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ABSTRACT

When the literature is examined, it is seen that there are many studies on the generalizations of gamma, beta
and hypergeometric functions. In this paper, new types of generalized gamma and beta functions are defined
and examined using the Wright function. With the help of generalized beta function, new type of generalized
Gauss and confluent hypergeometric functions are obtained. Furthermore, some properties of these functions
such as integral representations, derivative formulas, Mellin transforms, Laplace transforms and transform
formulas are determined. As examples, we obtained the solution of fractional differential equations involving
the new generalized beta, Gauss hypergeometric and confluent hypergeometric functions. Finally, we presented
their relationship with other generalized gamma, beta, Gauss hypergeometric and confluent hypergeometric
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Introduction

Gamma and beta functions are very useful special
functions in many sciences such as mathematics, physics,
chemistry, biology, medicine and engineering. These functions
have been the focus of attention of researchers due to their
popularity. When the literature is examined, it is seen that the
generalized gamma and beta functions are mostly obtained by
using appropriate kernel functions in the integral
representations of the original functions. For instance,
generalized gamma and beta functions are defined by using
exponential, confluent hypergeometric and Mittag-Leffler
functions etc. as kernel functions in their integral
representations. Gamma and beta functions can also be
written using the Pochhammer symbol. Series representations
of hypergeometric functions are also associated with the
Pochammer symbol. Many researchers have defined various
generalizations for hypergeometric functions by making use of
these relations. Historically, these generalizations began in
1994 and 1997 when Chaudhry et al.,, [1,2] selected
exponential functions as the kernel of integral representations
of original gamma and beta functions. Many researchers
defined new generalizations of these functions inspired by the
work of Chaudhry et al., (see for example [1-24] and reference
therein).

All the studies mentioned above motivated us to describe
a new generalization of gamma and beta functions. For this,
we used the Wright function, which has a more general form
than many special functions. We also defined the generalized
Gauss and confluent hypergeometric functions with the help
of generalized beta function. Then we presented some
properties of these new functions. As examples, we obtained
the solution of fractional differential equations involving the

h@iokiymaz@ahievran.edu. tr

functions, which can be found in the literature.
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new generalized beta, Gauss hypergeometric and confluent
hypergeometric functions.

Preliminaries

In this section, we gave some preliminary information that
is needed throughout this paper. Then we mentioned the
generalized gamma, beta, Gauss hypergeometric, and
confluent hypergeometric functions defined by Chaudhry et
al.. Firstly we gave the Mellin, inverse Mellin, Laplace, inverse
Laplace integral transformations and the Caputo fractional
derivative operator below.The Mellin and inverse Mellin
transforms [25] for s € C respectively are defined by

[ee]

M ()} = F(s) = f p=Lf (p)dp,

and

1 Cc+ioo
MHF(s)} = %fc_im pSF(s)ds, (c>0).

The Laplace and inverse Laplace transforms [25] for
Re(s) > 0 respectively are given by

o]

@ =F() = | ewC-sp)f@)ip,

0
and
c+ico
L YF(s)} =— exp(sp)F(s)ds, (c>0).
2mi c—ioo

The Caputo fractional derivative operator [26] of order
ceCform €N, m—1< Re(g) <misgiven by
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1

DE[f(P)] = JS@—tym=e fim()dt,  (Re(e) > 0;p > 0).

- r(m-g)

Also, Laplace transform of Caputo fractional derivative form € N, m — 1 < Re(&) < m as follows [26]:

m-—1

2 DSIF @) = 5F(s) = ) 5=+ (0) (1)

k=0

We presented the generalized gamma, beta, Gauss hypergeometric, and confluent hypergeometric functions
defined by Chaudhry et al. chronologically below.

In 1994, Chaudhry and Zubair [1] gave the extended gamma function for Re(x) > 0, Re(p) > 0 as follows:

[oe]

L,(x) = fo t*~1 exp (—t - Zt—)) dt.

