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ABSTRACT A conjugate gradient method is a powerful tool for solving large-scale 

miniaturization issues, with applications in arithmetic, chemistry, physics, engineering, 

medicine, and other fields. In this paper, we introduce a new spectral conjugate gradient 

algorithm, whose derivation is based on the Fletcher (CD) and Newton algorithms based on the 

solely coupling condition, which is introduced in this study. The significance of the research is 

in identifying a suitable algorithm. Because the Buckley and Qu methods are ineffectual in 

solving all types of ambiguous equations, and the conjugate gradient approach does not require 

a Hessian matrix (second partial derivatives of functions) in the solution, it is used to solve all 

types of ambiguous equations. The suggested method's descent property is demonstrated as 

long as the 𝛼𝑘step size matches the strong Wolfe conditions. In many cases, numerical findings 

demonstrate that the novel technique is more efficient in solving nonlinear fuzzy equations 

than Fletcher (CD) algorithm.  
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1. INTRODUCTION 

Nonlinear equations can be solved using iterative approaches, such as 

𝐹(𝑥) = 0 (1) 

 It has received a lot of attention in recent years. The concept of fuzzy numbers, as well as the 

arithmetic operations that can be performed on them, were first proposed and researched by Zadeh 

[1]. One of the most popular applications for calculating fuzzy numbers is non-linear equations, the 

parameters of which are fully or partially represented by fuzzy numbers. [2]–[4]. Buckley and Qu's 

standard analytical procedures [5]–[8] are only suitable for the linear and quadratic cases of nonlinear 

equations. Cannot be used to solve equations like 

I- Q𝑦3 + V𝑦2 − L𝑦 = Θ,  

II- Θ𝑒𝑦 − Ky = Λ,  

III- Φycsc(𝑦) + Υ𝑦 = Ω, 

IV- Ψ𝑦5 − Ωcot(𝑦) = Φ. 

where 𝑦, Α, Β, Η, Θ, Ε, Λ, Υ, Ω, Ψ, and Φ are fuzzy numbers. S. Abbasbandy and B. Asady employed 

Newton's method to solve a fuzzy nonlinear problem in 2004[9]. Amirah Ramli, Mohd Lazim 

Abdullah, and Mustafa Mamat used Quasi Newton's method to solve a fuzzy nonlinear problem in 

2010 [10]. Due to the following disadvantages of the methodologies, this method is not particularly 

useful in practice: It necessitates the storage of the 𝑛 × 𝑛 matrix [𝐻𝑖],  the computation of the 

elements of the matrix [𝐻𝑖] becomes extremely difficult and often impossible, the inversion of the 

matrix [𝐻𝑖] at each step, and the assessment of the amount [𝐻𝑖]
−1∇𝑓𝑖 at each step. The strategy is 

ineffective for challenges with a complex objective function with a large number of variables 

because of these flaws. The Steepest descent method for solving fuzzy nonlinear equations was 

developed by S. Abbasbandy and A. Jafarian [11]. which they published in 2004. However, because 

the sharpest descent direction is a local feature, this strategy is weak and inefficient in most 
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applications. Hisham and Khalil created two conjugate gradient (CG) approach for solving fuzzy 

nonlinear equations in 202  [12], [13]. Mezher M. Abed, Ufuk ztürk, and Hisham M. Khudhur 

published Spectral CG Algorithm for Solving Fuzzy Non-linear Equations in 2022 [14]. Conjugate 

gradient methods have the drawback of being ineffective in some cases. Therefore, we need to use 

the new spectral gradient algorithm to find the roots of these equations, in this paper; We use one of 

the spectral conjugate gradient algorithms, because this algorithm is very efficient and fast in 

finding the roots of equations and also has global convergence. This paper is divided into six parts, 

the first part is a general introduction, previous studies, and the importance of the paper, the second 

part is the basics of arithmetic operations for fuzzy numbers, the third part is an explanation of the 

conjugate gradient algorithms, the fourth part is New Proposed Algorithm SCD-CG, the fifth part is 

the computational results and comparisons, and sixth part is the conclusions in addition to 

acknowledgments, and references. 

