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Abstract 
The purpose of this study is to give a shifted Chebyshev polynomial approximation for the 
solution of Duffing-van der Pol equation involving linear integral term (DEILI). For this 
purpose, a new Chebyshev collocation method is introduced. This method is based on 
taking the truncated shifted Chebyshev expansion of the function. This method based on 
first taking the truncated Chebyshev series of the solution function in the DEILI and then, 
transforms DEILI and given conditions into a matrix equation and then, we have the 
system of nonlinear algebraic equation using collocation points. Then, solving the system 
of algebraic equations we have the coefficients of the truncated Chebyshev series. In 
addition, examples that illustrate the pertinent features of the method are presented, and 
the results of study are discussed. 
 

 
Lineer İntegral Terim İçeren Duffing Denkleminin Shifted 
Chebyshev Polinomları ile Nümerik Çözümleri 
 

Anahtar kelimeler 
Duffing-Van der Pol 
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denklemi; Shifted 

Chebyshev 
Polinomları; 

Chebyshev serisi; 
Shifted Chebyshev 
polinom çözümleri; 
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Özet 
Bu çalışmanın amacı linear terim içeren Duffing-van der Pol denkleminin shifted Chebyshev 
polinomları yardımı ile yaklaşık çözümlerini sunmaktır. Bu amaçla Chebyshev sıralama 
metodu verilmiştir. Metodun ana karekteristiği verilen denklemi kesilmiş Chebyshev 
serisinin katasyılarının içeren bir denklem sistemine indirgemesidir. Bu sistem çözülerek 
kesilmiş Chebyshev serisinin katsayıları bulunur. Dolayısıyla yaklaşık çözüm elde edilir. 
Ayrıca, metodun uygulanabilirlini göstermek için örnekler sunulmuştur. 

© Afyon Kocatepe Üniversitesi 

 

1.Introduction 

Duffing equation is a mathematical model 
to describe a classical oscillator in a 
double-well by a periodical driven, which 
has been widely investigated in chaotic 
phenomena (Mickens, 1981; 
Guckenheimer and Holmes, 1983). It arises 

in a variety of different scientific fields such 
as periodic orbit extraction, non-uniformity 
caused by an infinite domain, nonlinear 
mechanical oscillators, prediction of 
diseases (Ahmad and Alghamdi,2007; Tang, 
1998). (Ahmad and Alghandi, 2008) 
presented the existence and uniquenes
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solution of the Duffing equation involving 
both integral and non-integral forcing 
terms with separated boundary conditions 
by a generalized quasilinearization 
technique. The numerical solutions of the 
Duffing equation with two-point boundary 
conditions have been investigated by many 
researchers (Yao,2009; Geng,2011; 
Geng,2009). 
In this paper, we consider the Duffing 
equation involving linear integral, which 
can be written as 

)()(),(

)',,()(')(''

0

tgdssystk

yytftyty
t
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





10  t       (1) 

with the initial conditions 

  )0(')0( 10 yy   

and   )1(')1( 10 yy                        (2) 

where  ,,,,, 1010 and   are real 
constant.  
The aim of this study is to get solution as 
truncated Chebyshev series defined by 

 


N

n
nnN tTaty

0

* )(')( ,   

)cos()(* ntTn  , cos12 t             (3)           

where )(* tTn   denotes the shifted 
Chebyshev polynomials of the first kind; 

 '  denotes a sum whose first term is 

halved; )0( Nnan    are unknown 
Chebyshev coefficients, and N is chosen 
any positive integer. 
 
2. Preliminaries and notations 

In this section, we state some basic results 
about polynomial approximations. These 
important properties will enable us to 
solve the Duffing equations. Polynomials 
are the only functions that the computer 
can evaluate exactly, so we make 
approximate functions RR  by 

polynomials. We consider real-valued 
functions on the compact interval ],[ ba : 

Rbaf ],[:  

and we denote the set all real-valued 
polynomials on ],[ ba  by  P, that is 





N

i

i
i xaxpbaxp

0
)(],,[,  

and  

},))(deg(:)({  ZNNxpxpN  

The uniform norm (or maximum norm) is 
defined by 

)(max
],[

xff
bax

 . 