In 1997, Chaudhry et al. [2] gave the extended beta function for Re(x) > 0, Re(y) > 0, Re(p) > 0 as follows:

1

B@%m=f

x-171 _ -1 _ p
Ot 1-vy7 exp( t(l—t))dt'

In 2004, Chaudhry et al. [3] gave the extended Gauss and confluent hypergeometric functions respectively as:

F(a b c _i B(b +n,c — b;p) z"
p(@ 'C'Z)_n:0 (@n B(b,c—b) nV

(p = 0;]z| < 1;Re(c) > Re(b) > 0),

and

[oe]

B(b +n,c—b;p)z"
Bp(bi ;) = Z Bb,c—b) n!

(p = 0; Re(c) > Re(b) > 0).
Here, value expressed by (1), is the Pochhammer symbol [28] and is given as follows:

I'A+n)

(o =1 and Wy =5

(Re(A) > —n; neN;A+0,-1,-2,..).

The integral representations of the above series are as follows, respectively:

E b:c: — 1 fltb—l 1 t c—-b-1 1 )—a ( p )dt
p(a' HLe Z) - B(b,C _ b) o ( ) ( z ) exp t(l _ t) ’

(> 0;p=0and |arg(1 — z)|< m; Re(c) > Re(b) > 0),
and

1 1
Coe ) = b-1 c-b-1 p
D, (b; c; z) o, ) fo t7 11 -1 exp (zt 0 t)) dt,

(p > 0;p = 0 and Re(c) > Re(b) > 0).

In this paper, we use Wright function to define new generalizations of gamma and beta functions, which defined in
[28] as:
Z’ﬂ.

o 1
@ID =), TRy

where a, f € Cand Re(a) > —1.
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New Generalized Gamma and Beta Functions

In this section, we introduced new generalized gamma and beta functions and presented some of their properties.

Definition 1. The new generalized gamma and beta functions for Re(x) > 0, Re(y) > 0, Re(a) > —1, Re(p) >0,
respectively are defined by

YL ) = f t* % (a,ﬁ; —t— g) dt, (2)
0

and

@p) ! p

B, M (x, =ftx—11—ty—1 sv(, ;——)dt. 3

P (xy) 0 ( ) Olaﬁ t(l—t) ()
We call the new generalizations of gamma and beta functions as W-gamma and W-beta functions, respectively.
Theorem 1. Let Re(s) > 0, Re(x +5s) > 0, Re(y + ) > 0, Re(p) > 0, Re(a) > —1. Then,

SUt{ ‘”B;“"’)(x, y)} =B(x +s5,y+5)¥r@h(s).

Proof. Multiplying the equation (3) by p5~! and integrating from p = 0 to p = o, we have

[e9) 1
y p(aB) — s-1 x=101 _ +\¥-1 .__ P )
(B P )= [ | e o (o g e
By interchanging the integrals, we get
@h) ' ” p
v pla, — x—1 _ \y—-1 s—1 .
w{ 8P n) = [ -0 [ oo (pi- gty deae
. . _ D .
By substituting v = premY we obtain

[ee]

1
m{ B (x,y)} = j £X4S=1(1 — £)¥+side j vs=1%, (a, B; —v)dv
0

0
=B(x +s,y +5s) Y@ (s).

Corollary 1. The inverse Mellin transform of the above equation is obtained as:
1 c+ioco
”'B;a’ﬁ)(x, y) = %j B(x+ s,y + )@ (s)p=sds, (c > 0).
c—ico

Theorem 2. Let Re(x) > 0, Re(y) > 0, Re(p) > 0, Re(s) > 0, Re(a) > —1. Then,

(LD,

ﬁ{ l”BISO“[?)(X,)I)} = % ¥B1 [(,8, a)1’1|x,y].

s
Proof. Applying the Laplace transform to the W-beta function, we have

e "BV} = | ewn(-sp) "B (e y)dp
0

= fol t* (1 —t)r 1! fw exp(—sp) o1 (a, B;— t(1p— t)) dpdt

0
_ ft LT e 1 [(wkn)
= . (1-1¢)y fo exp(—sp)z Fan + B) n! dpdt
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1 n
=y
© t(1—t
1t -1 -1
=§f0 211 — t)Y ; ran &
__y (11)11
=5 B, )11'”]

Corollary 2. The inverse Laplace transform of the above equation is obtained as:

[(1,1)1,1

*B () = 5 f " exp(sp) S By
p ’ 210 ) oo s sLB @11

|x,y] ds, (c>0).