 
2. PRELIMINARIES 

We've gone through some basic definitions and arithmetic operations for fuzzy numbers in this 

section. For more information, we refer interested readers to [15]. 

Definition (2.1). A fuzzy number is defined as a set 𝑗: ℝ → 𝐼 = [0,1] that meets the conditions 

listed below [16]. 

a. 𝑗 denotes a semi-continuous upper boundary. 

b. 𝑗(𝑥)  =  0 outside some range [𝑟, 𝑡]. 

c. there exist 𝑝, 𝑞 ∈  ℝ such that 𝑟 ≤ 𝑝 ≤ 𝑞 ≤ 𝑡 and 

i. 𝑗(𝑥) is increasing monotonically on [𝑟, 𝑝]. 

ii. 𝑗(𝑥) is decreasing monotonically on [𝑞, 𝑡]. 

iii. 𝑗(𝑥) =  1, 𝑝 ≤ 𝑥 ≤ 𝑞. 

 

Definition (2.2). j: ℝ → 𝐼 = [0,1] in parametric form 

refer to the pair (𝑗, 𝑗)of 𝑗(𝜇), 𝑗(𝜇), 0 ≤ 𝜇 ≤  1 

satisfying [16], [17], 

(1) 𝑗(𝜇) is a monotonically bounded growing left continuous function. 

(2) 𝑗(𝜇) is a monotonically bounded growing right continuous function. 

(3) 𝑗(𝜇) ≤ 𝑗(𝜇). 

 

Definition (2.3). A classical Fuzzy number ℎ refers to the Triangular number 𝑗 =  (𝑝, 𝑞, 𝑟) given 

as follows in equation (2) 

𝑗(𝑥) =

{
 
 

 
 (𝑥 − 𝑝)

(𝑟 − 𝑝)
,                 𝑝 ≤ 𝑥 ≤ 𝑟

(𝑥 − 𝑞)

(𝑟 − 𝑞)
,                𝑟 ≤ 𝑥 ≤ 𝑞

 (2) 

with j(𝑥) known as the membership function and 𝑟 ≠ 𝑝, 𝑟 ≠ 𝑞 [9].  This function can be written in 

its parameterized form as follows 

𝑗(𝜇) = 𝑞 + (𝑟 − 𝑞)𝜇
𝑗(𝜇) = 𝑝 + (𝑟 − 𝑝)𝜇
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Assume 𝑇𝐹(ℝ) denotes the set of all trapezoidal fuzzy number. The following extension principle 

can be used to extend the scalar multiplication and addition operations to fuzzy numbers [9]. 

Let = (𝑗(𝜇), 𝑗(𝜇)) , 𝑘 = (𝑘(𝜇), 𝑘(𝜇)) with 𝑤 >  0, the addition (𝑗 +  𝑘) and multiplication by 

scalar 𝑤 are defined as 

(𝑗 + 𝑘)(𝜇) = 𝑗(𝜇) + 𝑘(𝜇) 

(𝑗 + 𝑘) (𝜇) = 𝑗(𝜇) + 𝑘(𝜇) 

(𝑤𝑗)(𝜇) = 𝑤𝑗(𝜇) 

(𝑤𝑗) (𝜇) = 𝑤𝑗(𝜇). 

 
3. CONJUGATE GRADIENT (CG) ALGORITHMS 

The non-linear conjugate gradient (CG) scheme has the form in equation (3) 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,   𝑘 ≥ 1 (3) 

Where 𝑥1 is an initial paint, 𝛼𝑘 is a step–length and 𝛼𝑘 step-size that satisfy the standard Wolfe 

conditions  in equation (4), and (5) [18], [19] 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (4) 

𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎𝑑𝑘

𝑇𝑔𝑘 (5) 

or strong Wolfe conditions  in equation (6), and (7) [20]–[30],[31] 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (6) 

|𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)| ≤ −𝜎𝑑𝑘

𝑇𝑔𝑘 (7) 

𝑑𝑘+1 = {
−𝑔1,                             𝑘 = 1
−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘,          𝑘 ≥ 1

 (8) 

Different 𝛽𝑘+1 will determine different CG methods. Some famous formula for 𝛽𝑘+1as follows: 

The Fletcher and Reeves (FR) [32], Fletcher (CD) [33], Polak and Ribiere (PRP) [34], Hestenes-

Stiefel (HS) [35], Dai-Yuan (DY) [36], Hisham- Khalil (KH) [12], and 𝛽 is scalar. 

