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Abstract  

In this paper, we introduce the moving Frenet frame along the timelike curve  in 𝔼1
4 and then 

Frenet formulas with the equiform parameter in the equiform geometry of the Minkowski 

space-time. We obtain 𝑘-type helices for equiform differential geometry of timelike curves in 

Minkowski space-time 𝔼1
4, in terms of their curvature functions. We give some new 

characterizations for these helices and investigate the special helices in Minkowski space-time. 

Finally, we establish (𝑘,𝑚)-type slant helices for equiform differential geometry of timelike 

curves in 𝔼1
4.  
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1. Introduction  

Differential geometry is basically an area where the theory of curves and manifolds are studied. New theories are 

practically being built on it everyday applications. Especially, since the theory of curves finds application in 

many disciplines, it has become an important field for both mathematicians and biologists, physics and even 
engineers and medicine in some fields. However, the geometric structures built on the timelike and spacelike 

curves and the construction of Frenet vectors opened completely different doors and allowed to work on a very 

wide platform. Geometricians try to express and prove these and similar issues in various spaces, for example in 

the Lorentz-Minkowski space in the Euclidean space, and in the Semi-Euclidean space. In particular, the theory 
of curves in Lorentz-Minkowski and Semi-Euclidean space, and the differences arising from the classification of 

curves as spacelike, timelike and null have yielded very interesting results.  

Recently, Izumiya and Takeuchi introduced the concept of slant helix in Euclidean space. For instance, 

in [1], the authors presented some necessary and sufficient conditions for a curve to be a slant helix in Euclidean 

n-space. In [2], the authors established equiform differential geometry of curves in Minkowski space-time. 

Geometricians [3-5] usually deal with the theoretical part and continue to work with spacelike, timelike curves, 

involute-evolute curves, helices, and various characterizations. M.Y. Yilmaz and M. Bektaş defined (𝑘,𝑚)-type 

slant helices in 4-dimensional Euclidean space in [6]. Furthermore, very important theories have been proved in 

the 4-dimensional Minkowski space, which contains the most interesting and most different curves [7-10] and 
similar subjects [11-13] have yielded quite remarkable results. Because equiform roofs are expressed in 4-

dimensional Euclidean space, each of them has its own unique geometric structures, allowing the study of events 

in a broad perspective.Additionally, F. Bulut and M. Bektaş obtained helix types for equiform differential 

geometry of spacelike curves in 𝔼1
4 in [12].  

In this paper, we examine the structures of (𝑘,𝑚)-type helices of the distinguished timelike curves and the 

timelike curves expressed by the 𝑠 parameter. We present helix types which are called curves as 𝑘-type helices 

and (𝑘,𝑚)-type slant helices for equiform differential geometry of timelike curves in Minkowski space-time. 

2. Geometric Preliminaries  

The Minkowski space-time 𝔼1
4 is a Euclidean space provided with the indefinite flat metric given by  

𝑔 = −𝑑𝑥1
2 + 𝑑𝑥2

2 + 𝑑𝑥3
2 + 𝑑𝑥4

2 
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where 𝑥1
1 , 𝑥1

2 , 𝑥1
3 , 𝑥1

4 is a rectangular coordinate system of 𝔼1
4. Recall that an arbitrary vector 𝑦 ∈ 𝔼1

4 − {0} can be 

spacelike, timelike or null (lightlike vector), if holds 𝑔〈𝑦, 𝑦〉〉0, 𝑔〈𝑦, 𝑦〉〈0 or 𝑔〈𝑦, 𝑦〉 = 0 respectively. If 𝑦 is a 

timelike vector, then ∥ 𝑦′, 𝑦′ ∥= √−〈𝑦′, 𝑦′〉. For an arbitrary the curve 𝛼(𝑠) in 𝔼1
4 is named a spacelike, a timelike 

and a null (lightlike) curve, if all of its velocity vectors 𝛼′(𝑠) are spacelike, timelike, and null (lightlike), 

respectively [13]. The normal vector on the spacelike or the timelike hypersurface is, respectively, a timelike or 
a spacelike vector.  

Let 𝛼: 𝐼 ⊂ ℝ → 𝔼1
4 be a curve in Minkowski space-time. The curve 𝛼 is said to be a timelike curve if 

〈𝛼
.
(𝑡), 𝛼

.
(𝑡)〉 < 0 for each 𝑡 ∈ 𝐼. The arclength of a timelike curve 𝛼 measured from 𝛼(𝑡0)(𝑡0 ∈ 𝐼) is  

𝑠(𝑡) = ∫
𝑡

𝑡0
∥ 𝛼

.
(𝑡) ∥ d𝑡.  

