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Abstract − As is known, semiconductors are insulators under normal conditions but can become 

conductive with external excitation. Considering the effects of acting on these materials, the 

number of free electrons and the electrical conductivity will increase with increasing 

temperature. The increase in the concentration of free electrons in the semiconductor can be 

shown as the increase in electrical conductivity. If a semiconductor is exposed to an electric field 

with increasing concentration, we can have an idea about how the number of free electrons or 

the speed of free electrons will be affected. It is well known that it is necessary to calculate two-

parameter Fermi functions to solve the properties of kinetic effects and electron transport 

phenomena in semiconductors. Effective methods have been developed for the calculation of 

two-parameter Fermi functions in literature. In this study, analytical calculations for the Lorenz 

number and the carrier concentration of the GaAs semiconductor were made using the two-

parameter Fermi function. 

Subject Classification (2020):  

1. Introduction 

Thermoelectric effects observed in various materials, such as metals, semiconductors, and 

superconductors, occur when a conductor with free temperature carriers is exposed to an electric field 

under temperature change. The analysis of thermoelectric effects is widely used to study the physical 

properties of materials [1-12]. Due the fact that developments in determining thermal and electrical 

properties in solid state materials have a significant role in industrial revolution, there has been an 

increase in the study of thermoelectric effects in materials. The most known thermoelectric effects are 

the Joule, Seebeck, Thomson, and Peltier effects in literature. Also, the Lorenz number is the coefficient 

which determines the thermal conductivity with respect to Wiedemann- Franz Law. It is well known 

that depending on temperature the Lorenz number deviate significantly from its limit value especially 

in non-degenerated semiconductors [13-17]. In the 1960s, many studies were carried out to examine 

the thermoelectric and thermomagnetic properties of semiconductors, to understand the variation of 

the Lorenz number and carrier concentration with temperature, the type of energy spectrum, the 

properties of the band structure and their effects on the scattering character. The use of thermoelectric 

 
1ebrucopuroglu@gmail.com (Corresponding Author) 
1Department of Physics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey 
  Article History: Received: 22 Oct 2021 — Accepted: 07 Dec 2021 — Published: 31 Dec 2021 

 

Journal of New Results in Science 

https://dergipark.org.tr/en/pub/jnrs  

Research Article 

Open Access 

 
E-ISSN:1304-7981 https://doi.org/10.54187/jnrs.1013381 

VOLUME 10:

NUMBER 3:

YEAR 2021:

http://dergipark.gov.tr/jnrs

jnrs@gop.edu.tr

https://orcid.org/0000-0002-4363-5730
https://dergipark.org.tr/en/pub/jnrs
https://doi.org/10.54187/jnrs.1013381


90 

 

Çopuroğlu / JNRS / 10(3) (2021) 89-97 

coefficients to determine the changes in Lorenz number and carrier concentration is essential in this 

study. 

There is a group of semiconductors in which the conduction band has spherical symmetry but cannot 

be accurately described by known dispersion laws. Therefore, scientists have been interested in 

deriving formulas for kinetic coefficients under the most general assumptions about the shape of the 

region and scattering mechanisms. As a result of these studies, the formulas of the fundamental kinetic 

coefficients are derived with the help of a two-parameter Fermi function by B.M. Askerov [10] for the 

first time. In this study, an alternative analytical method for evaluating Lorenz number and carrier 

concentration is suggested by using the two-parameter Fermi function. As an application of the given 

approach, the calculations have been performed for the GaAs semiconductor. 

2. Material Method  

2.1. Analytical Investigation of Two-Parameter Fermi Function 

Fermi distribution functions with one-, two- and three-parameters can be used to define the kinetic 

coefficients of the semiconductor [10-13]. However, it is necessary to use two-parameter Fermi 

integrals for solutions involving both thermal and electric effects. 

