| csj.cumhuriyet.edu.tr | Founded: 2002

ISSN: 2587-2680 e-ISSN: 2587-246X

Cumbhuriyet Sci. J., 43(2) (2022) 289-293
DOI: https://doi.org/10.17776/csj.1007806

Cumhuriyet Science Journal

Publisher: Sivas Cumhuriyet University

On Fixed Point Results for Generalized Contractions in Non-Newtonian Metric

Spaces

Demet Binbagioglu 1~

1 Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, Tokat, Tirkiye.

*Corresponding author

Research Article ABSTRACT

History
Received: 11/10/2021
Accepted: 19/04/2022

The work of non-Newtonian calculus was begun in 1972. This calculus provides a different area to the classical
one. Non-Newtonian metric concept was defined in 2002 by Basar and Cakmak. Then Binbasioglu et al. had given
the metric spaces of non-Newtonian in 2016. Also, they started to the fixed-point theory by defining some
topological properties in non-Newtonian metric spaces.

In this work, we give some fixed-point theorems and results for self-mappings satisfying certain conditions in
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the non-Newtonian metric spaces.
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Introduction

There exist too many studies on fixed-point theory in
different spaces [1-12]. Also, there are many applications
of the theory and mappings that meet certain conditions
of contraction and have been a crucial area of different
research works.

The non-Newtonian calculus is alternative to what is
customary. The non-Newtonian calculus in various fields
including information technology, fractal geometry,
economic growth, finance, wave theory, quantum physics,
in medicine for examples tumor therapy, cancer-
chemotherapy, in mathematics for examples functional
analysis, differential equations, approximation theory,
problems of decision making, and chaos theory has many
applications. The non-Newtonian metric concept was
defined in 2002 by Basar et al. and then Binbasioglu et al.
gave the metric spaces of non-Newtonian in 2016. Also,
they started to study on the fixed-point theory in non-
Newtonian metric spaces.

In this work, we present fixed-point theorems and
results for self-mappings satisfying certain conditions in
the non-Newtonian metric spaces.

Preliminaries

We mention that some basic knowledge related to
structure of non-Newtonian calculus.

Definition
A generator is called as an injective function from R to
a subset of R [6].

Remark
Every generator generates an arithmetic. An arithmetic
is generated by a generator [6].

Keywords: Fixed point, Non-Newtonian metric space, Contraction mapping, Generalized contraction mapping.

Remark

Let us take the function : R » R*,a » f(a) = e =
b. If B = exp, then the function generates the
geometrical arithmetics [6].

Remark

Assume that the function f§ is a generator, i.e., if § =
I, then B generates the usual arithmetic, where [ is an
identity mapping [6].

Definition

The B-integers are produced as follows;

B-zero, f-one and similarly all B-integers are denoted as,
s B(=1), B(0), B(1), ...

Let us take any generator 8 with range A. Then for
a,b € R, the operations S-addition, B-substraction, 3-
multiplication, B-division and B-order are defined as
follows,

aib=p{p " (a)+p (D)}
a-b=p{p (@) - B ()}
asb =B{p~ (@) x B (D)},
a;b =p{p~(a)+p7 (D)},
acb = pB(a)<pDb).

The set R(N) = {8(a): a € R}, is non-Newtonian real
numbers set.
Fora € A c R(N), the -square is described as a s.a
and denoted with a?". The notation \/EN denotes

k = B{/B~*(a)}. The B —square is equal to a and which
means k2N = q.

During this work, aP" denotes the concept of pth non-
Newtonian exponent.
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|a|y denotes the B —absolute value for a number a €
A c R(N) defined by £(|f~2(a)|) and so

V@ = laly= BB @)).

Thus,
a, B(0)za,
laly=BUB~ (@) =4 B(0), B(0)= a,
B(0)-a, B(0): a.

Let ustake any ¢ € R(N).If ¢ +£(0), then c is called
a positive non-Newtonian real number. If ¢ -f(0), then c
is called a non-Newtonian negative real number. If ¢ =
B(0), then c is called an unsigned non-Newtonian real
number. Non-Newtonian positive and negative real
numbers are denoted by R*(N) and R™(N) respectively
[6].

Definition
Let us take X # @ and suppose that dy: X X X —
R*(N) satisfies the following conditions for a, b, ¢ €
X;

(NM1) dy(a, b) = B(0) iffa = b,
(NM2) dy(a, b) = dy (b, @),
(NM3) dy(a, b)<dy(a,c) ;dy(c,b).

Then dy is a non-Newtonian metric on X. Also (X,dy) isa
non-Newtonian metric space [6].

