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Abstract

The purpose of this study is to give a shifted Chebyshev polynomial approximation for the
solution of Duffing-van der Pol equation involving linear integral term (DEILI). For this
purpose, a new Chebyshev collocation method is introduced. This method is based on
taking the truncated shifted Chebyshev expansion of the function. This method based on
first taking the truncated Chebyshev series of the solution function in the DEILI and then,
transforms DEILI and given conditions into a matrix equation and then, we have the
system of nonlinear algebraic equation using collocation points. Then, solving the system
of algebraic equations we have the coefficients of the truncated Chebyshev series. In
addition, examples that illustrate the pertinent features of the method are presented, and
the results of study are discussed.

Lineer integral Terim iceren Duffing Denkleminin Shifted
Chebyshev Polinomlari ile Niimerik Coziimleri

Anahtar kelimeler
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1.Introduction

Duffing equation is a mathematical model
to describe a classical

Ozet

Bu ¢alismanin amaci linear terim iceren Duffing-van der Pol denkleminin shifted Chebyshev
polinomlari yardimi ile yaklasik ¢6ziimlerini sunmaktir. Bu amagla Chebyshev siralama
metodu verilmistir. Metodun ana karekteristigi verilen denklemi kesilmis Chebyshev
serisinin katasyilarinin igceren bir denklem sistemine indirgemesidir. Bu sistem ¢ozllerek
kesilmis Chebyshev serisinin katsayilari bulunur. Dolayisiyla yaklasik ¢6zim elde edilir.
Ayrica, metodun uygulanabilirlini géstermek icin 6rnekler sunulmustur.

© Afyon Kocatepe Universitesi
in a variety of different scientific fields such
as periodic orbit extraction, non-uniformity
caused by an infinite domain, nonlinear
mechanical oscillators, prediction of
diseases (Ahmad and Alghamdi,2007; Tang,
1998). (Ahmad and Alghandi, 2008)

oscillator in a

double-well by a periodical driven, which
has been widely investigated in chaotic
phenomena (Mickens, 1981;
Guckenheimer and Holmes, 1983). It arises

presented the existence and uniquenes
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solution of the Duffing equation involving
both integral and non-integral forcing
terms with separated boundary conditions
by a generalized quasilinearization
technique. The numerical solutions of the
Duffing equation with two-point boundary
conditions have been investigated by many
researchers (Yao,2009; Geng,2011;
Geng,2009).

In this paper, we consider the Duffing
equation involving linear integral, which
can be written as

y'(O+p' O+ .y

’ 0<t<1l (1)
+ [kt $)y(s)ds = g(t)
0
with the initial conditions
2,9(0)- 4,y (0) =a
and o y(M)+py'(N)=p (2)

where ¥, 4,,4,, t,, ;. and S are real

constant.
The aim of this study is to get solution as
truncated Chebyshev series defined by

(O =3a,T0),
T (¢) =cos(n@), 2t—1=cosé (3)

where T (%) denotes the shifted
Chebyshev polynomials of the first kind;
Z' denotes a sum whose first term is
halved; a, (0<n<N)

Chebyshev coefficients, and N is chosen
any positive integer.

are unknown

2. Preliminaries and notations

In this section, we state some basic results
about polynomial approximations. These
important properties will enable us to
solve the Duffing equations. Polynomials
are the only functions that the computer
can evaluate exactly, so we make
approximate  functions R —>R by

polynomials. We consider real-valued
functions on the compact interval [a,b]:

f:la,p] > R

and we denote the set all real-valued
polynomials on [a,b] by P, that is

N
Vp e P, Vx €la,b], p(x) = Zaixi

i=0

and

Py ={p(x):deg(p(x)) <N, NeZ"}

The uniform norm (or maximum norm) is
defined by

|71, = max] ).

x€la,b]

Definition 2.1 For a given continuous
function f e(la,b], a best

approximation polynomial of degree N is
a polynomial p} (f) € P, such that

| =Py )|, =min{f -], : p e P}

where the uniform norm is defined by

|71, = max]f ).

x€la,b]

Theorem 2.1 (Rivlin,1969; Davis,1963) Let
f €(Cla,b]. Then for any & >0, there
exist a polynomial p for which

|7 =pl. <e

The theorem states that any continuous
function f can be approximated

uniformly by polynomials, no matter how
badly behaved f may be on [a,b]. For
phrasing; for any continuous function on
[a,b], f, there exist a sequence of

polynomial (p,)y.y Which converges

uniformly towards f such that

AKU FEMUBID 15 (2015) 021301



Numerical Solution of Duffing Equations Involving Linear Integral Term..., Anapali vd..

tm]l~ p. =0

Theorem 2.2 (Rivlin,1969; Davis,1963;
Boyd, 2000; Atkinson, 2009; Mason and
Handscomb, 2003) For any f €[a,b] and

N >0 the best approximation polynomial
p v (f) exists and is unique.