)11

Remark 1. Note that, ¥B1 [(5 |x, y] is special case of the generalized beta function defined by Ata and Kiymaz

(4].

Theorem 3. Let Re(x) > 0, Re(y) > 0, Re(p) > 0, Re(a) > —1. Then,

n

2
‘”sta'ﬁ)(x, y) = 2] cos?*~1(0)sin®~1(0) (¥, (a, B; —psec?(B)csc?(6))d9,
0

‘”sta'ﬁ)(x, y) = f:o% o (a, B;—2p—p (u + %)) du.
Proof. The desired results are obtained by putting t = cos?(0) and t = % in equation (3), respectively.
Theorem 4. Let Re(x) > 0, Re(y) > 0, Re(p) > 0, Re(s) > 0, Re(a) > —1. Then,
l"BIEO"B)(x,y + D+ l"BIEOC‘B)(x +1,y) = WB;“'B’(x, y).
Proof. By making the necessary calculations, we get

y p(ap) y p(ap)
B, (x,y+ D+ "B, (x+ 1,y)

=foit"‘1(1—t)y o (a,[?;—t(lp_ t)>dt+L1th—t)y—1ol{/1 (a,ﬁ;—t(lp_ t))dt
= f 1@ =07+ 1= 077 o (s s e

= fol t*I 1 —t)Y W (a,ﬂ; ——t(lp_ t)> dt

=B,"P (x, ).

Theorem 5. Let Re(x) > 0, Re(y) > 0, Re(p) > 0, Re(a) > —1. Then,

s
E (o)
er(a,l?) (x)llfrp(a;ﬁ) (y) =4 f f 2105221 (Q)Sinzy_l )
0 0

X o¥ (a, B; —r%cos?(0) — r—zcozz(e))
X oW (a B; —r?sin?(0) — pz (9)) drdé.

Proof. By writing t = 12 in (2), we have
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YrP () =2 fow VRN (a,ﬁ; —n? — 7%) dn.
Therefore,
P D) =4 | ’ | R e AT 7)o (=82 = ) and.
Taking n = rcos(68) and & = rsin(0), the desired result is obtained.

Theorem 6. Let Re(x) > 0, Re(y) < 1, Re(p) > 0, Re(a) > —1. Then,

w (@) N Oy @p)
B, (x,1—-y) —Z e B, (x +n,1).

n=0
Proof. Using equation (3), we have

1

B, (x,1-y) = f
0

11— )Y W, (a,ﬁ; - t(lp— t)) dt

The binomial series is as follows:
n

=07 =) Gz <D,
n=0

Considering binomial series and interchanging summation and integration, we get

BN (5,1 — y) = Z (y)njltern—loqll <a"8;_t(1p— t)) dt

Z (y)n q;B(ocﬁ)( +n, 1)

New Generalized Gauss and Confluent Hypergeometric Functions

In this section, we introduced new generalized Gauss and confluent hypergeometric functions and presented some
of their properties.

Definition 2. The new generalized Gauss and confluent hypergeometric functions for Re(c) > Re(b) > 0, Re(p) > 0,
Re(a) > —1, respectively are defined by

l"B(O“ﬁ)(b +n,c—b)z"

wp@® o o\ Z 4 Z
E,""(a,b; c; 2) (@ B.c—b) p (Izl < 1),
n=0
and
i (a.p)
II’@(a'B)(b'C-Z) _ z lIIBp (b +n,C—b)£
p T ~ B(b,c —b) n!’

We call LpFl(f"ﬁ)(a,b; c;z) as W-Gauss hypergeometric function and qJCIDI()O“B)(b; c;z) as W-confluent hypergeometric
function.

