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Introduction 

Integro-differential equations have been investigated in 
many fields, including biology, physics, and engineering. 
Integro-differential equations, on the other hand, are widely 
used in science and engineering to simulate a variety of 
physical phenomena. As a result, scientists and applied 
mathematicians have focused their efforts on finding exact 
and approximate solutions to integro-differential equations 
[1-7]. 

The fractional calculus is a powerful tool in applied 
mathematics for studying a variety of problems from various 
fields of science and engineering, with many breakthrough 
results in mathematical physics, finance, hydrology, 
biophysics, thermodynamics, control theory, statistical 
mechanics, astrophysics, cosmology, and bioengineering [8]. 
Since the fractional calculus piqued the interest of 
mathematicians and other scientists, the solutions of 
fractional integro-differential equations have been studied 
frequently in recent years [9-19], other approcahes of the 
least squares with shifted Chebyshev polynomials [20], least-
squares method using Bernstein polynomials [21], fractional 
residual power series method [22], Taylor matrix method 
[23]. 

Laguerre polynomials are used to solve some integer 
order integro-differential equations. The Altarelli-Parisi 
equation [24], the Pantograph-type Volterra integro-
differential equation [25] and the linear Fredholm integro-
differential equation are examples of these. In addition, 
Laguerre polynomials are used to solve fractional integro-
differential equations [20]. Algebraic equations, differential 
equations, integral equations, and other functional 
equations are frequently the result of mathematical 
modeling of real-life problems [26]. 

In many domains of science and engineering, differential 
and integral equations are often used. However, research 

into these areas has uncovered novel subtopics in which both 
differential and integral operators appear in the same 
equation. This new type of equation is known as integro-
differential equation. 

Integro-differential equations are equations that are 
known to emerge in both the derivatives and anti-derivatives 
of a function [27]. It is an equation in which the unknown 
function u(x) appears under the integral sign and has yet to 
be identified [28]. To solve polynomial issues, various types 
of analytical methods have been applied. Hirota's bilinear 
approach, Darboux transformation, symmetry method, 
inverse scatting transformation, variational iteration method 
used by [29-30]. The Adomian Decomposition Method 
(ADM) is a dependable and practical method for dealing with 
various equations, both linear and non-linear. 

Differential equations, such as Boundary Value Problems 
(BVPs), have also been solved using this method in other 
sectors of science and engineering. For nonlinear operators, 
the method relies on the calculation of Adomian 
polynomials. The usage of the Adomian decomposition 
approach has various drawbacks that can develop due to the 
nature of the issues being considered, such as a relatively 
poor convergence rate and a huge functional evaluation for 
non-linear problems. [30] solved certain linear and nonlinear 
integral equations using a modified version of this ADM. 
Using Adomian Polynomials, this paper proposes a new 
version of the Adomian Decomposition Method for integro-
differential equations. 

This new decomposition modification introduces a 
change in the formulation of Adomian polynomials, which is 
superior to the usual Adomian technique. The novel modified 
Adomian Decomposition Method (MADM) improves the 
accuracy, speed of convergence, and reduces the number of 
functional calculations. 
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Methodology 

Assuming that the nonlinear function is 𝐹൫𝑦(𝑥)൯ 
therefore, below are few of Adomian polynomials. 

𝐴଴ = 𝐹(𝑦଴),  (1) 

𝐴ଵ = 𝑦ଵ𝐹ᇱ(𝑦଴),   (2) 

𝐴ଶ = 𝑦ଶ𝐹ᇱ(𝑦଴) +
ଵ

ଶ!
𝑦ଵ

ଶ𝐹ᇳ(𝑦଴),  (3) 

𝐴ଷ = 𝑦ଷ𝐹ᇱ(𝑦଴) + 𝑦ଵ𝑦ଶ𝐹ᇳ(𝑦଴) +
ଵ

ଷ!
𝑦ଵ

ଷ𝐹ᇵ(𝑦଴), 
 (4) 

𝐴ସ = 𝑦ସ𝐹ᇱ(𝑦଴) + ቀ
ଵ

ଶ!
𝑦ଶ

ଶ + 𝑦ଵ𝑦ଷቁ 𝐹ᇳ(𝑦଴) +
ଵ

2!
𝑦ଵ

ଶ𝑦ଶ𝐹ᇵ(𝑦଴) +
ଵ

ସ
𝑦ଵ

ସ𝐹(iv)(𝑦଴),  (5) 

Two important observations can be made here. First, 
𝐴଴ depends only on 𝑦଴ , Aଵ depends only on 𝑦଴ and 𝑦ଵ , 𝐴ଶ 
depends only on 𝑦଴ , 𝑦ଵ and 𝑦ଶ ,  and so on. 
Secondly, substituting these 𝐴௝

ᇱ𝑠 in (3) gives: 

𝐹(𝑦) = 𝐴଴ + 𝐴ଵ + 𝐴ଶ + 𝐴ଷ+. . . 