𝛼 is said to be parameterized by the arc-length function 𝑠, if ∥ 𝛼′(𝑠) ∥= −1, where 𝛼′(𝑠) = 𝑑𝛼/𝑑𝑠. 

Consequently, we say that 𝛼 is a timelike curve, if ∥ 𝛼′(𝑠) ∥= −1. For any 𝑥, 𝑦, 𝑧 ∈ 𝔼1
4, we define a vector 𝑥 ×

𝑦 × 𝑧 by  

𝑥 × 𝑦 × 𝑧 = ||

−𝑒1 𝑒2 𝑒3 𝑒4

𝑥1
1 𝑥1

2 𝑥1
3 𝑥1

4

𝑥2
1 𝑥2

2 𝑥2
3 𝑥2

4

𝑥3
1 𝑥3

2 𝑥3
3 𝑥3

4

||,  

where 𝑥𝑖 = (𝑥𝑖
1 , 𝑥𝑖

2 , 𝑥𝑖
3 , 𝑥𝑖

4), 1 ≤ 𝑖 ≤ 3. Let 𝛼: 𝐼 ⟶ 𝔼1
4 be a timelike curve in 𝔼1

4. Let {𝐭(𝑠), 𝐧(𝑠), 𝐛𝟏(𝑠), 𝐛𝟐(𝑠)} 
is a pseudo-orthogonal frame which satisfies the following Frenet-Serret formulas of 𝔼1

4 along 𝛼.  

[

𝐭
𝐧
𝐛𝟏

𝐛𝟐

]

′

=

[
 
 
 
0 𝜅1 0 0

𝜇1𝜅1 0 𝜇2𝜅2 0

0 𝜇3𝜅2 0 𝜇4𝜅3

0 0 𝜇5𝜅3 0 ]
 
 
 

[

𝐭
𝐧
𝐛𝟏

𝐛𝟐

],                                  (1) 

where 𝜅1, 𝜅2 and 𝜅3 are respectively, first, second and third curvature of the timelike curve 𝛼 and we have   

𝜅1(𝑠) =∥ 𝛼′′(𝑠) ∥, 

𝐧(𝑠) =
𝛼′′(𝑠)

𝜅1(𝑠)
, 

𝐛𝟏(𝑠) =
𝐧′(𝑠) + 𝜇1𝜅1(𝑠)𝐭(𝑠)

∥ 𝐧′(𝑠) + 𝜇1𝜅1(𝑠)𝐭(𝑠) ∥
, 

𝐛𝟐(𝑠) = 𝐭(𝑠) × 𝐧(𝑠) × 𝐛𝟏(𝑠). 

Denote by {𝐭(𝑠), 𝐧(𝑠), 𝐛𝟏(𝑠), 𝐛𝟐(𝑠)} the moving Frenet frame along the timelike curve 𝛼 [1-7]. So, 𝑡(𝑠) is a 

timelike tangent vector and the principal normal vector 𝐧(𝑠), the first binormal vector 𝐛𝟏(𝑠) and the second 

binormal vector 𝐛𝟐(𝑠), then 𝜇𝑖 = ∓1(1 ≤ 𝑖 ≤ 5) and we get 𝜇1 = 𝜇2 = 𝜇4 = 1, 𝜇3 = 𝜇5 = −1.  

Now, let 𝛾 be a timelike curve. Then 𝐓 is timelike vector and following Frenet formulas is given  

[

𝐓
𝐍
𝐁𝟏

𝐁𝟐

]

′

=

[
 
 
 
0 𝜅1 0 0

−𝜅1 0 𝜅2 0

0 −𝜅2 0 𝜅3

0 0 −𝜅3 0 ]
 
 
 

[

𝐓
𝐍
𝐁𝟏

𝐁𝟐

], 

where 𝜅1, 𝜅2 and 𝜅3 denote the first, the second and the third curvature functions according to of 𝛾, respectively. 

Here, {𝐓, 𝐍, 𝐁𝟏, 𝐁𝟐} satisfy the following equations  

〈𝐍,𝐍〉 = 〈𝐁𝟏, 𝐁𝟏〉 = 〈𝐁𝟐, 𝐁𝟐〉 = 1, 〈𝐓,𝐓〉 = −1.  
 