𝛽𝐹𝑅 =
∥ 𝑔𝑘+1 ∥

2

∥ 𝑔𝑘 ∥
2

 𝛽𝐶𝐷 =
−∥ 𝑔𝑘+1 ∥

2

𝑔𝑘
𝑇𝑑𝑘

 

𝛽𝐻𝑆 =
𝑔𝑘+1
𝑇 𝑦𝑘

𝑦𝑘
𝑇𝑑𝑘

 𝛽𝑃𝑅𝑃 =
𝑔𝑘+1
𝑇 𝑦𝑘
∥ 𝑔𝑘 ∥

2
 

𝛽𝐷𝑌 =
∥ 𝑔𝑘+1 ∥

2

𝑦𝑘
𝑇𝑑𝑘

 𝛽𝐾𝐻 =
‖𝑔𝑘+1‖1

2

‖𝑔𝑘‖1
2 , 

Where 𝑔𝑘 = ∇𝑓(𝑥𝑘),  and let 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘.  
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4. NEW PROPOSED ALGORITHM SCD-CG 

The search direction for the Fletcher (CD) conjugate gradient (CD-CG) method is obtained by 

𝑑1 = −𝑔1 and 

𝑑𝑘+1 = −𝑔𝑘+1 −
∥ 𝑔𝑘+1 ∥

2

𝑔𝑘
𝑇𝑑𝑘

𝑑𝑘 

The methods Fletcher and Reeves (FR) [32], Hisham- Khalil (KH) [12], Dai and Yuan (DY) [36], 

and Fletcher (CD) [33], have strong global convergence properties, but these methods have modest 

practical performance. While the methods Hestenes and Stiefel (HS) [35], and Polak and Ribiere 

(PRP) [34], are not always convergent, but they often have good computational properties see [37]. In 

order to obtain conjugate gradient methods with computational efficiency and good convergence 

properties, basically, the algorithms are found to avoid failure and to improve the performance of 

classical conjugated gradient algorithms. In order to accelerate the Fletcher (CD-CG) method, we use 

equation as follows 

Let 𝛾𝑘+1 = 1 + 𝜇𝑘+1 

Where 𝛾𝑘+1 and 𝜇𝑘+1 are two parameters, then 

𝑑𝑘+1 = −𝛾𝑘+1𝑔𝑘+1 −
∥ 𝑔𝑘+1 ∥

2

𝑔𝑘
𝑇𝑑𝑘

𝑑𝑘 

𝑑𝑘+1 = −(1 + 𝜇𝑘+1)𝑔𝑘+1 −
∥ 𝑔𝑘+1 ∥

2

𝑔𝑘
𝑇𝑑𝑘

𝑑𝑘 (9) 

We incorporate the second-order information to the search direction in (9) by assuming, the 

direction in (9) is parallel to the Newton direction i.e 

−𝐺𝑘+1
−1 𝑔𝑘+1 = −𝑔𝑘+1 − 𝜇𝑘+1𝑔𝑘+1 −

∥ 𝑔𝑘+1 ∥
2

𝑔𝑘
𝑇𝑑𝑘

𝑑𝑘 (10) 

Where 𝐺𝑘+1
−1   is the inverse Hessian matrix. Now suppose 𝐺𝑘+1

−1  is symmetric (𝐺𝑘+1
−1 = (𝐺𝑘+1

−1 )
𝑇
), 

positive definite and satisfies the Quasi-Newton condition i.e 

𝐺𝑘+1
−1 𝑦𝑘 = 𝑠𝑘 (11) 

Where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 multiply both sides of (10) by and considering 𝐺𝑘+1
−1  be symmetric and 

positive definite, then 

−(𝐺𝑘+1
−1 𝑦𝑘)