 = 𝐹(𝑦଴) + (𝑦ଵ + 𝑦ଶ + 𝑦ଷ +  . . .) Fᇱ(𝑦଴) +
ଵ

ଶ!
(𝑦ଵ

ଶ +

2𝑦ଵ𝑦ଶ + 2𝑦ଵ𝑦ଷ + 𝑦ଶ
ଶ)𝐹ᇳ(𝑦଴)

+
1

3!
(𝑦ଵ

ଷ + 3𝑦ଵ
ଶ𝑦ଷ + 6𝑦ଵ𝑦ଶ𝑦ଷ +  . . .) Fᇵ(𝑦଴) +  . . . 

= 𝐹(𝑦଴) + (𝑦 − 𝑦଴)𝐹ᇱ(𝑦଴) +
1

2!
(𝑦 − 𝑦଴)ଶ𝐹ᇳ(𝑦଴) +  . . . 

In the following, we will calculate Adomian 
polynomials for several linear terms that may arise in 
nonlinear integral equations. 

Case 1. 
The first four Adomian polynomials for 𝐹(𝑦) = 𝑦ଶ are 
given by  

𝐴଴ = 𝑦଴
ଶ  

𝐴ଵ = 2𝑦଴𝑦ଵ   

𝐴ଶ = 2𝑦଴𝑦ଶ + 𝑦ଵ
ଶ  

𝐴ଷ = 2𝑦଴𝑦ଷ + 2yଵ𝑦ଶ 

Case 2. 
The first four Adomian polynomials for 𝐹(𝑦) = 𝑦ଷ are 
given by 

𝐴଴ = 𝑦଴
ଷ ,  

𝐴ଵ = 3𝑦଴
ଶ yଵ ,  

𝐴ଶ = 3𝑦଴
ଶ𝑦ଶ + 3y଴𝑦ଵ

ଶ , 

𝐴ଷ = 3𝑦଴
ଶ𝑦ଷ + 6y଴𝑦ଵ𝑦ଶ + 𝑦ଵ

ଷ 

Case 3. 
The first four Adomian polynomials for 𝐹(𝑦) = 𝑦ସ are 
given by 

𝐴଴ = 𝑦଴
ସ , 

𝐴ଵ = 4𝑦଴
ଷ𝑦ଵ ,  

𝐴ଶ = 4𝑦଴
ଷ𝑦ଶ + 6y଴

ଶ𝑦ଵ
ଶ ,   

𝐴ଷ = 4𝑦଴
ଷ𝑦ଷ + 4yଵ

ଷ𝑦଴ + 12y଴
ଶ𝑦ଵ + 𝑦ଶ 

Case 4. 
The first four Adomian polynomials for 𝐹(𝑦) = 𝑠𝑖𝑛 𝑦 are 
given by 

𝐴଴ = 𝑠𝑖𝑛 𝑦଴  ,  

𝐴ଵ = 𝑦ଵ 𝑐𝑜𝑠 𝑦଴  ,   

𝐴ଶ = 𝑦ଶ 𝑐𝑜𝑠 𝑦଴ −
ଵ

ଶ!
𝑦ଵ

ଶ 𝑠𝑖𝑛 𝑦଴  , 

𝐴ଷ = 𝑦ଷ 𝑐𝑜𝑠 𝑦଴ − 𝑦ଵ𝑦ଶ 𝑠𝑖𝑛 𝑦଴ −
ଵ

ଷ!
𝑦ଵ

ଷ 𝑐𝑜𝑠 𝑦଴

Case 5. 
The first four Adomian polynomials for 𝐹(𝑦) = 𝑐𝑜𝑠 𝑦 are 
given by 

𝐴଴ = 𝑐𝑜𝑠 𝑦଴  ,   

𝐴ଵ = −𝑦ଵ 𝑠𝑖𝑛 𝑦଴  ,  

𝐴ଶ = −𝑦ଶ 𝑠𝑖𝑛 𝑦଴ −
ଵ

ଶ!
𝑦ଵ

ଶ 𝑐𝑜𝑠 𝑦଴  , 

𝐴ଷ = −𝑦ଷ 𝑠𝑖𝑛 𝑦଴ − 𝑦ଵ𝑦ଶ 𝑐𝑜𝑠 𝑦଴ +
ଵ

ଷ!
𝑦ଵ

ଷ 𝑠𝑖𝑛 𝑦଴  , 

Case 6. 
The first four Adomian polynomials for 𝐹(𝑦) = 𝑒𝑥𝑝(𝑦) 
are given by 

𝐴଴ = 𝑒𝑥𝑝(𝑦଴)  , 

𝐴ଵ = 𝑦ଵ 𝑒𝑥𝑝(𝑦଴)  , 

𝐴ଶ = ቀ𝑦ଶ +
ଵ

ଶ!
𝑦ଵ

ଶቁ   𝑒𝑥𝑝(𝑦଴)  , 

𝐴ଷ = ቀ𝑦ଷ + 𝑦ଵ𝑦ଶ +
