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Abstract

The existence of a solution of continuous and discrete-time Lyapunov matrix equations was
studied. Both Lyapunov matrix equations are transformed into a matrix-vector equation
and the solution of the obtained new system was examined. The iterative decreasing
dimension method (IDDM) was implemented for solving the generated matrix-vector
equation. Computations have been done with Maple procedures that run the constituted
algorithms.

1. Introduction

The systems are

y′(t) = Ay(t) (1.1)

and

y(n+1) = Ay(n) , n ∈ Z, (1.2)

respectively differential equation system and difference equation system considered.
In the system (1.1) y(t) =

(
y1(t), y2(t), . . . , yN(t)

)T , yi(t)(i = 1,2, · · · ,N) are differentiable functions. The coefficient matrix
of systems is A ∈MN(C). MP

N(C) and MN(C) respectively will denote the set of all N×P matrices and set of square matrices
of size N×N that matrices elements are complex numbers.
Hurwitz stability is well known in the literature. Regarding the equation system (1.1), in order for system to be Hurwitz stable,
the real part of all the eigenvalues of A must be less than zero. Another qualification of Hurwitz stability of equation system
(1.1) is concerning with continuous-time Lyapunov matrix equation

A∗H +HA =−I (1.3)

that has a unique solution under H = H∗ > 0 condition where I is unit matrix and A∗ is adjoint of the matrix A.
Schur stability is well known in the literature too. In accordance with the spectral criterion, all eigenvalues of the matrix A
must fall into the unit disc so that the equation system (1.2) get Schur stable [1, 2]. Another occurrence for equation system
(1.2) is that there exists and unique positive definite H = H∗ matrix satisfying the discrete-time Lyapunov matrix equation

A∗HA−H =−I. (1.4)
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2. From Lyapunov matrix equations to linear algebraic equation

The Kronecker product of B and C denoted as B⊗C and the Kronecker sum of A and D, denoted by A⊕D, is defined in [3] as
the expression A⊕D = A⊗ IS + IN⊗D. The VEC operator is a vector valued function of the U matrix, denoted by V EC (U)
which represent a N ·M dimensional vector defined in [3] as follows

V EC (U) = [u11,u21, · · · ,uN 1,u12, · · · ,uN S]
T .

A property of Kronecker product that, in [4] is

U =CXB∗⇔V EC (U) = (B⊗C)V EC (X)

where B ∈MQ
S (C), C ∈MP

N(C), D ∈MS(C), U ∈MS
N(C) and X ∈MQ

P (C).

2.1. Transormation for continuous-time Lyapunov matrix equation

When matrix equation (1.3) is considered,

−I = A∗HI + IHA

V EC (−I) = V EC (A∗HI + IHA)

= V EC (A∗HI)+V EC (IHA)

= (I⊗A∗+A∗⊗ I)V EC (H)

V EC (−I) = (A∗⊕A∗)V EC (H)

is obtained. G ∈MN2(C) and G = (A∗⊕A∗), h =V EC (H) and z =V EC (−I) is formed the

Gh = z (2.1)

matrix-vector equation. This linear algebraic equation has a unique solution if G is non-singular. As well this linear algebraic
equation is affair with continuous-time Lyapunov matrix equation. Let G = (gi j) , gi j ∈ C and A = (ai j) , ai j ∈ C. The G
matrix’s computation algorithm entitled as LyapunovC is follows.

LyapunovC algorithm

g(i−1)N+k, ( j−1)N+l =


ak l +ai j i = j ; k = l,
al k i = j ; k 6= l,
a j i i 6= j ; k = l,
0 i 6= j ; k 6= l,

for i, j,k, l = 1,2, · · · ,N.

2.2. Transormation for discrete-time Lyapunov matrix equation

If the matrix equation (1.4) is taken into account,

V EC (−I) = V EC (A∗HA−H)

= V EC (A∗HA)−V EC (H)

= (A∗⊗A∗V EC(H))−V EC (H)

V EC (−I) = (A∗⊗A∗− I)V EC (H)

is obtained. On this situation, the matrix vector-equation (2.1) is composed by G = (A∗⊗A∗− I), h = V EC (H) and
z = V EC (−I). This equation is affair with discrete-time Lyapunov matrix equation and has a unique solution if G is
invertible. The matrix G computation algorithm entitled as LyapunovD is follows.