Theorem 7. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Then,
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(a.) Y — 1 ! - _ 4\c—b— . p _ -a
YF, P (a, b c; 2) = B b)fo tPmr (1 — )bt (a,ﬁ, - t)) (1 — zt)~%dt, (4)
1 1
WFp(tlﬁ)(a’b; ¢ 2) =B(b C_b)f ub- 1(1+u)a C(1+u(1 —Z)) a <a B;—2p — p(u+ ))d u, (5)
) 0

""Fp(a'ﬁ)(a, b;c;z) = —_ b)f sin??=1(@)cos2¢2b-1(9)(1 —zsmz(G))

B(b,c
(6)

p
N O e —p)
o#1(@h sin2(0)cos?(0)
Proof. By making the necessary calculations for equation (4), we have

?BP (b +n,c—b) z"
B(b,c —b) n!

"ED @bz = ) (@),
n=0

Zn

_ m; @, thmn—l(l —t)eb-1 (a,[;; _t(lp;t)> n, dt

N SR ROOR P AN, @)
_B(b,c—b)fotb G °w1<“'5' t(l—t));(a)n -

- p o
B(bc—b)J tPr (A - 6P 104’1(0—’3 t(l—t)>(1 zt)~4dt.

By puttingu = i and t = sin?(8) in the last equation, equations (5) and (6) are obtained.

Theorem 8. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Then,

Yo P (b; ¢; 7) —mj £P=1(1 — £)°~0 Lexp(at) o ¥, (a B — t(lp_ t)) t, )

1
ub"1 (1 —u)Pexp(z(1 — w)) \¥; (“'ﬁ; - L) du.

@By, .\ —
(Dp (b; c; 2) w(l =)

B(b,c — b) JO
Proof. Similarly, using equation (3) desired results are achieved.

Note 1. The beta function and the Pochammer symbol provide the following equations:
c
B(b,c—b) = EB(b +1,¢c—b),

and

(@ns1 = ala+ Dy,
These equations are used to calculate the theorems given below.

Theorem 9. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Then,

dn

b
FP (@h( )n"’F(aﬁ)( +n,b+n;c+n;z).

{‘I'F(aﬂ)(a b: c; )}_ -
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Proof. Differentiating the l"Fp(a"ﬁ) (a, b; c; z) function, we have

d YBH (b +n,c—b)zn
@ (@p) Z ) ’ il
dz{ B bien) = { @ —Fbec—p  n

_i l”leg""m(b+n,c—b) zn1
_n: (@n B(b,c —b) (n—1r

By writingn - n + 1, we get

_(a )( )Z @i, YBI*P(b+n+1,c—b)zn

d
L (wp@h g p z
dz{ »  (@biciz) Bb+Lc—b)  nl

_ (a()()b),,,Fp(aB)( +1,b+1;c+1;2).

By the inductive method, the more general form is obtained as:

(a )(n)(b)n YEP (a+n,b +n;c+n;2).

Theorem 10. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Then,

dn

R aie0)

dn

dz”{wd)((xﬁ)(b’ 4 )} ()n"”qb(“ﬁ)(b +n;c+n;z).

(©n

Proof. The desired result is obtained by performing similar operations as in the proof of Theorem 9.
Theorem 11. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(s) > 0, Re(a) > —1. Then,

*r@h(s)B(b +s,c+s—b)
B(b,c —b)

EIR{ l"FI[,(‘Z’ﬁ)(a, b;c; Z)} = oFi(a, b +s;c+2s;2).

Proof. Multiplying the equation (4) by p5~! and integrating from p = 0 to p = oo, we have
EDE{WFI,(a’ﬂ)(a,b;c; z)} = J pst "”Fp(“’ﬁ)(a, b; ¢; z)dp
0

f°° o L"BISOC’B)(b +n,¢c—b) z" p
0 p B(b,C—b) (a)na p

1 1 © p
- b-1 _ +\c—-b-1 _ —-a s—1 .

Putting u = t(1p—t) for the second integral to the right of the last equation, we get

00s—1 . p ) — +5(1 — £\ ¥r@p)
| o (whi- i) dp = e -0 *reps)

and then using this equation in the above equation, we obtain

¥r@h (s)B(b+s,c +s—b)

Bl.c—b) LFi(a, b+ s;c+ 2s; 2).

ED?{ l1’FID(0"B) (a,b;c; Z)} =

Corollary 3. The inverse Mellin transform of the above equation is obtained as:
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ctioo W (@B (s)B(b +5,¢ + 5 — b)
B(b,c — b)

l‘"F(U‘ﬁ)(a b;c;z) = —f ,Fi(a,b+s;c+2s;2)p~°ds, (c>0).