ଵ

ଷ!
𝑦ଵ

ଷቁ   𝑒𝑥𝑝(𝑦଴)  , 

The modification was carried out by decomposing the 
source term function into series of the form    
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𝑔(𝑥) = ෍ 𝑔௜(𝑥)

ାஶ

௝ୀ଴

 

 
and the new recursive relation was obtained as: 
 

𝑦଴(𝑥) = 𝑔଴(𝑥), 
 

𝑦ଵ(𝑥) = 𝑔ଵ(𝑥) + 𝑔ଶ(𝑥)

+ 𝜆 න 𝑘(𝑥, 𝑡)
௫

௔

൫𝐿൫𝑦଴(𝑥)൯ + 𝐴଴൯𝑑𝑡, 

 

𝑦ଶ(𝑥) = 𝑔ଷ(𝑥) + 𝑔ସ(𝑥)

+ 𝜆 න 𝑘(𝑥, 𝑡)൫𝐿൫𝑦଴(𝑥) + 𝑦ଵ(𝑥)൯
௫

௔

+ 𝐴ଵ൯ 𝑑𝑡, 
. 
𝑦௝ାଵ(𝑥) = 𝑔ଶ(௝ାଵ)(𝑥) + 𝑔ଶ(௝ାଵ)ିଵ(𝑥) +

𝜆 ∫ 𝑘(𝑥, 𝑡) ቀ𝐿 ቀ𝑦௝(𝑥) + 𝑦௝ିଵ(𝑥)ቁ + 𝐴ଵቁ 𝑑𝑡
௫

௔
. 

 
Numerical Examples 
 

Example 1: 
 Consider the standard integro-differential equation; 

 
𝑦ᇱ(𝑥) = 1 −

ଵ

ଷ
𝑥 + ∫ 𝑥𝑡𝑦(𝑡)𝑑𝑡

ଵ

଴
;  𝑦(0) = 0,  𝑦(𝑥) = 𝑥  

 
Let 
 
𝑎଴ = 1       
 
𝑎଴ = ∫ 𝑎𝑑𝑥

௫

଴
      

 
𝑎଴ = 𝑥        
 
𝑦଴ = 𝑡       
 
𝑔଴ = −

ଵ

଺
𝑥ଶ      

 
𝑎ଵ = 𝑔଴ + ∫ 𝑥 ∫ 𝑡𝑦଴𝑑𝑡𝑑𝑥

ଵ

଴

௫

଴
    

 
𝑎ଵ = 0         
 
𝑦ଵ = 0         
 
𝑔ଵ = 0        
 
Then; 
 
𝑦௡ = 𝑦଴ + 𝑦ଵ + 𝑦ଶ + 𝑦ଷ + 𝑦ସ    
 
𝑦௡(𝑡) = 𝑡       
 
𝑦௡(𝑥) = 𝑥       
 

Example 2:  
Consider the standard integro-differential equation; 

 
𝑦ᇳ(𝑥) =

ଵ

ଶ
𝑒௫ +

ଵ

ଶ
∫ 𝑒௫ିଶ௧𝑦ଶ(𝑡)𝑑𝑡

ଵ

଴
;     𝑦(0) = 1,     

yᇱ(0) = 1      
 
Applying two fold integral linear operator defined by: 
 
𝐿ିଵ = ∫ ∫ (. )𝑑𝑥𝑑𝑥

௫

଴

௫

଴
     

 
The differential equation is transformed to: 
 

𝑦(𝑥) =
1

2
+

1

2
𝑥 +

1

2
𝑒௫ +

1

2
𝐿ିଵ ቈන 𝑒(௫ିଶ௧)𝑦ଶ(𝑡)𝑑𝑡

ଵ

଴

቉ 𝑑𝑥𝑑𝑥 

 
Let 
 
𝑟 =

ଵ

ଶ
+

ଵ

ଶ
𝑥 +

ଵ

ଶ
𝑒௫     

 
Using taylor (r,from x to 10) 
 