Accurate analytical formulas of the two-parameter Fermi functions are of great importance in evaluating 

problems related to solid state physics, especially kinetic effects and the theory of transport phenomena 

in semiconductors [12]. The physical properties of carriers and the relationships of semiconductors in 

non-parabolic energy bands are usually reduced to solving the two-parameter Fermi distribution 

function for any degree of degeneration. Therefore, the correct analysis and interpretation of this 

function are important issues that need to be studied. Both numerical and analytical solutions are 

available for solving the Fermi function. The two-parameter Fermi integral can be defined as [12]: 

𝐼𝑛,𝑘
𝑚 (, 𝛽) = ∫ (−

𝜕𝑓0(𝑥,)

𝜕𝑥
)
𝑥𝑚(𝑥 + 𝛽𝑥2)𝑛

(1 + 2𝛽𝑥)𝑘
 𝑑𝑥

∞

0

 (2.1) 

Here,  =
𝜉

𝑘0𝑇
 is the reduced chemical potential, 𝛽 =

𝑘0𝑇

𝜀𝑔
  is the amount of deviation from the parabolic, 

𝜀𝑔 is forbidden energy bandgap, 𝜉 is the chemical potential, 𝑘0 is the Boltzman temperature and  𝑓0(𝑥,) 

is the Fermi distribution function defined as follows: 

𝑓0(𝑥,) =
1

1 + 𝑒𝑥−
 (2.2) 

Effective methods have been developed for the calculation of two-parameter Fermi functions. Zawadzki 

et al. [18] proposed a general procedure for calculating two-parameter Fermi functions for values of 

integral parameters. Here, −5 ≤ 𝜂 ≤ 20 and 0 ≤ 𝛽 ≤ 1. Askerov used the numerical method to 

approximate two-parameter Fermi functions. This proposed approach is correct in the region of η ≥ 10 

strongly degenerate and is written as [11, 12]: 

𝐼𝑛,𝑘
𝑚 (𝜂, 𝛽) ≈

𝜂𝑛+𝑚(1 + 𝛽𝜂)𝑛

(1 + 2𝛽𝜂)𝑘
{1 +

𝜋2

6
[
(𝑛 + 𝑚)(𝑛 +𝑚 − 1)

𝜂2
+
2𝑛(𝑛 +𝑚)𝛽

𝜂(1 + 𝛽𝜂)
−
4𝑘(𝑛 + 𝑚)𝛽

𝜂(1 + 2𝛽𝜂)
 

(2.3) 

+
𝑛(𝑛 − 1)𝛽2

(1 + 𝛽𝜂)2
−

4𝑛𝑘𝛽2

(1 + 2𝛽𝜂)(1 + 𝛽𝜂)
+
4𝑘(𝑘 + 1)𝛽2

(1 + 2𝛽𝜂)2
]} for (

𝑘0𝑇

𝜁
) << 1 
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In the non-degenerate case, the two-parameter Fermi functions can be evaluated by using the following 

given formula: 

𝐼𝑛,𝑘
𝑚 (𝜂, 𝛽) ≈ 𝑒𝜂 𝛤 (𝑛 +𝑚 + 1)

(1 + 𝑛𝛽 +𝑚𝛽)𝑛

(1 + 2𝑛𝛽 + 2𝑚𝛽)𝑘
  for 𝜂 ≤ −5 and 𝑛 ≠ 0 or 𝑚 ≠ 0 (2.4) 

Here Γ(α) is the well-known Gamma function. Zawadzki examined different methods used in the 

evaluation of two-parameter Fermi functions [18]: 

𝐼𝑛,𝑘
𝑚 (𝜂, 𝛽) = ∑𝑎𝑝𝛽

𝑝𝐹𝑛+𝑚+𝑝−1(𝜂)

∞

𝑝=0

 (2.5) 

and 

𝐼𝑛,𝑘
𝑚 (𝜂, 𝛽) = ∑∑(−1)𝑟−1𝑎𝑝𝛽

𝑝
𝑒𝑟𝜂

𝑟𝑛+𝑚

∞

𝑟=1

∞

𝑝=0

𝑓𝑜𝑟𝜂 < 1 (2.6) 

Here, 

𝑎𝑝 = (𝑛 +𝑚 + 𝑝)!∑
[𝑛(𝑛 − 1). . . (𝑛 − 𝑝 + 𝑙 + 1)][−𝑘(−𝑘 − 1). . . (−𝑘 − 𝑝 − 𝑙 + 1)]2𝑙

(𝑝 − 𝑙)! 𝑙!