Definition 2.2 Given an integer N >1 a
grid is a set of (N +1) points

X =(X;)gicn in [a,b] such that
a<x,<x, <--<x, <b.Then points

(X, )<<y are called the nodes of the grid.

Theorem 2.3 (Rivlin,1969; Davis,1963;
Boyd, 2000; Atkinson, 2009; Mason and
Handscomb, 2003) Given a function
f €(la,b] and a grid of (N +1) nodes

X =(X;)oqcn, there exist a unique

polynomial I,f,( (f) of degree N such that
IV (N)(x)=f(x,), 0<i<N

I{(f) is called the interpolant (or
interpolating polynomial) of f through the
grid X . The interpolant 7;(f) can be
express in the Lagrange form:

IOEWICATIC)

where (7 (x) is the i-th Lagrange cardinal
polynomial associated with the grid X :

N

tf@ =11 T4 0<i<N.

J=0i%j X Xj

The Lagrange cardinal polynomials are such
that

L
ff(xj)zal.j:{ =) 0<ij<N.

The best approximation polynomials
py(f) are also an interpolant of f at
N +1 nodes and the error in given by :

=i, ca+a, o) =pi ),

where A, (X) is the Lebesque constant

relative to the grid X
> X
A (X)=max > |/7 (x
V(0 = max ST (o)

The Lebesque constant contains all the
information on the effects of the choice of

X on Hf—l,’j(f)”w.

Theorem 2.4 (Rivlin,1969; Davis,1963;
Boyd, 2000; Atkinson, 2009; Mason and
Handscomb, 2003) For any choice of the
grid X, there exist a constant C > 0 such
that

Ay(x) > ZIn(N +1)—C.
T

Corollary 2.1 (Rivlin,1969; Davis,1963;
Boyd, 2000; Atkinson, 2009; Mason and

Handscomb, 2003) Let A, (X) be
Lebesque constant relative to the grid X,
then

Ay(X)—> o0 as n— o,

In a similar way, by a uniform grid,

N+1

Ag(X)~—
v () eNln N

as N > w.

This means that for any choice of type
sampling of [a,b], there exists a
continuous function f € C[a,b] such that
I (f) does not convergence uniformly
towards f . Let assume that the function
£ is sufficiently smooth to have derivatives
at least up to order (N +1), with £

continuousi.e. f € C""'[a,b].
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Definition 2.3 The nodal polynomial
associated with the grid is the unique
polynomial of degree (N +1) and leading

coefficient 1 whose zeroes are the (N +1)
nodes of X :

W§+1(X)=H(x—xi)-

Theorem 2.5 (Rivlin,1969; Davis,1963;
Boyd, 2000; Atkinson, 2009; Mason and

Handscomb, 2003) If f € C""'[a,b], then
for any grid X of (N +1) nodes, and for
any x €[a,b], the interpolation error is

X _ f(N+])(§) X
S =1y (f)x) = WWNH (x)
where ¢ =¢(x)€[a,b] and wy,, (x)

nodal polynomial associated with the grid
X.

Definition 2.5 The grid X = (X, ),y such
that the x,’s are the (NN +1) zeroes of the

Chebyshev polynomial of degree (N +1)
is called the Chebyshev-Gauss (CG) grid.

Theorem 2.7 (Rivlin,1969; Davis,1963;
Boyd, 2000; Atkinson, 2009; Mason and
Handscomb, 2003) The polynomials of
degree (N +1) and leading coefficient 1,
the unique polynomial which has the
smallest uniform norm on [a,b] is the

(n +1) th Chebyshev polynomial divided by
2",

2.1 Chebyshev polynomials

Definition 2.11 The Chebyshev polynomials
T, (x) of the first kind is a polynomials in

x of degree n, defined by relation (Mason
and Handscomb,2003)

T,(x)=cosn®, when x = cosf

If the range of the variable x is the interval
[-L1], the range the corresponding

variables 6 can be taken [0,7]. We map

the independent variable x in [0,1] to the
variable s in [—1,1] by transformation

1
s=2x—-1or x:E(s+1)

and this lead to the shifted Chebyshev
polynomial of the first kind 7, (x) of
degree n in x on [0,1] given by [13]

T, (x)=T,(s)=T,(2x~1).