𝑇
𝑔𝑘+1 = −𝑦𝑘

𝑇𝑔𝑘+1 − 𝜇𝑘+1𝑦𝑘
𝑇𝑔𝑘+1 −

∥ 𝑔𝑘+1 ∥
2

𝑔𝑘
𝑇𝑑𝑘

𝑦𝑘
𝑇𝑑𝑘 

Use the relation given in (11) to get 
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−𝑠𝑘
𝑇𝑔𝑘+1 = −𝑦𝑘

𝑇𝑔𝑘+1 − 𝜇𝑘+1𝑦𝑘
𝑇𝑔𝑘+1 −

∥ 𝑔𝑘+1 ∥
2

𝑔𝑘
𝑇𝑑𝑘

𝑦𝑘
𝑇𝑑𝑘 

Divide both sides in the above equation by 𝑦𝑘
𝑇𝑑𝑘 then 

−
𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑑𝑘

= −𝛽𝑘+1
𝐻𝑆 − 𝜇𝑘+1𝛽𝑘+1

𝐻𝑆 + 𝛽𝑘+1
CD  (where  𝛽𝑘+1

𝐻𝑆 =
𝑔𝑘+1
𝑇 𝑦𝑘

𝑦𝑘
𝑇𝑑𝑘

 , and 𝛽𝑘+1
𝐶𝐷 = −

∥𝑔𝑘+1∥
2

𝑔𝑘
𝑇𝑑𝑘

) 

Or 

−
𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑑𝑘

= −(1 + 𝜇𝑘+1)𝛽𝑘+1
𝐻𝑆 + 𝛽𝑘+1

𝐶𝐷  

Or 

(1 + 𝜇𝑘+1)𝛽𝑘+1
𝐻𝑆 = 𝛽𝑘+1

𝐶𝐷 +
𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑑𝑘

 

∴ 𝛾𝑘+1 =
𝛽𝑘+1
𝐶𝐷

𝛽𝑘+1
𝐻𝑆 +

𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

 (12) 

Use this value for the 𝛾𝑘+1 in (9) then   

𝑑𝑘+1 = −𝛾𝑘+1𝑔𝑘+1 + 𝛽𝑘+1
𝐶𝐷 𝑑𝑘 (13) 

We call the algorithm defined in (12) and (13) as spectral Fletcher (SCD-CG) algorithm and we 

summarize it as the following algorithm SCD-CG. 

 
Algorithm (SCD-CG): 

step(1) : Initialization : select 𝑥1 ∈ 𝑅
𝑛, 𝜀 > 0 is a small positive real value and compute  

𝑑1 = −𝑔1, 𝛼1 = 1/∥∥𝑔1∥∥ and 𝑘 = 1 

step(2) : Test for convergence: If ∥∥𝑔𝑘∥∥ ≤ 𝜀 break 𝑥𝑘 is optimal solution else go to step(3). 

step(3) : Line search : calculate𝛼𝑘 satisfying the strong wolf conditions (6)  (7) and up to date the 

variable 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , calculate 𝑓𝑘+1, 𝑔𝑘+1, 𝑦𝑘 and 𝑠𝑘 . 

step(4) : Direction calculation : calculate 𝛾𝑘+1 from (12), if 𝛾𝑘+1 ≥ 1 or 𝛾𝑘+1 ≤ 0  set 𝛾𝑘+1 = 1 

and  𝑑𝑘+1 = −𝛾𝑘+1𝑔𝑘+1 + 𝛽𝑘+1
𝐶𝐷 𝑑𝑘 then 𝑑𝑘+1 = −𝛾𝑘+1𝑔𝑘+1 else 𝑑𝑘+1 = 𝑑 and 𝛼𝑘+1 = 𝛼𝑘 ∗

∥∥𝑑𝑘∥∥/∥∥𝑑𝑘+1∥∥, 𝑘 = 𝑘 + 1 go to step(2). 

 
4.1 Descent property 

In this part, we prove that our algorithm determines in equation (12) and (13) generates the descent 

direction for each iteration according to the following theorem. 
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Theorem:  

consider the algorithm defined in equation (3) where 𝑑𝑘 computed from (12) and (13). Assume 

that the step size 𝛼𝑘 satisfies the strong Wolfe conditions (6) and (7). Then the search directions 𝑑𝑘 

generated by the SCD-CG algorithm are descent for all k provided 𝑦𝑘
𝑇𝑔𝑘+1 > 0. 