LyapunovD algorithm

g(i−1)N+k, ( j−1)N+l =

{
ak l ai j−1 i = j ; k = l,
al k a j i i 6= j ; k 6= l,

for i, j,k, l = 1,2, · · · ,N.



100 Fundamental Journal of Mathematics and Applications

3. Solving the Gh = z linear algebraic equation

The equation (2.1) may be solved by varied methods. Iterative decreasing dimension method(IDDM) is one of them which is
decreases by one dimension at every step for get to the solution without any pre-processing. This method and the algorithm
that processes this method is given in detail in [5, 6]. As synopsis, framework computation of this method has given with
equation (3.1) by [5, 6].

h =
N2

∑
k=1

(
k−1

∏
l=1

R̂(l)

)
h(k)0 (3.1)

h(k)0 is a special solution that h(k)0 =
(
0 · · ·0

z(k)1

g(k)1s

0 · · ·0
)T , where g(k)1s which is the first non-zero elements of first row of

matrix G(k). G(k) and z(k) are reduced matrix and vectors, of equation (2.1).

G(k) =

{
G if k = 1,
G(k−1)

2 R̂(k−1) if k 6= 1
; G(k−1)

2 = g(k−1)
i j

j = 1, · · · ,N2− k,
i = 2, · · · ,N2− k;

z(k) =
{

z if k = 1,
v(k−1)−G(k−1)

2 h(k−1)
0 if k 6= 1

; v(k−1) = z(k−1)
j , j = 2, · · · ,N2− k.

R̂(k) ∈M(N2−k+1)
(N2−k) (C) are matrices which are composed of the base vectors of solution space as

R̂(k) =



I 0

0 r(k)

0 I


; r̂(k)s,s+ j−1 = r(k)j =−

g(k)1 j

g(k)1s

; j = 1,2, · · · ,N2− k− s+1.

In the condition of s = N2− k + 1, particular cases of R̂(k) =

 I

0

 are evident. This method has been arranged

for equation (2.1) and has been prepared for computer aided computation. The algorithm named IDDMforLyapunov that
calculates matrix H with IDDM has been given follows.

IDDMforLyapunov algorithm

Step 1. Settlementing of input matrix; G(1) = G.

Step 2. Checking input matrix at initial situation;

s = min( j) as provided by g(1)1 j 6= 0, for j = 1,2, · · · ,N2, if s is not available,there is no exist or unique solution for the G,

the algorithm is terminated.

Step 3. Establishing initial values;

z(1)
(i−1)N+ j =

{
−1 if i = j,
0 if i 6= j, for i, j = 1,2, · · · ,N,

h(1)i j =

 η(1) =
1

g(1)1s

if N( j−1)+ i = s,

0 if j 6= s,
for i, j = 1,2, · · · ,N,

r(1)j =−
g(1)1,s+ j

g(1)1s

, for j = 1,2, · · · ,N2− s,

R̂(1) =


r̂(1)j j = 1 if j < s,

r̂(1)j+1, j = 1 if j ≥ s,

r̂(1)s j = r(1)j−s+1 if j ≥ s,

for j = 1,2, · · · ,N2−1.
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Step 4. Iterative computation of solution of matrix H;

Overall iteration of substeps on hereinafter is continuing for k = 2,3, · · · ,N2−1;

Step 4.1. Dimension decreasing for vector z and matrix G;

z(k)i = z(k−1)
i+1 −g(k−1)

i+1,s ·η(k−1),

g(k)i j =

{
g(k−1)

i+1, j if j < s,

g(k−1)
i+1,s · r

(k−1)
j−s+1 +g(k−1)

i+1, j+1 if j ≥ s,
for i, j = 1,2, · · · ,N2− k+1.

Step 4.2. Checking reduced matrix;

s = min( j) as provided by g(k)1, j 6= 0, for j = 1,2, · · · ,N2− k+1, if s is not available, the algorithm is terminated.