It is of course possible to defined T, (x),
like T (x), directly by a trigonometric
relation. Indeed, we obtained

T, (x) = cos2n6 when x = cos’ 0.

The leading coefficient of x” in T, (x) to

be 2*"'. These polynomials have the
following properties (Mason and
Handscomb,2003):

i) T"wa(x) has exactly n+1 real zeroes
on the interval [0,1]. The i-th zero x,,; of
Jfori=0.,1,...,n

n—i)+1)x

L cos(
5=y eost=0m T B @

ii) It is well known that the relation
between the powers x" and the second
kind Chebyshev polynomials Tn* (x) is for
0<x<1,

n 2 N
X" = 2—2n+] Z'(kn]Tn_k (x) (5)

k=0

where Z' denotes a sum whose first

term is halved.

3. Fundamental relations

In this section, we give the matrix forms of
each term in the Eq.(1) and conditions.
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3.1 Matrix representation of the
differential part

We consider the solution y(x) of Eq. (1)

and its derivative yN(k)(x) defined by a

truncated Chebyshev series (3).Then, we
can put series in the matrix form, for
k=012

(k)

YO =T OA, YO =T (DA (6

where
T () =[T, ()T, () ... Ty (1]

A=[a,a,..a,]

By using the expression (5) and taking
n=0,1,..,N we find the corresponding
matrix relation as follows

(X(0)" =D(T"(1))" and
X)) =T (t)D" (7)

where

X()=[1¢...t"]

Then, by taking into account (7) we obtain

T () =X®OD")" (8)

and

(T ) =X @ODd™"H", k=0,1,2

To obtain the matrix X¥(¢) in terms of
the matrix X(¢), we can use the following
relation:

X (1) = X(@)B”
X? (@) =X"0OB" =X(®(B")*  (9)

where
- i
1
B=|0 2 0 0 (10)

0 0 0 N 0]

Consequently, by substituting the matrix
forms (8) and (9) into (6) we have the
matrix relation for £ =0,1,2

y® =X(B*(D")"A (11)

Moreover, substituting the zeroes of
Chebyshev polynomials in Eq.(4) into Eq.
(6), we have

y(t)=T()A and

y(k)(ti) = T(k)(ti)A

(12)
=X(t,)B*(D")"A

or compact form

Y =TA and

Y(k)(ti) = T(k)(ti )A

(13)
=XB*(D")'A

where

_T(to)_ W)

T@) | _| @)

_T(tN)_ Wty)

yP(ty)

y® — y(k) )

P (ty)
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xo % s xo
xl xl s xl

1 xy x,\,2 e Xy |
Similarly, substituting the zeroes of
Chebyshev polynomial intoy” (), we
obtained the matrix representation

Y =(Y)'Y (14)
where
yr(to)
Yr: yr(t])
y(ty)
) 0 -0
y=| O @ 0
0 0 - wty)
and
Y=TA (15)
where
T(,) 0 0
Fo| 0 T@) 0
0 0 - T(ty)
A 0 0
_ 0 A 0
A= )
0 O A

We can write

(BBOED AU

DWHRCIZONG

For obtained matrix form of y", me Z"

and y"y', ne Z", using relation (14) and
(15), we construct the following relations

Y2(t) = y(t,)y(t,) = (TA)X(,)D') ' A (16a)

Y ()= 2 (t)¥(1) = (TAPX(@,)D")'A  (16b)

Y() =y (@)p() = (TAY X)) A (16¢)
and

»(t)y'(t,) = (TA)X(z,)B(D") " A (16d)

¥2(t)y'(t,) =(TA)’X(,)B(D") "' A (16e)

Y'(t)y'(2,) =(TA)"X(z,)B(D")" A (16f)
Thus we can write

fle,p,y) = mZ:OPm (T A" X(,)D)'A 1)

+ ZH ((TA)'X(t,)B(D")" A

n=0

3.2 Matrix representation of integral part

Let assume that K(¢,s) can be expanded

to univariate Chebyshev series with respect
to ¢ as follows:

K(t.5)= 1, (T, (s). (18

Then the matrix representations of the
kernel function K (x,?) become

K(t,s)=F(OT (s), (19)
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where

FO =0/0 f©O f,O - fy®]

Substituting the relations (6) , (15) and (18)
in integral part, we obtained

1(t)= jF(t)TT (T(s)Ads

- J; F(nD'X" (s)X(s)(D") ™" Ads (20)

=F@)D™ U X’ (s)X(s)dsJ(DT YA
=F@®)D'Q(D")"'A

where

Q= jXT (s)X(s)ds,

and

i+j+1

Q:[qij]: 5 i,j:(),l,...,]\],

i+j+1

3.3 Matrix representation of conditions

On the other hand, the matrix form for
conditions (2) can be written as

Ay y(0) = 2,'(0) =
XD -2 XO)BD") " A

=[uy Uy u,y JA =[a] (21a)

and
#oy(0) = 11,y'(0) =
[, XD + 1 XOBD) ' |

=[u, u, u,y JA =[b] (21b)

4. Method of solution

Firstly, we construct the fundamental
matrix equation corresponding to Eq.(1).
For computing the Chebyshev coefficient

matrix A numerically, the zeros of the
Chebyshev polynomial defined by in Eq.(4)
are put into the matrix form of Eq.(1). We
obtain

X(,)B*(D") +7X(1,)B(D")"
+3P, (1)(TA)" X(,)(D') " A

+ 3 H, (1)(TA) X(1,)BDT)" A

n=0

+F()D'QD') ' A=g(t)

(22)

and then system can be written in the
matrix form

[XB*(D")"' + EXB(D')"'

+ ipm (TA)"'X(D")™

m=0
+> H,(TA)"XB(D")"
n=0
+FD'Q(D")' [A=G (23)
where
o _
0 »

0 Px) 0

m

0 0 0 - P@]
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_HH(ZO) 0 0 0
0 Hl1(tl) 0 0
H=| o 0 H®G) - 0
|0 0 0 H,(ty) |
[F(,) O 0 0 |
0 F@) O 0
F=| 0 0 F(,) 0
| 0 0 0 F(ty) ]
D' 0 0 0 |
o D' 0 0

Qt) 0 0 0
0 Q) 0 0
Q: 0 0 Q(tz) 0
L0 0 0 - Q1
(™)™ [ 2(t,) ]
(D7) g(1)

M) = (") | G=|gl(t,)

(D7) ] L g(ty) ]

Hence, the fundamental matrix equation
(23) corresponding to Eq. (1) can be
written in the form

WA =G or [W;G]
W=[w,],i,j=0L.,N (24)

where

W=XB*(D")" + EXB(D")"

+ il’m (TA)"'X(MD")"!

+> H,(TA)"XB(D")" +FD' Q(D")"
n=0

To obtain the solution of Eq. (1) under

conditions (2), by replacing the row

matrices (21a)-(21b) by the last 2 rows of

the matrix (24), we have the new

augmented matrix,

[W;G]=
Woo Wou wor 5 S(E)
Wig Wi o Wiy ;o f(@)
Wyao Wy 0 Wyay o fty,)
Ugo Ugp 0 Ugy a
L Yo Uy e Uy 5 b i

So, we obtain a system of (N+1)

nonlinear  algebraic  equations  with
unknown shifted Chebyshev coefficients.
Thus, we obtain the Chebyshev polynomial
solution.

We can easily check the accuracy of the
method. Since the truncated shifted
Chebyshev series (3) is an approximate
solution of Eq.(1), when the solution
vy (¢) and its derivatives are substituted

in Eq.(1), the resulting equation must be
satisfied approximately; that is (Body,
2000) for¢ = t, €[0,1], ¢ =0,12,.

E(x,)=]y"(t))+ ' (t) + [t 3,5

+Jzk(tq,s)y(s)ds—g(tq) =0

4.1 Error analysis and convergence

£

T

v.1ll =1, we conclude that if we

0

Since,

choose the grid nodes (x;,),.,. to be zero
the (N+1) zeroes of the Chebyshev
polynomials T'y,,, we have
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and this is the smallest possible value. In
particular, from Theorem 2.5, for any
yeC¥'[0,]] we have (Rivlin,1969;
Davis,1963; Body,2000)

1

y=yul, < m”y

N+1

(25)

If  y™Y is uniformly bounded, the
convergence of the interpolation y,

towards y when N —> o is then

extremely fast. Also the Lebesgue constant
associated with the Chebyshev-Gauss grid
is small

Ay(X) ~2In(N+1) as N — oo
T

This is much better than uniform grids and
close to the optimal value.