 
Proof 

The prove is by indication, for k=1, 𝑑1 = −𝑔1 → 𝑔1
𝑇𝑑1 < 0,  . 

Now suppose 𝑔𝑘
𝑇𝑑𝑘 < 0   or  𝑔𝑘

𝑇𝑠𝑘 < 0 𝑠𝑘 = 𝛼𝑘𝑑𝑘 then for 𝑘 + 1 we have 

𝑑𝑘+1 = −(
𝛽𝑘+1
𝐶𝐷

𝛽𝑘+1
𝐻𝑆 +

𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1 + 𝛽𝑘+1
𝐶𝐷 𝑑𝑘 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −(

𝛽𝑘+1
𝐶𝐷

𝛽𝑘+1
𝐻𝑆 +

𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1
𝑇 𝑔𝑘+1 −

𝛼𝑘‖𝑔𝑘+1‖
2

𝛼𝑘𝑔𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑠𝑘 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −(

𝛽𝑘+1
𝐶𝐷

𝛽𝑘+1
𝐻𝑆 +

𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1
𝑇 𝑔𝑘+1 −

‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑠𝑘 

Divide both sides by 
‖𝑔𝑘+1‖

2

𝑔𝑘
𝑇𝑠𝑘

 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 = −

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2 (
𝛽𝑘+1
𝐶𝐷

𝛽𝑘+1
𝐻𝑆 +

𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1
𝑇 𝑔𝑘+1 − 𝑔𝑘+1

𝑇 𝑠𝑘 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2 (−

𝑦𝑘
𝑇𝑠𝑘

𝛼𝑘𝑔𝑘+1
𝑇 𝑦𝑘

𝛼𝑘‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

+
𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1
𝑇 𝑔𝑘+1 − 𝑠𝑘

𝑇𝑔𝑘+1 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2 (−

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

+
𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1
𝑇 𝑔𝑘+1 − 𝑠𝑘

𝑇𝑔𝑘+1 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −(−

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

+
𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2

𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

)𝑔𝑘+1
𝑇 𝑔𝑘+1 − 𝑠𝑘

𝑇𝑔𝑘+1 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −(−

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘
𝑠𝑘
𝑇𝑔𝑘+1

𝑦𝑘
𝑇𝑔𝑘+1

) − 𝑠𝑘
𝑇𝑔𝑘+1 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −(−

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘
𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

) − 𝑠𝑘
𝑇𝑦𝑘 

∵ 𝑠𝑘
𝑇𝑔𝑘+1 = 𝑠𝑘

𝑇𝑔𝑘+1 − 𝑠𝑘
𝑇𝑔𝑘 + 𝑠𝑘

𝑇𝑔𝑘 = 𝑠𝑘
𝑇𝑦𝑘 + 𝑠𝑘

𝑇𝑔𝑘 < 𝑠𝑘
𝑇𝑦𝑘 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −(−

𝑦𝑘
𝑇𝑠𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘
𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

) − 𝑠𝑘
𝑇𝑦𝑘 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

1

𝑦𝑘
𝑇𝑔𝑘+1

(−𝑦𝑘
𝑇𝑠𝑘𝑔𝑘+1

𝑇 𝑔𝑘+1 + 𝑔𝑘
𝑇𝑠𝑘𝑠𝑘

𝑇𝑦𝑘) − 𝑠𝑘
𝑇𝑦𝑘 

𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2
𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

(−𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘 − 𝑦𝑘
𝑇𝑔𝑘+1) 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

(−𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘 − 𝑦𝑘
𝑇𝑔𝑘+1)

‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘
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𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

(−𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘 − 𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑔𝑘)
‖𝑔𝑘+1‖

2

𝑔𝑘
𝑇𝑠𝑘

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

(−2𝑔𝑘+1
𝑇 𝑔𝑘+1 + 𝑔𝑘

𝑇𝑠𝑘 + 𝑔𝑘
𝑇𝑔𝑘)

‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

(−
2(𝑔𝑘+1

𝑇 𝑔𝑘+1)
2

𝑔𝑘
𝑇𝑠𝑘

+ 𝑔𝑘
𝑇𝑠𝑘

‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

+ 𝑔𝑘
𝑇𝑔𝑘

‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

) 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

(−
2(𝑔𝑘+1

𝑇 𝑔𝑘+1)
2

𝑔𝑘
𝑇𝑠𝑘

+ ‖𝑔𝑘+1‖
2 + 𝑔𝑘

𝑇𝑔𝑘
‖𝑔𝑘+1‖

2

𝑔𝑘
𝑇𝑠𝑘

) 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

‖𝑔𝑘+1‖
2 (−

2‖𝑔𝑘+1‖
2

𝑔𝑘
𝑇𝑠𝑘

+ 1 +
𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘
𝑇𝑠𝑘

) 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

‖𝑔𝑘+1‖
2 (1 +

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘
𝑇𝑠𝑘

−
2‖𝑔𝑘+1‖

2

𝑔𝑘
𝑇𝑠𝑘

) 

Use the Cuchy-Schuarz inequality then 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

‖𝑔𝑘+1‖
2 (1 +

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘
𝑇𝑠𝑘

−
2‖𝑔𝑘+1‖

2

𝑔𝑘
𝑇𝑠𝑘

)

= −
𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

‖𝑔𝑘+1‖
2 (1 +

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘
𝑇𝑠𝑘

− 2𝛽𝑘+1
𝐶𝐷 ) 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘
𝑇𝑔𝑘+1

‖𝑔𝑘+1‖
2 (1 +

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘
𝑇𝑠𝑘

− 2𝛽𝑘+1
𝐶𝐷 ) 

𝑠𝑘
𝑇𝑦𝑘 > 0  by Wolfe condition and 𝑦𝑘

𝑇𝑔𝑘+1 > 0 by assumption 

∴ 𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 

The proof is complete. 

 
5. COMPARISONS AND COMPUTATIONAL RESULTS 

This part presents the performance of Matlab 2021b implementation with hp laptop Ram 4GB, and 

hard 500GB of our new spectral conjugate gradient algorithm (SCD-CG) on a set of Fuzzy Nonlinear 

Equations taken from [7]. We compared the performance of this algorithm against the Fletcher 

algorithm (CD), and the algorithms were compared with the number of iterations, the optimal value of 

the function, and the optimal value of the variables as shown in Table (1). These algorithms are 

implemented with standard Wolfe conditions with 𝜌 = 0.1 and 𝜎 = 0.11 where the initial step-size 

𝛼 =
1

‖𝑔𝑘‖
 and initial guess for other iterations i.e. (𝑘 > 1) is 𝛼𝑘 = 𝛼𝑘−1

‖𝑑𝑘−1‖

𝑑𝑘
. In the all cases the 

stopping criterion is ‖𝑔𝑘+1‖ ≤ 10
−6 and maximum number of iteration is 2000. Our comparison 

includes the following. 

1- It:- Number of Iterations 

2- x-best:- optimal Variable 

3- f-best:- optimal Function Value 

Tables (1), show the details of the results for (SCD-CG) algorithms versus FR-CG algorithm. The 

numerical solutions were also plotted in Figs (1), (2), and (3). 
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Example 1: Consider the fuzzy nonlinear equation [7]  

(3,4,5)𝑥2 + (1,2,3)𝑥 = (1,2,3) 

Without any loss of generality, assume that x is positive, and then the parametric form of this 

equation is as follows: 

{
(3 + 𝑟)𝑥2(𝑟) + (1 + 𝑟)𝑥(𝑟) − (1 + 𝑟) = 0,

(5 − 𝑟)𝑥
2
(𝑟) + (3 − 𝑟)𝑥(𝑟) − (3 − 𝑟) = 0.

 

The above system needs initial values as follows. For 𝑟 = 1  

{
4𝑥2(1) + 2𝑥(1) − 2 = 0,

4𝑥
2
(1) + 2𝑥(1) − 2 = 0,

 

For 𝑟 = 0   

{
3𝑥2(0) + 𝑥(0) − 1 = 0,

5𝑥
2
(0) + 𝑥(0) − 3 = 0

 

With initial values 

𝑥0 = (𝑥(0), 𝑥(1), 𝑥(1), 𝑥(0)) = (0.434,0.5,0.5,0.681). 