Example
Assume that dy is defined as dy(a, b) = |a _b|y for
alla,b € R(N), then (R(N),dy) is a non-Newtonian
metric space [6].

Main Results

Theorem

Definition
A sequence (a,) in a non-Newtonian metric space X =
(X, dy) is non-Newtonian convergent if taken any
ny =ny(e) € N,a € X there exists ¢ +£(0) such
that for alln > n,, dy(a,, a) € and it is shown with
lim a, =a0ranﬁ>a,n - oo [5].
n—-oo
Definition
A sequence (a,) in a non-Newtonian metric space X =
(X, dy) is non-Newtonian Cauchy if taken any n, =
ny(e) € N,a € X there exists € 3£(0) such that for all
m,n > n,, dy(a,, a,) €. The non-Newtonian metric
space (X, dy) is non-Newtonian complete if every non-
Newtonian Cauchy sequence is non-Newtonian
convergent [5].

Remark
Let k, [, m, n, p be non-Newtonian positive real
numberswithk 1l ;m ;nip :(1), l=m,n=p.

Ifr =(k il ;n) x(B(1) -m:n)~! and
s = (k ym ip) «(B(1) :l-p)~", then rys (f(1).

If I = mthen
¢S =
kilin  kimip _kimin = Kkilip

B,

B(1) -m=n X B(1) '_l;p_ﬁ(l) “l-p x B(1) im=n

and if n = p then

_kimin  kimip
ST B cmen X[Ie(a? Ly
+tip K imgn -B(D).

TR men *BQ) Lp

Let d be a non-Newtonian complete metric on X and c, d be positive integers. If a mapping K: X — X satisfies

dy(K¢a,K%b) :k 3dy(a,b) ;1 sdy(a,Ka)
im 5 dy(b,K?D) jn xdy(a,K?b) ip sdy(b, K a)

foralla,b € X, where k,l,m,n, p are non-Newtonian positive real numbers with k ;1 ;m ;n ;p 2f(1), L=m,n =p,

then K has a unique fixed-point.

Proof
Take a, € X, t = B(0), we construct

— c
A1 = K ay,,

_ pd
Agrez = K 5144

Then

dn(aze41, Aae42) = dy (K ay,, Kda2t+1)
<k sdy(aze Azee1) 11 xdn(az, K€aze) sm sdy (@gp41, Kda2t+1)
insdy(as, Kda2t+1) iP(Azee1, KCaz)
<(k 3D sdy(aze Aze41) iM 5 Ay (Qoe41, Aaer2) i1 3 Ay (Aap Aops)
<(k 11 in) sdy(aze azeeq) 1 (M i) dy (Aot Aoes2)-
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It implies that
s(BQ) =m :n) sdy(zer1, Aesz) 2(k 3L in) sdy(aze, Qzeqr)
So
(k 31 5m)
Ay (Aze41) Azea2) T xAn(Aze, Azp41), where T = B(l;_—;n_n

dn(Aze42, Aze43) = dy (K ape42, Kda2t+1)
<k 5 dy(Aze42) Aopv1) il 5y (Aop42 KO2e42) 3 5dy(Qgps1, Kda2t+1)
insdy(azee2 Kda2t+1) iP(Aze41, Kp42)
<k 5 dn(oe42, Aoer1) 3+ 5 dn(@oes2, Aoee3) 3M 5 Ay (Aop1, Aops2)
M s dy (42, A2e12) 1P xAn(A2e41, A2e43)
<(k im ip) xdy(Aze41, A2e42) +(LiD) xdn(Qze42, A2er3),

implies that
An(Az¢42) Aze43) £S xAn(A2e41, A2e42),

(k ym ip)
heres = ————,
W B ~L-p

Therefore, we get foreacht = 0,1,2,...

Ay (Aze41) Aaee2) 7 Ay (Aze, pey1)
<1 58 xdy(Aze-1, z¢)
<7 (1 %8) xdy(az¢—2, Aze—1)
zoon 27 % (1 58)™ sdy(a, a1),
dy(Aze42, Q2e43) <5 %Ay (A2e41) Aope2)
«(r >'<S)(t +DN xdy(ao, ay).

So, for y < z we have

dy (a2y+1' a22+1) édN(a2y+1' a2y+2)

} dN (a2y+2' a2y+3) jorr 3+dy (A2, 2741)
Z(r DL Z (55)™] s(ao, @)
i=y+1

_ x(r x$PN - (r s S)(y“)N
TR ris T M) 1y

yN
(B 1) & [ﬁ((g _)

] xdy(ag, ay)

] xdy(ag, ap).