5. lllustrative example

In this section, several numerical examples
are given to illustrate the accuracy and
effectiveness properties of the method and
all of them were performed on the
computer using a program written in
Maple 13.

Example 1 Consider the following Duffing
equation involving linear integral term for
O0<t<l1,

Yy y(+ )+ [ y(s)ds = g (1)
0

with
2y(0)-»'(0)=0, 3y()+y'1)=0

where

—Ot* 41617 +181 +726e* —132e"" (17 +2t +1) — 66e' (2t> =Tt +11) + 8> (3t* + 21> + 60t + 42) + e(15¢* + 321> — 228t + 540) + 204

gn=

The exact solution of this problem is

e +(3-8e)t
2(0+e)

y(t) =2

By applying the presented method for
different values of N, we obtain the
numerical solutions by Maple 13. Taking

N =810,12 the numerical results are
shown in Table 1.

The values of Ne=|y(t)—yN(t)| at
selected points. The graph of numerical

solutions and absolute errors is shown in
Figure 1 and 2 respectively.
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Table 1. Error analysis of Example 1 for the x value

X Exact Present Method
Solution N=5 Ne=5 Ne=6 N=7 Ne=7
0.0 1.000000 0.999999 0.100E-9 0.999999 0.100E-9 1.000000 0.000E-0
0.1 1105170 1.105170 0.525E-7 1.105170 0.341E-8 1.105170 0.144E-9
0.2 1.221402 1.221403 0.274E-6 1.221402 0.772E-8 1.221402 0.736E-10
0.3 1.349858 1.349858 0.178E-6 1.349858 0.438E-8 1.349858 0.196E-9
0.4 1491824 1.491824 0.290E-6 1.491824 0.600E-8 1.491824  0.490E-9
0.5 1.648721 1.648720 0.278E-6 1.648721 0.270E-7 1.648721 0.893E-9
0.6 1822118 1.822119 0.110E-6 1.822118 0.412E-7 1.822118 0.860E-9
0.7 2.013752 2.013755 0.240E-5 2.013752 0.549E-7 2.013752 0.870E-9
0.8 2.225540 2.225536 0.419E-5 2.225541 0.795E-7 2.225540 0.596E-8
0.9 2459603 2.459564 0.387E-4 2.459601 0.117E-5 2.459603 0.217E-8
1.0 2.718281 2.718140 0.141E-3 2.718274 0.735E-5 2.718281 0.313E-7

Frry
154

Fig.1. Numerical and exact solution
of the Example 1 for N=5,6,7 .

Example 2. We consider the following
problem:

Y'Y+ + (14 )

+ [t =) y(s)ds = g(0)

where

g=1 -2

+2(t =1 +(t—-1)" -4t +6

with conditions

2y(0)=»'(0) =0, 3y(H)+»'(1) = 0.

Fig.2. Error function of Example 1 for
various N.

Solving this problem for N = 4 and we get
the approximate solution y, =(t—1)
which is the exact solution of this problem.

5. Conclusion

A new method for the solution of the
Duffing-van der Pol equation has been
proposed and investigated. The method
was illustrated by accurately solving
Duffing-van der Pol equations. Also,
efficiency of this method has been shown
in the examples. The shifted Chebyshev
polynomials are used to solve the Duffing-
van der Pol equation numerically. A
considerable advantage of the method is
that the shifted Chebyshev polynomials
coefficients of the solution are found very
easily by using computer programs. Shorter
computation time and lower operation

AKU FEMUBID 15 (2015) 021301
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count results in reduction of cumulative
truncation errors and improvement of
overall accuracy. lllustrative examples are
included to demonstrate the validity and
applicability of the technique, and
performed on the computer using a
program written in Maple 9. To get the
best approximating solution of the
equation, we take more forms from the
shifted Chebyshev expansion of functions;
that is, the truncation limit N must be
chosen large enough. n addition, an
interesting feature of this method is to find
the analytical solutions if the equation has
an exact solution that is a polynomial
functions. lllustrative examples with the
satisfactory  results are used to
demonstrate the application of this
method. Suggested approximations make
this method very attractive and
contributed to the good agreement
between approximate and exact values in
the numerical example.
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