1 + 𝑥 +
1

4
𝑥ଶ +

1

12
𝑥ଷ +

1

48
𝑥ସ +

1

120
𝑥ହ +

1

1440
𝑥଺

+
1

10080
𝑥଼ +

1

725760
𝑥ଽ + 0(𝑥ଵ଴) 

Then; 
 
𝑎଴ = 1         
 
𝑦଴ = 1        
 
𝑔଴ = 𝑥 +

ଵ

ସ
𝑥ଶ      

 
We have, 
 
𝑎ଵ = 𝑔଴ +

ଵ

ଶ
∫ 𝑒௫ ∫ ቂ∫ 𝑒(ିଶ௧)𝑦଴

ଶ𝑑𝑡
ଵ

଴
ቃ 𝑑𝑥𝑑𝑥

௫

଴

௫

଴
    

𝑎ଵ = 𝑥 +
ଵ

ସ
𝑥ଶ + 0.2161661792 + 0.2161661792𝑒௫𝑥 −

0.2161661792𝑒௫   
 
𝑦ଵ = 𝑡 +

ଵ

ସ
𝑡ଶ + 0.2161661792 + 0.2161661792𝑒௧𝑡 −

0.2161661792𝑒௧  
 
Then, 
 
𝑔ଵ =

ଵ

ଵଶ
𝑥ଷ +

ଵ

ସ଼
𝑥ସ     

 
𝑎ସ = 𝑔ଷ +

ଵ

ଶ
∫ 𝑒௫ ∫ ቂ∫ 𝑒(ିଶ௧)𝑎௜௩𝑑𝑡

ଵ

଴
ቃ 𝑑𝑥𝑑𝑥

௫

଴

௫

଴
  

 
𝑎ସ =

ଵ

ଵ଴଼଴
𝑥଻ +

ଵ

଼଴଺ସ଴
𝑥଼ + 0.02183314121 +

0.02183314121𝑒௫𝑥 − 0.02183314121𝑒௫   
 
𝑦ସ =

ଵ

ଵ଴଼଴
𝑡଻ +

ଵ

଼଴଺ସ଴
𝑡଼ + 0.02183314121 +

0.02183314121𝑒௧𝑡 − 0.02183314121𝑒௧     
 
Then; 
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𝑦௡ = 𝑦଴ + 𝑦ଵ + 𝑦ଶ + 𝑦ଷ + 𝑦ସ    
 

𝑦௡(𝑡) = 1.5044983400 + 𝑡 +
1

4
𝑡ଶ + 0.5049834007𝑒௧𝑡

− 0.5049834007𝑒௧ +
1

12
𝑡ଷ +

1

48
𝑡ସ + 

            ଵ

120
𝑡ହ +

ଵ

ଵସସ଴
𝑡଺ +

ଵ

ଵ଴଼଴
𝑡଻ +

ଵ

଼଴଺ସ଴
𝑡଼    

 

𝑦௡(𝑥) = 1.5044983400 + 𝑥 +
1

4
𝑥ଶ

+ 0.5049834007𝑒௫𝑥

− 0.5049834007𝑒௫ +
1

12
𝑥ଷ +

1

48
𝑥ସ

+ 

            ଵ

120
𝑥ହ +

ଵ

ଵସସ଴
𝑥଺ +

ଵ

ଵ଴଼଴
𝑥଻ +

ଵ

଼଴଺ସ଴
𝑥଼  

 
Table 1. Table of Absolute Errors for Example 2 

X Exact NADM Absolute 
Error 

  0.0 1.000.000.000 0.999514939 0.000485061 
0.1 1.105.170.918 1.105.285.188 0.000114270 
0.2 1.221.402.758 1.222.254.295 0.000851537 
0.3 1.349.858.808 1.352.753.581 0.002894773 
0.4 1.491.824.698 1.498.889.078 0.007064380 
0.5 1.648.721.271 1.663.062.055 0.014340784 
0.6 1.822.118.800 1.848.010.030 0.025891230 
0.7 2.013.752.707 2.056.854.272 0.043101565 
0.8 2.225.540.928 2.293.154.795 0.067613867 
0.9 2.459.603.111 2.560.973.914 0.101370803 
1.0 2.718.281.828 2.864.949.506 0.146667678 

 

 

Figure 1. Graph of Comparison of the New ADM and the 
Exact for Example 2 

 

Example 3:  
𝑦ᇱ(𝑥) = 𝑒௫ +

ଵ

ଵ଺
(3 + 𝑒ଶ)𝑥 +

ଵ

ସ
∫ 𝑥𝑡൫1 + 𝑢(𝑡) − 𝑦ଶ(𝑡)൯𝑑𝑡

ଵ

଴
 ;          

 
Which subject to the initial condition? 
 