Theorem 12. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(s) > 0, Re(a) > —1. Then,

Yr@h(s)B(b+s,c+s—b)
B(b,c—b)

m{ ¥ o0 (b; c;2)} = @b + s;¢ + 25; 2).

Proof. The desired result is obtained by performing similar operations as in the proof of Theorem 11.
Corollary 4. The inverse Mellin transform of the above equation is obtained as:

c+io W @B (s)B(b + s,¢ + 5 — b)
B(b,c—b)

’*’(D(aﬁ)(b c;z) = —f ®(b+s;c+ 2s;z)p~ds, (c > 0).

Theorem 13. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(s) > 0, Re(a) > —1. Then,

1

{YE“P (@, bic;2)) = -

—*¥F1 [Eﬂ ))1111| a,b;c;z|.

Proof. Using Laplace transform and making necessary calculation, we have

SV E“P (a,b; ¢; 2)} = f exp(—sp) YF*P(a, b; c; 2)dp
0

1 1 [ee]
B B(b,c—b)J0 A - )T —Zt)_“jo exp(=sp) o1 <a,ﬁ:—t(1p_ t)> dpdt
1 n
h t(1§ t)
1 o . < -
=;mjo P11 — £)¢b1(1 — zt) ;Wdt

1 1L,y
=-¥F [ ’ a,b;c;z].
B @

Corollary 5. The inverse Laplace transform of the above equation is obtained as:

(LD,

(B, @)ss | a,b;c;z|ds, (c>0).
11

c+ico
lI’F(D‘ﬁ)(ab cz)——f exp(sp) — l"F1[

(LD,

Remark 2. Note that, ¥F1 L, a) | a, b; c; Z] is special case of the generalized Gauss hypergeometric function defined
1,1

by Ata and Kiymaz [4].
Theorem 14. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(s) > 0, Re(a) > —1. Then,

(LD,

Q{W(plgaﬁ)(b;c;z)} - (D [(ﬁ )11

| b;c;z

Proof. The desired result is obtained by performing similar operations as in the proof of Theorem 13.

Corollary 6. The inverse Laplace transform of the above equation is obtained as:

(1D,

(B, @)rs | b;c;z|ds, (c>0).

c+ico
l*’F(aﬁ)(a b;c;z) = —f exp(sp) — "’471[

691



Ata, Kiymaz / Cumhuriyet Sci. J., 43(4) (2022) 684-695

1,1
Remark 3. Note that, ¥@®: (LD
s LB, @)1

defined by Ata and Kiymaz [4].

| b; c; Z] is special case of the generalized confluent hypergeometric function

Theorem 15. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Then,
z
l"lf?p(“'m(a, b;c;z)=(1—2)"° upr(a,ﬁ) (a,c —b;c; — 1).

Proof. Using equation

41 s-a zt \7¢
(1-2z(1-t)"=(1-2) (1+1_Z)

and by writingt = 1 — t in (4), we have

1-2)"¢ (1 zt \7¢ p
WF(auB) A, — ( c—-b-1 1— b-1 <1 _ ) 1/ ( . )
" (a,b;¢; 2) Bhe—b) ), t 1-1 -1 o1\ af; -0 dt

—(1_n-a vp@p _pee 2
=1-2) Fp (a, c—b;c; P 1)-
Theorem 16. Let Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Then,
wae @By, N we@Be, ...
@, " (b;c;z) = exp(z) ¥ D, (c—b;c;—2).
Proof. By writing t — 1 — t in equation (7), the desired result is achieved.

Applications to Fractional Differential Equations

In this section, we obtained the solution of fractional differential equations involving the newly generalized beta,
Gauss hypergeometric and confluent hypergeometric functions.