Step 4.3. Accumulating the solution;

η(k) =
z(k)1

g(k)1s

,h(k)i j = h(k−1)
i j + r̂(k−1)

N( j−1)+i,s ·η
(k), for j = 1,2, · · · ,N.

Step 4.4. Successive multiplication of R̂;

r(k)j =−
g(k)1,s+ j

g(k)1s

, for j = 1,2, · · · ,N2− k− s+1,

r̂(k)i j =

{
r̂(k−1)

i j if j < s,

r̂(k−1)
i s · r(k)j−s+1 + r̂(k−1)

i, j+1 if j ≥ s,
for i = 1,2, · · · ,N2,
for j = 1,2, · · · ,N2− k.

Step 5. Computation of IDDMforLyapunov algorithm is completed with the output solution

matrix H.

Thus, if the IDDMforLyapunov algorithm gives a solution, this solution require be a symmetric positive defined matrix.

4. Maple procedures

The ComputeSystem main procedure calls the some procedures according to the sequence. These procedures are executed the
algorithms defined previous sections. This procedure takes four parameter. The first parameter named ErrTolerance is a small
number that describes the tolerance of comparison with respect to zero in Step 2 and Step 4.2 in the Gh = z computation. The
second parameter, TestTolerance, is a small number used to corroborate that a unique H solution matrix was symmetrically and
positively defined. Distinctly, this tolerance value was defined an acceptability limit by any one for special purpose. The third
parameter, is allows the choice either continuous time system or discrete-time system computation. At last, fourth parameter is
being the coefficient matrix that belong the system (1.1) or (1.2).
> restart

> with (Linear Algebra, Dimension, Eigenvalues)
>Continuous :: integer1 := 0; Discrete :: integer1 := 1;

> LyapunovC := proc(A :: Matrix) :: Matrix
local i, j, k, l, N, G; N := Dimension(A);
G := Matrix(N1 ·N2, N1 ·N2, datatype= complex8);
for i from 1 to N1 do for j from 1 to N2 do

for k from 1 to N1 do for l from 1 to N2 do

if i 6= j and k 6= l then next fi: if i = j and k = l then

G(i−1)·N1+k,( j−1)·N2+l := conjugate(Ak, l +Ai, j); next; fi :
if i = j then G(i−1)·N1+k,( j−1)·N2+l := conjugate(Al,k);next;fi :
G(i−1)·N1+k,( j−1)·N2+l := conjugate(A j, i);
od : od : od : od : return G; end proc :

> LyapunovD := proc(A :: Matrix) :: Matrix
local i, j, k, l, N, G; N := Dimension(A);
G := Matrix(N1 ·N2, N1 ·N2, datatype= complex8);
for i from 1 to N1 do for j from 1 to N2 do
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for k from 1 to N1 do for l from 1 to N2 do

if i = j and k = l then

G(i−1)·N1+k,( j−1)·N2+l := conjugate(Ai, j ·Ak, l)−1 else

G(i−1)·N1+k,( j−1)·N2+l := conjugate(A j, i ·Al,k) fi :
od : od : od : od : return G; end proc :

> IDDMforLyapunov := proc(W :: Matrix) :: Matrix
global ConclusionSituation; local i, j, k, η , r, z, H, G, R, Temp
DimBase, DimVec, DimMat, RowNumber,CoulumnNumber,
IndexNONZERO; ConclusionSituation :=
"Exist and unique solution been computed that provide the

Lyapunov equation."; DimMat := Dimension(W );
RowNumber := DimMat1; CoulumnNumber := DimMat2;
DimVec := DimMat1; DimBase := sqrt(DimVec);
z := Vector(DimVec, datatype= complex8);
for i from 1 to DimBase do zDimBase·(i−1)+i :=−1 od :
G := Matrix(DimMat, datatype= complex8);
for i from 1 to DimMat1 do for j from 1 to DimMat2 do

Gi, j :=Wi, j; od : od :
H := Matrix(DimBase, DimBasedatatype= complex8);
R := Matrix(DimMat1, DimMat2−1, datatype= complex8);
for IndexNONZERO from 1 to DimMat2 do

if |G1, IndexNONZERO|> ErrTolerance then break fi : od :
if IndexNONZERO > DimMat2 then ConclusionSituation :=
"Has no unique solution so system can’t provide the