𝑝

𝑙=0

 (2.7) 

𝐹𝑝(𝜂) is the Fermi function and defined as: 

𝐹𝑝(𝜂) = ∫
𝑒𝑥−𝜂𝑥𝑝 

𝑒𝑥−𝜂 + 1
𝑑𝑥

∞

0

 (2.8) 

The Fermi functions are well-known and can be studied with standard techniques without numerical 

difference in its use [19-21]. One of the efficient methods is the using following binomial expansion 

method for the evaluation of Fermi functions [22]: 

(𝑥 ± 𝑦)𝑛 =

{
 
 

 
 ∑(±1)𝑚

∞

𝑚=0

𝑓𝑚(𝑛)𝑥
𝑛−𝑚𝑦𝑚   for noninteger 𝑛

∑(±1)𝑚
𝑛

𝑚=0

𝑓𝑚(𝑛)𝑥
𝑛−𝑚𝑦𝑚   for integer 𝑛

 (2.9) 

Here 𝑓𝑚(𝑛) is the binomial function: 

𝑓𝑚(𝑛) =

{
 

 
𝑛(𝑛 − 1)… (𝑛 −𝑚 + 1)

𝑚!
   for integer 𝑛

(−1)𝑚𝛤(𝑚 − 𝑛)

𝑚!𝛤(−𝑛)
                 for noninteger 𝑛

 (2.10) 

By considering equation (2.9), the series expansion formulas for two-parameter Fermi functions were 

obtained following as [21]: 

for 𝑛 ≠ 0, 𝑘 ≠ 0,𝑚 ≠ 0 
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𝐼𝑛𝑘
𝑚 (𝜂, 𝛽)

= 𝑒−𝜂 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−𝑘)

𝑁

𝑖=0

{
 
 
 
 
 

 
 
 
 
 ∑𝑓𝑗(𝑛) [𝛽

𝑖+𝑗2𝑖𝑃𝑚+𝑛+𝑖+𝑗 (𝜂,
1

2𝛽
)

𝑛

𝑗=0

+𝛽𝑗−𝑘−𝑖2−𝑘−𝑖𝑄𝑚+𝑛−𝑘−𝑖+𝑗 (𝜂,
1

2𝛽
)]               for integer 𝑛 

𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑗(𝑛) [𝛽
𝑖+𝑗2𝑖𝑃𝑚+𝑛+𝑖+𝑗 (𝜂,

1

2𝛽
)

𝑁

𝑗=0

+𝛽𝑛−𝑗−𝑘−𝑖2−𝑘−𝑖𝑄𝑚+2𝑛−𝑘−𝑖+𝑗 (𝜂,
1

2𝛽
)]       𝑓𝑜𝑟 noninteger 𝑛 

  
(2.11) 

for  𝑛 = 0, 𝑘 = 0 and 𝑚 ≠ 0 

𝐼00
𝑚(𝜂, 𝛽) = 𝑒−𝜂

{
  
 

  
 𝑙𝑖𝑚
𝑁→∞

∑
𝑓𝑖(−2)

(1 + 𝑖)𝑚+1
[𝑒𝑖𝜂(−1)𝑚+1𝛾(𝑚 + 1,−(1 + 𝑖)𝜂)

𝑁

𝑖=0

+𝑒𝜂(2+𝑖)𝛤(𝑚 + 1, (1 + 𝑖)𝜂)]𝑓𝑜𝑟𝜂 > 0

𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−2)
𝑒𝜂(2+𝑖)𝛤(𝑚 + 1)

(1 + 𝑖)𝑚+1

𝑁

𝑖=0

𝑓𝑜𝑟𝜂 < 0

 (2.12) 

for 𝑛 ≠ 0, 𝑘 = 0,𝑚 = 0 and 𝜂 > 0 

𝐼𝑛0
0 ( 𝜂, 𝛽) = 𝑒−𝜂

{
 
 

 
 ∑𝑓𝑖(𝑛)

𝑛

𝑖=0

𝛽𝑖𝐿𝑛+𝑖(𝜂)      for integer 𝑛

𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(𝑛)

𝑁

𝑖=0

(𝛽𝑖𝑃𝑛+𝑖 (𝜂,
1

𝛽
) + 𝛽𝑛−𝑖𝑄2𝑛−𝑖 (𝜂,

1

𝛽
))       for noninteger 𝑛

 (2.13) 

for 𝑛 ≠ 0, 𝑘 = 0,𝑚 = 0 and 𝜂 < 0 

𝐼𝑛0
0 ( 𝜂, 𝛽) = 𝑒−𝜂

{
 
 
 
 

 
 