 
Definition 2.1 For a given continuous 
function ],[ baCf  , a best 
approximation polynomial of degree N  is 
a polynomial NN Pfp )(*  such that 

}:min{)(*
NN Pppffpf 


 

where the uniform norm is defined by   

)(max
],[

xff
bax

 . 

Theorem 2.1 (Rivlin,1969; Davis,1963) Let 
],[ baCf  . Then for any 0 , there 

exist a polynomial p for which  




pf  

The theorem states that any continuous 
function f  can be approximated 
uniformly by polynomials, no matter how 
badly behaved f  may be on ],[ ba . For 
phrasing; for any continuous function on 

],[ ba , f , there exist a sequence of 
polynomial NNNp )(  which converges 
uniformly towards f  such that 
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0lim 
 NN

pf . 

Theorem 2.2 (Rivlin,1969; Davis,1963; 
Boyd, 2000; Atkinson, 2009; Mason and 
Handscomb, 2003) For any ],[ baf   and 

0N  the best approximation polynomial 
)(* fp N  exists and is unique. 

 
Definition 2.2 Given an integer 1N  a 
grid is a set of )1( N  points 

NiixX  0)(  in ],[ ba  such that 

bxxxa N  10 . Then points 

Niix 0)(  are called the nodes of the grid. 
 
Theorem 2.3 (Rivlin,1969; Davis,1963; 
Boyd, 2000; Atkinson, 2009; Mason and 
Handscomb, 2003) Given a function 

],[ baCf   and a grid of )1( N  nodes 

NiixX  0)( , there exist a unique 

polynomial )( fI XN  of degree N  such that  

)())(( ii
X
N xfxfI  ,  Ni 0  

)( fI XN  is called the interpolant (or 
interpolating polynomial) of f through the 

grid X . The interpolant )( fI XN  can be 
express in the Lagrange form: 





N

i

X
ii

X
N xxffI

0
)()()(   

where )(xX
i  is the i-th Lagrange cardinal 

polynomial associated with the grid X : 


 




N

jij ji

iX
i xx

xxx
,0

)( ,  Ni 0 . 

The Lagrange cardinal polynomials are such 
that  









ji
ji

x ijj
X
i 0

1
)(  ,  Nji  ,,0 . 

The best approximation polynomials 
)(* fpN  are also an interpolant of f  at 

1N  nodes and the error in given by : 


 )())(1()( * fpfXfIf NN

X
N

where )(XN  is the Lebesque constant 

relative to the grid X  





N

i

X
ibaxN xX

0],[
)(max:)(   

The Lebesque constant contains all the 
information on the effects of the choice of 
X on 


 )( fIf X

N . 

 
Theorem 2.4 (Rivlin,1969; Davis,1963; 
Boyd, 2000; Atkinson, 2009; Mason and 
Handscomb, 2003) For any choice of the 
grid X , there exist a constant 0C  such 
that 

CNxN  )1ln(2)(


. 

Corollary 2.1 (Rivlin,1969; Davis,1963; 
Boyd, 2000; Atkinson, 2009; Mason and 
Handscomb, 2003) Let  )(XN  be 
Lebesque constant relative to the grid X, 
then  

 )(XN  as n . 

In a similar way, by a uniform grid, 

NeN
X

N

N ln
2~)(

1

   as  N . 

