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Introduction 

Summability theory is important for analysis, applied 
mathematics and engineering sciences. The purpose of 
this theory is to bring an appropriate value to the 
indefinite divergent series. Various summability methods 
have been defined by some researchers to find the value. 
Some of these methods are Cesàro [1], Abel [2], Nörlund 
[3], Riesz [4], matrix summability [5]. 

A significant increase began in studies on the 
summability theory in the second half of the 19th century. 
In 1890, Cesàro published a paper on the multiplication of 
series [1]. Das gave the definition of absolute summability 
[6]. Then Kishore and Hotta defined the summability 
factor [7]. The definition of  


M  summability was given 

by Tanović-Miller [8]. Later Bor defined  
,N p  and 

 
, ;N p  summability of an infinite series [9, 10]. The 

definition of  
, ;M p  summability of an infinite series 

was defined by Özarslan and Öğdük [11]. The definition of 

 
 , , ;M p  summability was given by Özarslan and 

Karakaş [12]. In this paper a theorem on absolute matrix 
summability is obtained using  

 , , ;M p  summability 

method. Now we give some definitions related to the 
summability which are used in this article. 

Definition 1 [13].  Let ( )s  be partial sums of the infinite 

series m . ( )p  is a sequence such that
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Definition 2 [9].  The series m  is called summable

 
,N p ,  1 , if 
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Definition 3 [8].  Let  ( )vM m  be a normal matrix, i.e, a 

lower triangular matrix of nonzero diagonal entries. By 

 ( )vM m , a transformation from sequence  ( )s s  to 

  ( )Ms M s  can be constituted where 
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The series m  is called summable 
M ,  1 , if 
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Definition 4 [14].  The series m  is called summable

 
,M p ,  1 , if 
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Definition 5 [12].  The series m  is called summable

 
 , , ;M p ,  1 ,   0  and   is a real number if 
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Here, if we choose  1  and   0 ,  
 , , ;M p

summability reduces to  
,M p summability. Also, by 

taking  1 ,   0  and  1p  for   ,  
 , , ;M p

summability reduces to 
M  summability. 

Known Results 

The following lemmas and theorem on 
M

summability of the series   m X  have been proved

by Sulaiman in [15]. 
Lemma 1. If   1  is convergent, then ( )  is non-

negative and decreasing,  log (1)O , and

    2(1 / (log ) )O .  

Lemma 2. If    1 X  is convergent, such that

     ( )O   as  ,  (9) 
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( )v
v
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then 
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Theorem 1. Let ( ) , ( )X  be two sequences such that 

 


 





 1

1

X  is convergent, and the conditions (9), (10) are 

satisfied. Let  ( )vM m  be a normal matrix with non-

negative entries satisfying 

  0 1 , 0,1,...,m  (14) 

     1, ,  for 1,v vm m v  (15) 

   (1), 1 ( ),m O O m  (16) 
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, then the 

series   m X  is summable 
M ,  1 . 

Lemma 3. According to Theorem 1, we have 
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Main Result 

There are many studies on absolute matrix 
summability of infinite series [16-29]. This study provides 
a generalization of above mentioned theorem to 

 
 , , ;M p  summability under some suitable conditions. 

For the convenience of the reader, we give some further 
notations. 
Let  ( )vM m  be a normal matrix. The definition of two 

lower semi-matrices ( )vM m  and  
( )vM m   are as

follows. 



  


  , , 0,1,...v i
i v

m m v  (21) 

and 

 
       00 00 1,00 , , 1,2,...v v vm m m m m m (22) 

It is well-known that 
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vv v v
v v

M s m s m m (23) 

and 
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Now, let’s give the main theorem. 

Theorem 2. Let ( )  and ( )X  be two sequences such 

that  


 





 1

1

X  is convergent. The conditions (9), (10), 

(14)-(17) and 
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are satisfied. 

If 
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 where ( )vu  as in 

Theorem 1, then the series   m X  is summable 

 
 , , ;M p ,  1 ,   0  and        ( 1) 0 . 

 
Proof of Theorem 2 
 

Let     X  and ( )W  be M transform of the series 

 m . By (23) and (24), we get 
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Using Abel's transformation, we obtain the following. 
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It is sufficient to prove 
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We first apply Hölder’s inequality to obtain 
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By using (17), (25), (16) and (26), we get 
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In that case, we obtain 
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We now apply Hölder's inequality to obtain 
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Hence proof of the theorem is completed. 
 
Conclusion 
 

If we choose  1 ,   0  and  1p  for   , 

then we obtain Theorem 1. In that case, (25) reduces to 

  (1)m O  (first part of (16)). In addition, (26)-(28) are 

automatically satisfied. 
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