R. Hence, a € Q and R=Q, which is a contradiction. Thus,
Q= D(0).

Conversely, suppose that @ = D(0). Let for x,y €
R,x*y € Q and x is a non-nilpotent. Then x € Q =
D(0) and y € Q because Q is a prime hyperideal. Hence,
Qs a n-hyperideal of R.

Example 2.6. Let (Z, +,* ) be a multiplicative hyperring
in Example2.2. 2Z is a prime hyperideal of Z but it is not
n-hyperideal of Z.

Example 2.7. Consider the multiplicative hyperring (Z,
+,%) in Example2.2, H= 27 is a prime hyperideal of Z and
S={246}cZ. Then (H:S)={x€Z:x+*SCSH}=
Z is a n-hyperideal but H is not n-hyperideal, because 4 *
3 € H and 4 is a non-nilpotent element but 3 ¢ H.

6 — n- Hyperideal of Multiplicative Hyperring

In this section, we will introduce the definition of &-n-
hyperideal over the multiplicative hyperring with scaler
identity and we will give a characterization of &-n-
hyperideal. Throughout this section, all hyperideals will be
taken as C-hyperideal. C- hyperideals of a multiplicative
hyperring defined by Das Gupta in [12] as follows, let
(R, +,%) be a multiplicative hyperring and J € I(R). Jis
said to be G- ideal ifforanyA€EC,ANJ+ 0 = AC
J,where C={r*sr,*ry3*...x1,: 15 €R, nEN}.

In the following definition, we are using definition of
radical I, to state once again if | is C- ideal, then Rad(l)=D(l)
in [12].

Definition 3.1. Let Je I(R), J+#R and
6:1(R) - I(R) be an expansion function. We say that J is
a &-n-hyperideal of R if for all x,y €R, x *y € J then
either x €0 ory € §()).

Example 3.1. Let (Zg,+,.) bearingand I =
{6,4_} be an ideal of Zg. We define hyperoperation in Zg:
For allg,b €Zg , a*b=a.b+1. Then (Zg, +,%) is a
multiplicative hyperring. Let &8:1(Zg) - I(Zg) be a
function such that §(H) = H, for all H hyperideal of Zj.
Therefore, & is an expansion function. H = {6, f, Z, E} isa
6-n-hyperideal.
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Example 3.2. Consider the multiplicative hyperring (Z,
+, *) in Example2.2. Let 6: I(Z)-=>I(Z) be a function such
that §(H) = H for all H hyperideal. Then § is an expansion
function. H= 2Z is hyperideal of multiplicative hyperring Z
but H is not 6-n-hyperideal. Indeed, 4 * 3 S H but 4 & \/0
and 3 ¢ §(H).

Proposition 3.1. Let R be multiplicative hyperring with
scaler identity and & be an expansion of hyperideals of R
and J a proper hyperideal of R with §(J) # R. If Jisa 6-n-
hyperideal of R, then | € /0.

Proof. Suppose thatJ & +/0. Then there exists element
a € (J-/0). Since @ € 1xa Cland a €0, 1 € 8()).
Then forallr €R, rel1*r < 8() andso §(J) # R, a
contradiction. Thus J € /0.

Theorem 3.1. Let J be a hyperideal of (R, +,%). If] =
/0, then J is a 8-n-hyperideal if and only if J is a 8-primary
hyperideal.

Proof. Suppose that J is a 6-n-hyperideal and x,y €
R,x*y S Jand x € J.Then x is not nilpotentand soy €
6(J) because J is a 6-n-hyperideal. Hence, J is a 5-primary
hyperideal. Conversely, J is a 6-primary hyperideal, x,y €
Rx*y S Jandx &+0.Thenx & J and y € 6(J) since )
is a 6- primary hyperideal. Hence, J is a 6-n-hyperideal of
R.

Proposition 3.2. Let § be an expansion of hyperideals
of R. Then the following are hold

i. Let ) be a &-primary hyperideal of R with 8(J) # R.
Then J is a 6-n-hyperideal of R if and only if /] < /0.

ii. Let J be a prime hyperideal of R with §(J) # R. Then
Jis a 8-n-hyperideal of R if and only if J= /0.

Proof. i. It is clear by Proposition 3.1. and Theorem
3.1.

ii.Since J is prime hyperideal, /O € J. From Proposition
3.1, ] €0 and so J = +/0. Conversely, since J is a prime
hyperideal, J is a &- primary hyperideal by [13]. From
Theorem 3.1, J is a 6-n-hyperideal of R.

Theorem 3.2. For a proper hyperideal | of R and an
expansion of fuction §, the following statements are
equivalent:

| is a 6-n-hyperideal of R.

(I:a) €0 forallaeR-§(l).

If ae] € Ifor some a € R and an hyperideal J of R,
then a € V0 or J C §(1).

If ] o K I for some hyperideals J and K of R implies
] n(R=+0) =@orkc ().

Proof. (i) = (ii) Assume thatanyx € (I:a), thenx o
a C 1. Since | is a 6-n-ideal of R and a & 8(I), x € V0.
Thus, (I: a) € 0.

(ii) = (iii) Suppose that if aeJ S 1 and J & 8(I).
Foranyj €J,acj SIlandsoj S (a:I) €+0.Since] &
8(I), there exist j € ] but j & 8(I) and so a € /0 by (ii).

(iii) = (iv) Let ] oK S and suppose ] n(R—
V0) # @. Then there is an element j € ] — V0. For any
k €K,Jok S I. Then forje]—\/ﬁ,j ok €. From
(i), k € 8(I) and so K € &(I).

(iv)=> (i) Letx oy <1 forsomex,y ERand | =
(x),K= (). Then J oK c1I.1f Jn(R—+0) #0,
thenx €0.I1fK & 8(I), theny € 8(I) andso K Z I, a
contraction. Then, x € v/0 by our assumption. Thus, | is a
6-n-hyperideal of R.

Example 3.3. Consider the commutative multiplicative
hyperring ( Zg,+,*) in Example 2.3. H = {6, E,Z}, K=
{6, §},6 and Zg are hyperideals of multiplicative
hyperring Z¢. 8:1(Zg) = I( Zg) be a function such that

, X=HZ
§(x) = {Kﬁ, X =K, {03

Therefore, § is an expansion function. {0} is a &6-n-

hyperideal but it is not &-primary hyperideal of Z.
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