This means that for any choice of type 
sampling of ],[ ba , there exists a 
continuous function ],[ baCf   such that 

)( fI XN  does not convergence uniformly 
towards f . Let assume that the function 
f is sufficiently smooth to have derivatives 

at least up to order )1( N , with )1( Nf  

continuous i.e. ],[1 baCf N  . 
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Definition 2.3 The nodal polynomial 
associated with the grid is the unique 
polynomial of degree )1( N  and leading 
coefficient 1 whose zeroes are the )1( N  
nodes of X : 




 
N

i
i

X
N xxxw

0
1 )()( . 

Theorem 2.5 (Rivlin,1969; Davis,1963; 
Boyd, 2000; Atkinson, 2009; Mason and 
Handscomb, 2003) If ],[1 baCf N  , then 
for any grid X  of )1( N  nodes, and for 
any ],[ bax , the interpolation error is  

)(
)!1(

)())(()( 1

)1(

xw
N
fxfIxf X

N

N
X
N 




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
 

where  ],[)( bax    and )(1 xw X
N  

nodal polynomial associated with the grid 
X .  

 
Definition 2.5 The grid NiixX  0)(  such 

that the ix ’s are the )1( N  zeroes of the 
Chebyshev polynomial of degree  )1( N  
is called the Chebyshev-Gauss (CG) grid. 
 
Theorem 2.7 (Rivlin,1969; Davis,1963; 
Boyd, 2000; Atkinson, 2009; Mason and 
Handscomb, 2003) The polynomials of 
degree )1( N  and leading coefficient 1, 
the unique polynomial which has the 
smallest uniform norm on ],[ ba  is the 

)1( n th Chebyshev polynomial divided by 
N2 . 

 
2.1 Chebyshev polynomials 

Definition 2.11 The Chebyshev polynomials 
)(xTn  of the first kind is a polynomials in 

x  of degree n , defined by relation (Mason 
and Handscomb,2003) 

nxTn cos)(  ,  when cosx  
If the range of the variable x  is the interval 

]1,1[ , the range the corresponding 
variables   can be taken ],0[  . We map 

the independent variable x   in ]1,0[  to the 
variable s  in ]1,1[  by transformation  

12  xs  or )1(
2
1

 sx  

and this lead to the shifted Chebyshev 
polynomial of the first kind )(* xTn  of 
degree n  in x  on ]1,0[  given by [13] 

)12()()(*  xTsTxT nnn . 

It is of course possible to defined )(* xTn , 

like )(xTn , directly by a trigonometric 
relation. Indeed, we obtained  

nxTn 2cos)(*   when 2cosx . 

The leading coefficient of nx  in )(* xTn  to 

be 122 n . These polynomials have the 
following properties (Mason and 
Handscomb,2003): 
 
i) )(1

* xT n   has exactly 1n  real zeroes 
on the interval ]1,0[ . The i -th zero inx ,  of 

,for ni ,...,1,0  

))
)1(2

)1)(2(cos(1(
2
1

, 



n
inx in


         (4) 

ii) It is well known that the relation 
between the powers nx  and the second 
kind Chebyshev polynomials )(* xTn  is for 

10  x , 

)(
2

'2 *

0

12 xT
k
n

x kn

n

k

nn













                       (5)                  

where  '  denotes a sum whose first 
term is halved. 
 
3. Fundamental relations 

In this section, we give the matrix forms of 
each term in the Eq.(1) and conditions. 
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3.1 Matrix representation of the 
differential part 

We consider the solution )(xy  of Eq. (1) 

and its derivative )()( xy k
N  defined by a 

truncated Chebyshev series (3).Then, we 
can put series in the matrix form, for 

2,1,0k  

AT )()( * tty  ,  AT )()( )(*)( tty kk       (6) 

where 

)](...)()([)( **
1

*
0

* tTtTtTt NT
 

T
Naaa ]...[ 10A

 
By using the expression (5) and taking 
n=0,1,…,N we find the corresponding 
matrix relation as follows 