Example 1. Let 1 < Re(e) < 2, Re(x) > 0, Re(y) > 0, Re(p) > 0, Re(a) > —1. Assume that the fractional differential
equation

DE[f ()] = P~ ¥BIP (x,y)
and initial conditions

fO=f0©=0

are given. Considering equation (1) and applying Laplace transform to the fractional differential equation, we have
L DE[f D]} = LpP ¥ Bl (x,3))
and then
$F(s) — s f(0) —s*2f(0) =s7F Bsia(x, )
By using initial conditions, we get
F(s)=s%F# Bs%(x,y).
Applying inverse Laplace transform to both sides of the last equation, we obtain the solution function as:

f) = pP+et YBEE ) (x, ).
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Example 2. Let 1 < Re(e) < 2, Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Assume that the fractional differential
equation

“DE[f ()] = PPt ¥F ol (a, by ;2)

and initial conditions
f(0)=f(0)=0
are given. Considering equation (1) and applying Laplace transform to the fractional differential equation, we have
LDE[f @]} = LpP YFSP (0, b ¢ 2))
and then
SEF(s) — s&71f(0) — s572f(0) = s7F Fs%(a,b; ;7).
By using initial conditions, we get
F(s) =s~¢F Fs%(a,b; c; 2).

Applying inverse Laplace transform to both sides of the last equation, we obtain the solution function as:

f) = pP+et Yl (a,b; c; 2).

Example 3. Let 1 < Re(e) < 2, Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1. Assume that the fractional differential
equation

DEf )] = pP 1 Yol (bi ¢ 2)

and initial conditions

fO=f0©=0

are given. Considering equation (1) and applying Laplace transform to the fractional differential equation, we have
LD D]} = LpP 1 Yo (b c; 2)}
and then
SEF(s) — s71f(0) — s&72f(0) = s7F dbs%(b; c;2).
By using initial conditions, we get
F(s) =s¢F (Dsia(b; c;2).
Applying inverse Laplace transform to both sides of the last equation, we obtain the solution function as:

— - (@B+e) . .,
f) =pfre o L (b c; 2).
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Conclusion

In this paper, we defined W-gamma and W-beta
functions involving Wright function in the kernels and
then we defined W-Gauss and W-confluent
hypergeometric functions with the help of W-beta
function. Furthermore, we gave some properties of these
functions and we presented their applications to
fractional differential equations. In fact, most of the
generalized gamma, beta, and hypergeometric functions
in the literature seem to be special cases of the new
generalized functions introduced in this article, such that:
Chaudhry et al. [1,2,3],

zprp(o,1) (x) = Fp(X),

¥BO (x,y) = B(x,y;p),

q,Fp(o;) (a,b; c;2) = E,(a,b; c; 2),
Wszso'l)(b; ¢;2) = ¢,(b; c; 2).
Ozergin et al. [5],

YO (x) = [ (),

B = B9 ),

l}le(O;l) (a’ b’ c; Z) = Fp(a'a) (a, b; C; Z);
q,(pzso,l)(b; c7) = ¢,§a'a) (b; c; 2).
Lee et al. [6],

YBV(x,y) = B(x,y;p; 1),
YEOY(a,b;c; 2) = Fy(a, b c; z; 1),
l1,(1)250,1)“); c;z) = ®,(b;c; z; 1.
Parmar [7],

IO (x) = [ (x),

WBISO'D (X, y) = B}ga,a;l) (X, Y):
lpr(o,l)(a’ biciz) = Fp(a,a;l)(a,b; c; z),
W(DIEO'D (b;c;2) = q)zga,a;l) (b; c; 2).
Srivastava et al. [8],

w sto,n (x,y) = B;“'“‘l'l) (x,¥),

YEOD (a,b; ¢; 2) = F“" (a, b; ¢; 2).

Shadab et al. [9],
lpBlgo,l)(x' y) =Bl (x,y),
l,,Fp(o,l) (a,b;c;2) = F,1(a, b; c; 2),

‘”CDIEO’D (b;c;2) = @, 1(b;c; 2).

Rahman et al. [10],

YB"V(x,y) = By (x,9),

.pr(o,n (a,b;c;z) = Fpl‘l(a, b; c; z),
"'(ngo’l)(b; c;z)= <D;:1(b; C; 7).
Classic functions [27],

VI = I,

By (x,y) = B(x,y),

l"F(,(O’l)(a, b;c;z) = ,F (a,b;c; 2),
""<1>§0‘1)(b; c;z) = ©(b;c; 2).
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