 
 ∑𝑓𝑖(𝑛)

𝑛

𝑖=0

𝛽𝑖 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑗(−2)

𝑁

𝑗=0

𝑒(2+𝑗)𝜂𝛤(𝑛 + 𝑖 + 1)

(1 + 𝑗)𝑛+𝑖+1
𝑓𝑜𝑟𝑛integer

𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(𝑛)

𝑁

𝑖=0

∑𝑓𝑗(−2)

𝑁

𝑗=0

𝑒(2+𝑗)𝜂 [
𝛽𝑖𝛾(𝑛 + 𝑖 + 1, (1 + 𝑗)/𝛽)

(1 + 𝑗)𝑛+𝑖+1

+
𝛽𝑛−𝑖𝛤(2𝑛 − 𝑖 + 1, (1 + 𝑗)/𝛽)

(1 + 𝑗)2𝑛−𝑖+1
] 𝑓𝑜𝑟𝑛noninteger

 (2.14) 

for 𝑛 = 0, 𝑘 < 0,𝑚 = 0 
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𝐼0𝑘
0 ( 𝜂, 𝛽) = 𝑒−𝜂

{
 
 
 
 

 
 
 
 
∑𝑓𝑖(𝑘)

𝑘

𝑖=0

(2𝛽)𝑖 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑗(−2)

𝑁

𝑗=0

(
𝑒−𝑖𝜂(−1)𝑖+1𝛾(𝑖 + 1,−(1 + 𝑗)𝜂)

(1 + 𝑗)𝑖+1

+
𝑒(2+𝑗)𝜂𝛤(𝑖 + 1, (1 + 𝑗)𝜂))

(1 + 𝑗)𝑖+1
)                                   for 𝜂 > 0

∑𝑓𝑖(𝑘)

𝑘

𝑖=0

(2𝛽)𝑖 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑗(−2)

𝑁

𝑗=0

𝑒(2+𝑖)𝜂𝛤(𝑖 + 1)

(1 + 𝑗)𝑖+1
     for 𝜂 < 0

 (2.15) 

for 𝑛 ≠ 0, 𝑘 < 0,𝑚 = 0 

𝐼𝑛𝑘
0 ( 𝜂, 𝛽) = 𝑒−𝜂

{
 
 
 
 

 
 
 
 
∑𝑓𝑖(𝑛)

𝑛

𝑖=0

𝛽𝑖∑𝑓𝑗(𝑘)

𝑘

𝑗=0

(2𝛽)𝑗 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑙(−2)

𝑁

𝑙=0

(
𝑒−𝑙𝜂(−1)𝑛+𝑖+𝑗+1

(1 + 𝑙)𝑛+𝑖+𝑗+1

× 𝛾(𝑛 + 𝑖 + 𝑗 + 1,−(1 + 𝑙)𝜂)+
𝑒(2+𝑙)𝜂𝛤(𝑛 + 𝑖 + 𝑗 + 1, (1 + 𝑙)𝜂))

(1 + 𝑙)𝑛+𝑖+𝑗+1
)     for 𝜂 > 0

∑𝑓𝑖(𝑛)

𝑛

𝑖=0

𝛽𝑖∑𝑓𝑗(𝑘)

𝑘

𝑗=0

(2𝛽)𝑗 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑙(−2)

𝑁

𝑙=0

𝑒(2+𝑙)𝜂𝛤(𝑛 + 𝑖 + 𝑗 + 1)

(1 + 𝑙)𝑛+𝑖+𝑗+1
      for 𝜂 < 0

  (2.16) 

The auxiliary functions 𝑃𝑛(𝑝, 𝑞), 𝑄𝑛(𝑝, 𝑞) and 𝐿𝑛(𝑝)  occurring in Eqs. (2.11) to (2.16) are expressed 

through the special functions and can be written as, respectively: 

for 𝑝 > 0 

𝑃𝑛(𝑝, 𝑞) = 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−2)

𝑁

𝑖=0

{
 
 

 
 (
(−1)𝑛+1𝑒−𝑖𝑝𝛾(𝑛 + 1,−(1 + 𝑖) 𝑝)

(1 + 𝑖)𝑛+1
+ 𝑒(2+𝑖)𝑝[𝑝𝑛+1𝐸−𝑛((1 + 𝑖)𝑝)