TT tt ))(())(( *TDX    and             

Ttt DTX )()( *                                            (7) 

where 

 ]1[)( Nttt X  
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Then, by taking into account (7) we obtain 
Ttt ))(()( 1*  DXT                                    (8) 

and  
Tkk tt ))(())(( 1)()(*  DXT  ,  2,1,0k  

To obtain the matrix )(t(k)X  in terms of 
the matrix )(tX , we can use the following 
relation: 

Ttt BXX )()()1(   

21)2( ))(()()( TT)( ttt BXBXX           (9) 

where 
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Consequently, by substituting the matrix 
forms (8) and (9) into (6) we have the 
matrix relation for 2,1,0k  

ADBX 1)( )()(  Tkk ty                          (11) 

Moreover, substituting the zeroes of 
Chebyshev polynomials in Eq.(4) into Eq. 
(6), we have  
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ADBX
AT

1

)()(

)()(

)()(



Tk

i

i
k

i
k

t
tty

                                (12) 

or compact form 
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Similarly, substituting the zeroes of 
Chebyshev polynomial into )(ty r , we 
obtained the matrix representation  

YYY 1
__

)(  rr                                            (14) 
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We can write  


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For obtained matrix form of my ,  Zm  

and 'yy n ,  Zn , using relation (14) and 
(15), we construct the following relations 

ADXAT 1
____

2 ))(()()()()(  T
iiii ttytyty   (16a) 

ADXAT 12
____

23 ))(()()()()(  T
iiii ttytyty      (16b) 

  

ADXAT 11
____

1 ))(()()()()(   T
i

m
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m
i

m ttytyty   (16c) 

and 

ADBXAT 1
____

)()()()(')(  T
iii ttyty  (16d) 
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iii ttyty   (16e) 

  
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i

n
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Thus we can write  


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3.2 Matrix representation of integral part 

Let assume that ),( stK   can be expanded 
to univariate Chebyshev series with respect 
to t  as follows: 





N

r
rsr sTtfstK

0
).()(),(                        (18) 

Then the matrix representations of the 
kernel function ),( txK s  become 

),()(),( ststK TTF                           (19) 
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where 

])()()()([)( 210 tftftftft NF . 

Substituting the relations (6) , (15) and (18) 
in integral part, we obtained 

ADQDF

ADXXDF

DXXDF

ATTF

11

1

0

1

1

0

1

0

)()(

)()()()(

A)()()()(

)()()()(





























T

T
t

T

T
t

T

t
T

t

dssst

dssst

dsssttI

  (20) 

where   


t

T dsss
0

)()( XXQ , 

and  

Nji
ji

tq
ji

ij ,...,1,0,,
1

][
1







Q . 

 
3.3 Matrix representation of conditions 

On the other hand, the matrix form for 
conditions (2) can be written as 

 ADBXDX 1
1

1
0

10

)()0())(0(

)0(')0(
 


TT

yy



    

][][ 00100 auuu N  A          (21a) 

and 

 ADBXDX 1
1

1
0

10

)()1())(1(

)0(')0(
 


TT

yy




  

][][ 11110 buuu N  A             (21b) 

4. Method of solution 

Firstly, we construct the fundamental 
matrix equation corresponding to Eq.(1). 
For computing the Chebyshev coefficient 

matrix A  numerically, the zeros of the 
Chebyshev polynomial defined by in Eq.(4) 
are put into the matrix form of Eq.(1). We 
obtain 
 











r

m

T
i

m
im

T
i

T
i

tt

tt

0

11
____

112

))(())((

)()()()(

ADXATP

DBXDBX 
 

)()()(

)()())((

11
0

1
____

i
T

i

s

n

T
i

n
in

tgt

Btt










ADQDF

ADXATH
        (22) 

and then system can be written in the 
matrix form  

 112 )()(   TT DEXBDXB  





r

m

Tm
m

0

11
____

)()( DXATP  





s

n

Tn
n

0

1
____

)()( DXBATH               

GADQDF 



 