 

Example 2: Consider the fuzzy nonlinear equation [7] 

(4,6,8)𝑥2 + (2,3,4) 𝑥 − (8,12,16) = (5,6,7) 

Without any loss of generality, assume that x is positive, and then the parametric form of this 

equation is as follows: 

{
(4 + 2𝑟)𝑥2(𝑟) + (2 + 𝑟)𝑥(𝑟) − (3 + 3𝑟) = 0,

(8 − 2𝑟)𝑥
2
(𝑟) + (4 − 𝑟)𝑥(𝑟) − (9 − 3𝑟) = 0.

 

The above system needs initial values as follows. For 𝑟 = 1   

{
6𝑥2(1) + 3𝑥(1) − 6 = 0,

6𝑥
2
(1) + 3𝑥(1) − 6 = 0,

 

For 𝑟 = 0 

{
4𝑥2(0) + 2𝑥(0) − 3 = 0,

8𝑥
2
(0) + 4𝑥(0) − 9 = 0,

 

With initial values  

𝑥0 = (𝑥(0), 𝑥(1), 𝑥(1), 𝑥(0)) = (0.651,0.7808,0.7808,0.8397). 

 

Example 3: Consider the fuzzy nonlinear equation [7] 

(1,2,3)𝑥3 + (2,3,4)𝑥2 + (3,4,5) = (5,8,13)  

Without any loss of generality, assume that x is positive, and then the parametric form of this 

equation is as follows: 

{
(1 + 𝑟)𝑥3(𝑟) + (2 + 𝑟)𝑥2(𝑟) − (2 + 2𝑟) = 0,

(3 − 𝑟)𝑥
3
(𝑟) + (4 − 𝑟)𝑥

2
(𝑟) − (8 − 4𝑟) = 0.

 

The above system needs initial values as follows. For 𝑟 = 1   

{
2𝑥3(1) + 3𝑥2(1) − 4 = 0,

2𝑥
3
(1) + 3𝑥

2
(1) − 4 = 0,

 

For 𝑟 = 0   

{
𝑥3(0) + 2𝑥2(0) − 2 = 0,

3𝑥
3
(0) + 4𝑥

2
(0) − 8 = 0.

 

With initial values  

𝑥0 = (𝑥(0), 𝑥(1), 𝑥(1), 𝑥(0)) = (0.76,0.91,0.91,1.06) . 
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Table (1) of numerical results for examples above 

 

 

Figure 1.  Drawing Solution to Example 1. using SCD-CG Algorithm 

 

 

Examples 
CD ALGORITHM SCD-CG ALGORITHM 

It x-best f-best It x-best f-best 

1 8 

0.4343 

0.5000 

0.5000 

0.5307 

8.1709e-014 9 

0.4343    

0.5000    

0.5000 

0.5307 

2.7933e-020 

2 14 

0.6514 

0.7808 

0.7808 

0.8397 

5.9506e-010 9 

0.6514 

0.7808 

0.7808 

0.8397 

1.8868e-011 

3 135 

0.8393 

0.9108 

0.9108 

1.0564 

1.4978e-008 10 

0.8393 

0.9108 

0.9108 

1.0564 

1.6416e-011 
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Figure 2:  Drawing Solution to Example 2. using SCD-CG Algorithm 

 

 

Figure 3:  Drawing Solution to Example 3. using SCD-CG Algorithm 

 
6. CONCLUSIONS 

The main purpose of this article was to apply the spectral conjugate gradient algorithm that can be 

used to solve fuzzy nonlinear equations as an alternative to the usual analytical technique. The 

ambiguous nonlinear problem was transformed into a parametric formula and then solved using 

spectral conjugate gradient algorithms. The numerical results showed that the Spectral Fletcher 

algorithm (SCD-CG) performs very encouragingly in all the tested problems that have been solved, 

and this algorithm can also be used in other fields such as artificial neural networks, fuzzy neural 

networks, swarming algorithms, as well as in solving optimization problems. 
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