𝑢(0) = 2      
 
Applying a one-fold integral linear operator defined by: 
 

𝐿ିଵ = ∫ (. )𝑑𝑥
௫

଴
      

 
The differential equation is transformed to 
 
𝑦(𝑥) = 1 + 𝑒𝑥𝑝(𝑥) +

ଵ

ଷଶ
(3 + 𝑒𝑥𝑝(2))𝑥 +

ଵ

ସ
𝐿ିଵ ቂ∫ 𝑥𝑡൫1 +

ଵ

଴

𝑦(𝑡) − 𝑦ଶ(𝑡)൯𝑑𝑡ቃ 𝑑𝑥    
 
By using Taylor Series 
 

(1 +
973

2997
𝑥ଶ + 𝑒𝑥𝑝(𝑥)  from 𝑥  to  10) 

 
We have; 
 

2 + 𝑥 +
4943

5994
𝑥ଶ +

1

6
𝑥ଷ +

1

24
𝑥ହ +

1

720
𝑥଺ +

1

5040
𝑥଻

+
1

40320
𝑥଼ +

1

362880
𝑥ଽ + (0)𝑥ଵ଴ 

 
Then; 
 
𝑎଴ = 2      
 
𝑦଴ = 2      
 
and 
 

𝑎௜  ;  𝑎௜௜  ;  𝑎௜௜௜  ;  𝑎௜௩   𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡   𝑦଴
ଶ ;  𝑦ଵ

ଶ ;  𝑦ଶ
ଶ ; 𝑦ଷ

ଶ 
 
Then;  
Integrate y0; 
 
𝑎ଵ = −0.3827304872𝑥ଶ     
 
yଵ = −0.3827304872tଶ      
 
 a୧୧ = 2y଴yଵ       
 
 a୧୧ = −0.7654609744(1 + e୲ + 0.3246580031tଶ)tଶ    
 
aଶ =

ଵ

ସ
∫ x ∫ t(1 + yଵ − a୧୧)dtdx

ଵ

଴

୶

଴
    

 
aଶ = 0.1335487491xଶ      
 
yଶ = 0.1335487491tଶ      
 
Then; the sum of y0 to y4;           
 
y୬ = y଴ + yଵ + yଶ + yଷ + yସ                
 
We have 
 

  2 3 4 5

6 7 8

2955595512151 1 1 1
2

4120514592768 6 24 120
1 1 1

720 5040 40320

ny t t t t t t

t t t

     

  
 

 
𝑦௡(𝑥) = 2 + 𝑥 +

ଶଽହହହଽହହଵଶଵହଵ

ସଵଶ଴ହଵସହଽଶ଻଺଼
𝑥ଶ +

ଵ

଺
𝑥ଷ +

ଵ

ଶସ
𝑥ସ +

ଵ

ଵଶ଴
𝑥ହ +

ଵ

଻ଶ଴
𝑥଺ +

ଵ

ହ଴ସ଴
𝑥଻     
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Table 2. Table of Absolute Errors for Example 2 

X Exact NADM Absolute 
Error 

  0.0 2.000.000.000 2.000.000.000 0.000000000 
0.1 2.105.170.918 2.107.343.798 0.002172880 
0.2 2.221.402.759 2.230.094.277 0.008691518 
0.3 2.349.858.807 2.369.414.725 0.019555918 
0.4 2.491.824.697 2.526.590.771 0.034766074 
0.5 2.648.721.265 2.703.043.255 0.054321990 
0.6 2.822.118.771 2.900.342.437 0.078223666 
0.7 3.013.752.588 3.120.223.689 0.106471101 
0.8 3.225.540.527 3.364.604.822 0.139064295 
0.9 3.459.601.938 3.635.605.188 0.176003250 
1.0 3.718.278.771 3.935.566.732 0.217287961 

 

 

Figure 2. Graph of Comparison of the New ADM and the 
Exact for Example 3 

 
Results and Discussion 
 

The new Modified Adomian Decomposition Method 
(MADM) for integro-differential equations was introduced 
in this paper. This new approach converges faster, and it 
can be seen that the source term expansion should be as 
lengthy as feasible. The decomposed source term's 
convergence is improved by a little increase in the terms 
of decomposed source terms. The addition of more terms 
in the integral sign improves accuracy and, as a result, the 
Adomian polynomials. 
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