________
1

_____
1 )( T                       (23) 

where 










































000

000
000
000

Ε  

























)(000

0)(00
00)(0
000)(

2

1

0

Nm

m

tm

m

m

t

t
x

t

P

P
P

P

P










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























)(000

0)(00
00)(0
000)(

2

1

0

Nn

n

n

n

t

t
t

t

H

H
H

H

H











  

 

























)(000

0)(00
00)(0
000)(

2

1

0

Nt

t
t

t

F

F
F

F

F











 

 

     



































1

1

1

1

____
1

000

000
000
000

D

D
D

D

D











   

 

  

























)(000

0)(00
00)(0
000)(

2

1

0

Nt

t
t

t

Q

Q
Q

Q

Q











    

 

 



































1

1

1

1

_______
1

)(

)(
)(
)(

)(

T

T

T

T

T

D

D
D
D

D


 

























)(

)(
)(
)(

2

1

0

Ntg

tg
tg
tg



G  

Hence, the fundamental matrix equation 
(23) corresponding to Eq. (1) can be 
written in the form 

GWA   or  ][ GW;   

 ][ , jiwW , Nji ,...,1,0,                  (24) 

where      

________
1

_____
1

0

1
____

0

11
____

112

)()()(

)()(

)()(























T
s

n

Tn
n

r

m

Tm
m

TT

DQDFDXBATH

DXATP

DEXBDXBW

To obtain the solution of Eq. (1) under 
conditions (2), by replacing the row 
matrices (21a)-(21b) by the last 2 rows of 
the matrix (24), we have the new 
augmented matrix, 

 

[ W~ ; ]
~

G =





























buuu
auuu
tfwww

tfwww
tfwww

N

N

NNNNN

N

N

;
;

)(

)(;
)(;

11110

00100

222120

111110

000100













 

So, we obtain a system of ( 1)N   
nonlinear algebraic equations with 
unknown shifted Chebyshev coefficients. 
Thus, we obtain the Chebyshev polynomial 
solution. 
We can easily check the accuracy of the 
method. Since the truncated shifted 
Chebyshev series (3) is an approximate 
solution of Eq.(1), when the solution 

)(tyN  and its derivatives are substituted 
in Eq.(1), the resulting equation must be 
satisfied approximately; that is (Body, 
2000)   for ,...2,1,0],1,0[  qtt q  

0)()(),(

)',,()(')('')(

0





 q

t

q

qqqq

tgdssystk

yytftytyxE
q



 

4.1 Error analysis and convergence 

Since, 1*
1 

NT , we conclude that if we 

choose the grid nodes Niix 0)(  to be zero 
the (N+1) zeroes of the Chebyshev 
polynomials *

1NT , we have 
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121 2
1
  N

X
Nw  

and this is the smallest possible value. In 
particular, from Theorem 2.5, for any 

]1,0[1 NCy  we have (Rivlin,1969; 
Davis,1963; Body,2000) 




 

 1
12 )!1(2

1 N
NN y

N
yy       (25) 

If )1( Ny  is uniformly bounded, the 
convergence of the interpolation Ny  
towards y  when N  is then 
extremely fast. Also the Lebesgue constant 
associated with the Chebyshev-Gauss grid 
is small 

)1ln(2~)(  NXN 
 as N  

This is much better than uniform grids and 
close to the optimal value. 
 

 
 
5. Illustrative example 

In this section, several numerical examples 
are given to illustrate the accuracy and 
effectiveness properties of the method and 
all of them were performed on the 
computer using a program written in 
Maple 13.  
Example 1 Consider the following Duffing 
equation involving linear integral term for 

10  t , 

)()()'1('''
0

2 tgdssysyyyy
t

   

with 

0)1(')1(3,0)0(')0(2  yyyy  

where  
 
 
 
 

2

34342221234

)1(24
204)5402283215()426023(8)1172(66)12(13272618169)(

e
tttetttettetteettttg

ttt







The exact solution of this problem is 

)1(2
)83(112)(

e
teety

t




 . 