Lyapunov equation!"; return Matrix([0]); fi :
η := z1 ·G−1

1, IndexNONZERO;
for i from 1 to DimBase do for j from 1 to DimBase do

if DimBase · (i−1)+ j = IndexNONZERO then Hi, j := η ;fi : od : od :
r := Vector(DimMat2− IndexNONZERO, datatype= complex8);
for j from 1 to DimMat2− IndexNONZERO do

r j :=−G1, IndexNONZERO+ j ·G−1
1, IndexNONZERO od :

for j from 1 to DimMat2−1 do if j < IndexNONZERO then

R j, j := 1 else RIndexNONZERO, j := r j−IndexNONZERO+1;R j+1, j := 1;fi:od:
Temp := Vector(DimMat1, datatype= complex8);
for k from 1 to DimMat1−1 do

for i from 1 to RowNumber−1 do zi := zi+1−Gi+1, IndexNONZERO ·η od :
for i from 1 to RowNumber−1 do for j from 1 to CoulumnNumber−1 do

if j < IndexNONZERO then Gi, j := Gi+1, j else

Gi, j := Gi+1, indexNONZERO · r j−IndexNONZERO+1 +Gi+1, j+1fi:od:od:

RowNumber := RowNumber−1;CoulumnNumber :=CoulumnNumber−1;
for IndexNONZERO from 1 to CoulumnNumber do

if |G1, IndexNONZERO|> ErrTolerance then break fi : od :
if IndexNONZERO >CoulumnNumber then ConclusionSituation :=
"Has no unique solution so that system can’t provide the

Lyapunov equation!"; return Matrix([0]); fi :
η := z1 ·G−1

1, IndexNONZERO;
for i from 1 to DimBase do for j from 1 to DimBase do

Hi, j := Hi, j +RDimBase·(i−1)+ j, IndexNONZERO ·η od : od :
r := Vector(CoulumnNumber− IndexNONZERO, datatype= complex8);
for j from 1 to CoulumnNumber− IndexNONZERO do

r j :=−G1, IndexNONZERO+ j ·G−1
1, IndexNONZERO od :

for i from 1 to DimMat1 do Tempi := Ri, IndexNONZERO od:

for j from IndexNONZERO to CoulumnNumber−1 do

for i from 1 to DimMat1 do Ri, j := Tempi · r j−IndexNONZERO+1 +Ri, j+1
od: od: od: return H; end proc :

> IsCorroborate := proc(H :: Matrix) :: boolean
global ValidationTest; local i, j, N, EigVal; N := Dimension(H);
for i from 1 to N1−1 do for j from i+1 to N2 do

if |H j, i−Hi, j|< TestTolerance then next fi :
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ValidationTest := "Symmetry situation is out of accepted tolerance

value!";return f alse; od : od : EigVal := Eigenvalues(H);
for i from 1 to N1 do if R(EigVali)≥ TestTolerance then next fi :
ValidationTest := "Positivity of solution matrix is out of

accepted tolerance value!";return f alse; od:ValidationTest :=
"Both situations that symmetry and positivity of solution matrix

been in accepted tolerance range."; return true; end proc :

> ComputeSystem := proc

(argErrTolerance :: float,argTestTolerance :: float,
EqType :: integer1,A :: Matrix) :: boolean
global ErrTolerance,TestTolerance,boolResult, txtResult; local G, H;
if argErrTolerance < 10.−13 then ErrTolerance := 10.−13

elif argErrTolerance > 10.−4 then ErrTolerance := 10.−4

else ErrTolerance := argErrTolerance fi :
if argTestTolerance < 10.−13 then TestTolerance := 10.−13

elif argTestTolerance > 10.−4 then TestTolerance := 10.−4

else TestTolerance := argTestTolerance fi :
if EqType = 1 then G := LyapunovD(A) elif EqType = 0 then

G := LyapunovC(A) fi : print(′G′ = G);
H := IDDMforLyapunov(G); print(ConclusionSituation);
if H = [0] then return f alse fi : print(′H ′ = H);
boolResult := IsCorroborate(H);
print(ValidationTest,tolerance value is = TestTolerance);
print("The related system is asymptotic stable.");
return boolResult; end proc :