Then we deduced

yN

dy(azy, @2z11) 2(B(1) 37) [ﬁ(ﬂ;) 2D ) % (a0 ),
iy

dN(azwau) (B 1) x [ﬁ’(l)_ ] xdy(ag, ay),
(r s )W

dN(a2y+1'a22) O i) legrn—— ] xdy(ag, aq).

For0 < w < v, dy(a,,a,) zq., where

BQ) or

= (L) 7)) [B((TSS) ] «dy(ag, a;) with an integer part of

So {a,,} is non-Newtonian Cauchy. Since (X, dy) is non-Newtonian complete, there exists x € X such that
a, = Xx.

For a non-Newtonian real number 0 . (e), choose d, € N such that
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B(e) B(e) B(e)
dy(x,az) < <BG) 24 s Ay (Aze—q, Aze) & <BG) A s dy (X, Q1) & <BG) A

forallt > d,, where

_ BQ) in kip m
A= max (o o B o B
Now,
dy(x,K¥a) zdy(x, az) idy(az, K'x)
<dy(x,az;) 1dy(KYaze_1, K"x)
cdy(x, az¢) 3k xdy(x, aze-1) il sdy(x, KPx) jm 3dy(aze—q, K" aze—1)
insdy (o KYage_q) 1P xdy(aze-1, K¥VX)
<dy(x, aze) ik xdy(x, aze-1) il 5dy(x, KPx) ym sdy(aze-1, aze)
insdy(x, aze) ip xdy(aze-1,%) 10 xdy(x, KVx)
<(B(D) in) sdy(x, az) i (k ip) xdn (X, aze—1)
im sdy(aze—1, aze) + (L ip) xdy(x, K x).
dy(x, KVx) 2A 3 dy(x, aze) 1A s5dy(x, aze—1) 1A 5dy(az¢-1, Az¢)
B(e) P(e) B(e)
< + + = B(e).
B@3) "BB) "BA3)
Therefore
dy(x,K?x) é% for every y € N. From g(y) dy(x,K¥x) :8(0) we have dy (x, K”x) = B(0). This implies that

x = KVx.

By using the inequality,

dy(x, K*x) dy(x, aze41) 1dn(azee1, KVX),
now we show that x = K" x.

dy(Kx,x) = dy(KKx,KVx) = dy(KVKx, K" x)
2k sdy(Kx,x) 31 5 dy(Kx, KYKx)
M dy (x, KVx) jn xdy (Kx, K*x) ip xdy(x, K"Kx)
sk sdy(Kx,x) 11 sdy(Kx, Kx)
M sdy (x,x) in sdy(Kx, x) 1p xdy(x, Kx)
=(k in ip) xdy(Kx,x).

So x is a fixed-point of K.
We suppose that for some x*, there exists another point x* € X such that x* = Kx*. Thus, we have

dy(e,x™) =dy(KVx, K¥x™)
<k sdy (6, x7) 5L sdy (x, KVx)
mosdy (X7, KYx7) jnosdy (6 KYx™) 4p sdy (x5, KPx)
<k sdy (6, x7) 1 sdy (x, x)
M osdy (x7, x7) s dy (6 x7) 1p xdy (%, x7)
<(k in ip) xdy(x, x7).

Consequently, x* is equal to x.

Theorem
Let dy be non-Newtonian complete metricon X. If K:X — X satisfies

dy(Ka,KD) :k 3dy(a,b) il xdy(a,Ka)
im xdy(b,Kb) ;n 3 dy(a,Kb) ;p xdy(b,Ka)

foralla,b € X, where k, [, m,n, p are non-Newtonian positive real numbers with k ;1 ;m ;n ;p ~f(1), then K has a
unique fixed-point.
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Proof

Since dj is a non-Newtonian metric, the above inequality implies that

dy(Ka,Kb) :k 3 dy(Ka,Kb)

lim

o)

xldy(a, Ka) ;dy(b,Kb)] 4

nip

o) ildy(a,Kb) ;dy(b,Ka)].

If we substitute KV = K" = K in the above theorem, we get the required result.

Corollary

Let (X, dy) be a non-Newtonian complete metric space and v, w be positive integers. If a self-mapping K on X

satisfies

dy(K¥a,KVb) :k ydy(a,b) ;1 xdy(a,KVa)
im s dy(b,K"b) jn sdy(a,K"b) ip xdy(b,K"a)

foralla,b € X, where k,l,m,n, p be non-Newtonian positive real numbers with k ;[ ;m ;n ;p (1), l=m,n=0p,

then K has a unique fixed-point.

Conclusion

In this paper, we use the concept of non-Newtonian metric space and present some new fixed-point theorems. We
expect that our research results can offer a mathematical basis. In the future research, we will explore so concrete

applications of the obtained results, here.
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