By applying the presented method for 
different values of N , we obtain the 
numerical solutions by Maple 13. Taking 

12,10,8N  the numerical results are 
shown in Table 1. 
The values of )()( tytyN Ne   at 
selected points. The graph of numerical 
solutions and absolute errors is shown in 
Figure 1 and 2 respectively.
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Table 1. Error analysis of Example 1 for the x value 

   
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Exact solution
N=5
N=6
N=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
x 10-4

Ne=5
Ne=6
Ne=7

 
           Fig.1. Numerical and exact solution                        Fig.2. Error function of Example 1 for                   
                     of the Example 1 for N=5,6,7 .                                  various N.         
                                                                                       
Example 2. We consider the following 
problem: 

)()()(

)'1('''

0

2

2

tgdssyst

yyyyy
t






 

where 

64)1()1(2
4

)1(5
4

)(

23

44






ttt

tttg
 

 with conditions       

    0)1(')1(3,0)0(')0(2  yyyy . 

Solving this problem for 4N  and we get 
the approximate solution 2

4 )1(  ty  
which is the exact solution of this problem. 
 
5. Conclusion 

A new method for the solution of the 
Duffing-van der Pol equation has been 
proposed and investigated. The method 
was illustrated by accurately solving 
Duffing-van der Pol equations. Also, 
efficiency of this method has been shown 
in the examples. The shifted Chebyshev 
polynomials are used to solve the Duffing-
van der Pol equation numerically. A 
considerable advantage of the method is 
that the shifted Chebyshev polynomials 
coefficients of the solution are found very 
easily by using computer programs. Shorter 
computation time and lower operation 

x Exact 
Solution 

 
N=5 

 
Ne=5 

Present Method 
N=6                  Ne=6 

 
N=7 

 
Ne=7 

0.0 1.000000 0.999999 0.100E-9 0.999999 0.100E-9 1.000000 0.000E-0 
0.1 1.105170 1.105170 0.525E-7 1.105170 0.341E-8 1.105170 0.144E-9 
0.2 1.221402 1.221403 0.274E-6 1.221402 0.772E-8 1.221402 0.736E-10 
0.3 1.349858 1.349858 0.178E-6 1.349858 0.438E-8 1.349858 0.196E-9 
0.4 1.491824 1.491824 0.290E-6 1.491824 0.600E-8 1.491824 0.490E-9 
0.5 1.648721 1.648720 0.278E-6 1.648721 0.270E-7 1.648721 0.893E-9 
0.6 1.822118 1.822119 0.110E-6 1.822118 0.412E-7 1.822118 0.860E-9 
0.7 2.013752 2.013755 0.240E-5 2.013752 0.549E-7 2.013752 0.870E-9 
0.8 2.225540 2.225536 0.419E-5 2.225541 0.795E-7 2.225540 0.596E-8 
0.9 2.459603 2.459564 0.387E-4 2.459601 0.117E-5 2.459603 0.217E-8 
1.0 2.718281 2.718140 0.141E-3 2.718274 0.735E-5 2.718281 0.313E-7 
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count results in reduction of cumulative 
truncation errors and improvement of 
overall accuracy. Illustrative examples are 
included to demonstrate the validity and 
applicability of the technique, and 
performed on the computer using a 
program written in Maple 9. To get the 
best approximating solution of the 
equation, we take more forms from the 
shifted Chebyshev expansion of functions; 
that is, the truncation limit N must be 
chosen large enough. n addition, an 
interesting feature of this method is to find 
the analytical solutions if the equation has 
an exact solution that is a polynomial 
functions. Illustrative examples with the 
satisfactory results are used to 
demonstrate the application of this 
method. Suggested approximations make 
this method very attractive and 
contributed to the good agreement 
between approximate and exact values in 
the numerical example. 
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