Example 4.1.
> A := Matrix(2, 2, [ [1,−3], [2,−4] ], datatype= complex8)

A :=
[

1.0+0.I −3.0+0.I
2.0+0.I −4.0+0.I

]
> ComputeSystem(10−13,10−10,continuous,A)

G =


2.0+0.I 2.0+0.I 2.0+0.I 0.+0.I
−3.0+0.I −3.0+0.I 0.+0.I 2.0+0.I
−3.0+0.I 0+0.I −3.0+0.I 2.0+0.I

0.+0.I −3.0+0.I −3.0+0.I −8.0+0.I


“Exist and unique solution been computed that provide the continuous-time Lyapunov matrix equation.”

H =

[
1.83333333299999990+0.I −1.16666666700000010+0.I
−1.16666666700000010+0.I 1.0+0.I

]
“Both situations that symmetry and positivity of solution matrixbeen in accepted tolerance range.”,

tolerace value is 1.000000000 ·10−10,“The related system is asymptotic stable.”

> ComputeSystem(10−13,10−10,discrete,A)

G =


0.0+0.I 2.0+0.I 2.0+0.I 4.0+0.I
−3.0+0.I −5.0+0.I −6.0+0.I −8.0+0.I
−3.0+0.I −6.0+0.I −5.0+0.I −8.0+0.I

9.0+0.I 12.0+0.I 12.0+0.I 15.0+0.I


“Has no unique solution so that can’t provide the discrete-time Lyapunov matrix equation!”

Example 4.2.
> A := Matrix(2, 2, [ [0, 0], [0, 0] ], datatype= complex8)

A :=
[

0.0+0.I 0.0+0.I
0.0+0.I 0.0+0.I

]
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> ComputeSystem(10−13,10−10,discrete,A)

G =


−1.0+0.I 0.0+0.I 0.0+0.I 0.0+0.I

0.0+0.I −1.0+0.I 0.0+0.I 0.0+0.I
0.0+0.I 0.0+0.I −1.0+0.I 0.0+0.I
0.0+0.I 0.0+0.I 0.0+0.I −1.0+0.I


“Exist and unique solution been computed that provide the discrete-time Lyapunov matrix equation.”

H =

[
1.0+0.I 0.0+0.I
0.0+0.I 1.0+0.I

]
“Both situations that symmetry and positivity of solution matrix been in accepted tolerance range.”,

tolerace value is 1.000000000 ·10−10,“The related system is asymptotic stable.”

5. Conclusion

On discrete set of double precision computer numbers, γ the base of number system, ε0 the minimal positive number, ε∞ the
maximal number, and ε1 is the step of computer numbers on the interval from 1 to γ . Thus, let be v ∈ [−ε∞,−ε0]∪ [ε0, ε∞], any
memorizable double precision computer number is vd p = v(1+α)+β , |v− vd p| ≤ ε1|v|+ ε0, |α| ≤ ε1, |β | ≤ ε0, α ·β = 0
(see for example[1] and [2]). The selected tolerance values from a particular interval [10−13, 10−4] were used in the evaluation
of the inequalities. The lower bound of the interval was chosen to be a larger number than ε1, depending on the ε1 which
determines the size of computation error. TestTolerance should always be larger than ErrTolerance so that the assessment be
efficient.
DDM which is inspiration for IDDM is described as type of Schur complement domain decomposition method in [7].
Decreasing dimension method (DDM) divides a large system into two smaller systems to be solved separately. To give a
general understanding of the computational quantum of DDM was used DDM and Gaussian elimination method to solve a
system of n dimension linear algebraic equations in [7]. The explanation in [7] tell us that the computational quantum of the
two methods are approximately the same to solve the system whose coefficient matrix is full, but the quantum of DDM is
much less than that of Gaussian elimination to solve band matrix equations. IDDM have made an improvement by modifying
the method in [7]. Notwithstanding DDM needed some pre-processing situations, without any pre-processing IDDM decreases
the dimension of the linear systems, by one order in every step (see for example ([6]). By its very nature, IDDM performs
division by a number away from 0 bound up with the ErrTolerance value. Thus inherently prevents the error of division by 0.
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