−𝑞𝑛+1𝐸−𝑛((1 + 𝑖)𝑞)])                                     for 𝑝 ≤ 𝑞

(−1)𝑛+1𝑒−𝑖𝑝𝛾(𝑛 + 1,−(1 + 𝑖) 𝑞)

(1 + 𝑖)𝑛+1
               for 𝑝 > 𝑞

 (2.17) 

𝑄𝑛(𝑝, 𝑞) = 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−2)

𝑁

𝑖=0

{
 
 

 
 (
𝑒(2+𝑖)𝑝𝛤(𝑛 + 1, (1 + 𝑖) 𝑝)

(1 + 𝑖)𝑛+1
+ 𝑒−𝑖𝑝[𝑞𝑛+1𝐸−𝑛(−(1 + 𝑖)𝑞)

−𝑝𝑛+1𝐸−𝑛(−(1 + 𝑖)𝑝)])                    for 𝑝 > 𝑞

𝑒(2+𝑖)𝑝𝛤(𝑛 + 1,−(1 + 𝑖) 𝑞)

(1 + 𝑖)𝑛+1
              for 𝑝 ≤ 𝑞

 (2.18) 

for 𝑝 < 0 

𝑃𝑛(𝑝, 𝑞) = 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−2)

𝑁

𝑖=0

𝑒(2+𝑖)𝑝𝛾(𝑛 + 1, (1 + 𝑖) 𝑞)

(1 + 𝑖)𝑛+1
 (2.19) 

𝑄𝑛(𝑝, 𝑞) = 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−2)

𝑁

𝑖=0

𝑒(2+𝑖)𝑝𝛤(𝑛 + 1, (1 + 𝑖) 𝑞)

(1 + 𝑖)𝑛+1
 (2.20) 

 

and 



94 

 

Çopuroğlu / JNRS / 10(3) (2021) 89-97 

𝐿𝑛(𝑝) = 𝑙𝑖𝑚
𝑁→∞

∑𝑓𝑖(−2)

𝑁

𝑖=0

(
(−1)𝑛+1𝑒−𝑖𝑝𝛾(𝑛 + 1,−(1 + 𝑖) 𝑝)

(1 + 𝑖)𝑛+1
+
𝑒(2+𝑖)𝑝𝛤(𝑛 + 1, (1 + 𝑖) 𝑝)

(1 + 𝑖)𝑛+1
) (2.21) 

where 𝛤(𝛼) and 𝛤(𝛼, 𝑥) are the incomplete Gamma functions defined by [22]  

𝛤(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡
∞

0

 (2.22) 

and 

𝛤(𝛼, 𝑥) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡
∞

𝑥

 (2.23) 

𝛾(𝛼, 𝑥) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡
𝑥

0

 (2.24) 

In this study, the suggested formulas (2.11-2.16) for the two-parameter Fermi function has been used 

in Lorenz number and carrier concentration calculations.  

2.2. The Definition of Lorenz Number and Carrier Concentration of a Semiconductor 

As is known, the carrier concentration in the conduction band is shown as follows [10-12]: 

𝑛 = ∫ 𝑓(𝐸)𝑔(𝐸)𝑑𝐸
𝐸𝑤𝑝

𝐸𝑐

 (2.25) 

𝑛 = ∫
(4𝜋2𝑚𝑒

∗/ℎ2)
3
2(𝐸 − 𝐸𝑐)

1/2

1 + 𝑒
𝐸−𝐸𝐹
𝑘𝑇

𝐸𝑤𝑝

𝐸𝑐

 (2.26) 

By the use of two-parameter Fermi function 𝐼𝑛𝑘
𝑚 (𝜂, 𝛽), the carrier concentration can be defined as [23]: 

𝑛 =
(2𝑚𝑛𝑘𝐵𝑇)

3
2

3𝜋2ℏ3
𝐼3
2
,0

0 (𝜂, 𝛽). (2.27) 

As we know, the Wiedeman-Franz law and its relation with the Lorenz number in the general form are 

as follows: 

𝜅

𝜎
= 𝐴(𝑟, 𝜂, 𝛽) (

𝑘𝐵
𝑒
)
2

𝑇 = 𝐿(𝑟, 𝜂, 𝛽)𝑇 (2.28) 

where 𝐿(𝑟, 𝜂, 𝛽) is Lorenz number, 𝜅 is thermal conductivity, 𝜎 is electric conductivity, 𝑘𝐵 is Boltzmann 

constant, 𝑒 is the electron charge, 𝑇 is temperature.   Also, 𝐴(𝑟, 𝜂, 𝛽) function is defined as: 

𝐴(𝑟, 𝜂, 𝛽) =
𝐼𝑟+1,2
2 (𝜂, 𝛽)

𝐼𝑟+1,2
0 (𝜂, 𝛽)

+ (
𝐼𝑟+1,2
1 (𝜂, 𝛽)

𝐼𝑟+1,2
0 (𝜂, 𝛽)

)

2

. (2.29) 
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It is clear that the Lorenz number can be written as [23]:  

𝐿(𝑟, 𝜂, 𝛽) = 𝐴(𝑟, 𝜂, 𝛽) (
𝑘𝐵
𝑒
)
2

. (2.30) 

Thus, the Lorenz number turns into the following form by using 𝐼𝑛𝑘
𝑚 (𝜂, 𝛽) two-parameter Fermi 

functions: 

𝐿(𝑟, 𝜂, 𝛽) = (
𝐼𝑟+1,2
2 (𝜂, 𝛽)

𝐼𝑟+1,2
0 (𝜂, 𝛽)

+ (
𝐼𝑟+1,2
1 (𝜂, 𝛽)

𝐼𝑟+1,2
0 (𝜂, 𝛽)

)

2

)(
𝑘𝐵
𝑒
)
2

. (2.31) 

As can be seen from formulas (2.27) and (2.31), the carrier concentration and the Lorenz number of a 

semiconductor can be defined using two-parameter Fermi functions. To show the efficiency of given 

algorithms, the Lorenz number and carrier concentration calculations of GaAs semiconductors have 

been done for wide temperature ranges (Figure 1 and 2). In addition, the comparative results of the 

carrier concentration with the available semi-empirical study [24] are presented in Table 1. 

Table 1. Temperature dependence of carrier concentration of GaAs semiconductor (in semi-empirical 

methods [24] carrier concentration is taken as 𝑛 = 1.83 × 1021𝑇3/2) (𝑁 = 150) 
𝑻 Ref. [24] This study 

150 3.361 E+24 2.981 E+24 

100 1.84 E+24 1.162 E+24 

80 1.309 E+24 0.958 E+24 

50 6.47 E+23 5.651 E+23 

40 4.629 E+23 3.487 E+23 

 

Figure 1. Temperature dependence of Lorenz number of GaAs semiconductor (𝑁 = 150) (red line-

analytical results from suggested formula in this study, blue line-Mathematica numerical results) 

 

Figure 2. Temperature dependence of carrier concentration of GaAs semiconductor (𝑁 = 150) (red 

line-analytical results from suggested formula in this study, blue line-Mathematica numerical results) 

400 600 800 1000 1200
T

5. 10 9

1. 10 8

1.5 10 8

2. 10 8

2.5 10 8

L



96 

 

Çopuroğlu / JNRS / 10(3) (2021) 89-97 

3. Conclusion 

The thermoelectric effect is based on examining the thermal effect acting on the semiconductor. For this 

purpose, in this study, the effects of the thermal effect on basic parameters of a semiconductor are 

numerically discussed. The carrier concentration variation, which is the main variable of the thermal 

conductivity relation that can be solved by the two-parameter Fermi function, has been investigated for 

GaAs semiconductors with increasing temperature. In order to demonstrate the effectiveness of our 

study, the calculation results obtained from available semi-empirical methods for the carrier 

concentration of GaAs semiconductors have been presented in Table 1. In Fig.1 and 2, the comparisons 

of the Lorenz number and carrier concentration calculation results of the GaAs semiconductor with the 

Mathematica numerical method have been demonstrated concerning temperature. Our calculation 

results are in good agreement with those obtained from numerical and semi-empirical methods. In all 

calculations the upper limits of summation (𝑁) have been taken as 150. Also, in our previous paper [21] 

one can see the convergence of derived expression for 𝐼𝑛𝑘
𝑚 (𝜂, 𝛽) as a function of summation limits N. It is 

well known that the little discrepancy of comparisons in Table 1 is due to the fact that the semi-empirical 

method neglects some parameters in calculations. Our analytical method has no restriction in its use 

and can apply to other semiconductors. 
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