3.   Equiform Differential Geometry of Timelike Curves  

Let 𝛼: 𝐼 ⟶ 𝔼1
4 be a timelike curve. We define the equiform parameter of 𝛼(𝑠) by  
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𝜎 = ∫
𝑑𝑠

𝜌
= ∫ 𝜅1 𝑑𝑠 

where 𝜌 =
1

𝜅1
 is the radius of curvature of the curve and 

𝑑𝑠

𝑑𝜎
= 𝜌.  

Let’s indicate by {𝐓, 𝐍, 𝐁𝟏, 𝐁𝟐} the acting Frenet frame along the curve 𝛼(𝑠) in the space 𝔼1
4 and so {𝐓,𝐍, 𝐁𝟏, 𝐁𝟐} 

are, respectively, the unit tangent, the principal normal, the first binormal and the second binormal vector fields. 

We define the equiform parameter of 𝛼(𝑠). Then, we can write  

𝐔𝟏 = 𝜌𝐓, 

𝐔𝟐 = 𝜌𝐍, 

𝐔𝟑 = 𝜌𝐁𝟏, 

𝐔𝟒 = 𝜌𝐁𝟐.    

Then, {𝐔𝟏, 𝐔𝟐, 𝐔𝟑, 𝐔𝟒} is an equiform invariant tetrahedron of the curve 𝛼 [2]. 𝜎 is an equiform invariant 

parameter of 𝛼. The derivatives of these vectors with respect to 𝑠 can be obtained by the following equations:  

𝐔𝟏
′ =

𝑑

𝑑𝜎
(𝐔𝟏) = 𝜌

𝑑

𝑑𝑠
(𝜌𝐓) = �̇�𝐔𝟏 + 𝐔𝟐, 

𝐔𝟐
′ =

𝑑

𝑑𝜎
(𝐔𝟐) = 𝜌

𝑑

𝑑𝑠
(𝜌𝐍) = 𝐔𝟏 + �̇�𝐔𝟐 + (

𝜅2

𝜅1
)𝐔𝟑, 

𝐔𝟑
′ =

𝑑

𝑑𝜎
(𝐔𝟑) = 𝜌

𝑑

𝑑𝑠
(𝜌𝐁𝟏) = −(

𝜅2

𝜅1
)𝐔𝟐 + �̇�𝐔𝟑 + (

𝜅3

𝜅1
)𝐔𝟒, 

𝐔𝟒
′ =

𝑑

𝑑𝜎
(𝐔𝟒) = 𝜌

𝑑

𝑑𝑠
(𝜌𝐁𝟐) = −(

𝜅3

𝜅1
)𝐔𝟑 + �̇�𝐔𝟒,  

where the functions 𝜅1, 𝜅2 and 𝜅3 are the curvatures of 𝛼 [12]. Then, the Frenet formulas in the equiform 

geometry of the Minkowski space-time can be written as below:  

𝐔𝟏
′ = 𝐾1𝐔𝟏 + 𝐔𝟐, 

𝐔𝟐
′ = 𝐔𝟏 + 𝐾1𝐔𝟐 + 𝐾2𝐔𝟑, 

𝐔𝟑
′ = −𝐾2𝐔𝟐 + 𝐾1𝐔𝟑 + 𝐾3𝐔𝟒, 

𝐔𝟒
′ = −𝐾3𝐔𝟑 + 𝐾1𝐔𝟒.  

The functions 𝐾1, 𝐾2, 𝐾3 are the equiform curvatures of 𝛼. 

[
 
 
 
 
𝐔𝟏

′

𝐔𝟐
′

𝐔𝟑
′

𝐔𝟒
′ ]
 
 
 
 

=

[
 
 
 
 𝐾1 1 0 0

1 𝐾1 𝐾2 0

0 −𝐾2 𝐾1 𝐾3

0 0 −𝐾3 𝐾1]
 
 
 
 

[

𝐔𝟏

𝐔𝟐

𝐔𝟑

𝐔𝟒

],  (2) 

where  

𝐾1 =
1

𝜌2 〈𝐔𝐣
′, 𝐔𝐣〉;  (𝑗 = 1,2,3,4),

𝐾2 =
1

𝜌2 〈𝐔𝟐
′ , 𝐔𝟑〉 = −

1

𝜌2 〈𝐔𝟑
′ , 𝐔𝟐〉,

𝐾3 =
1

𝜌2 〈𝐔𝟑
′ , 𝐔𝟒〉 = −

1

𝜌2 〈𝐔𝟒
′ , 𝐔𝟑〉.

     (3) 
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4.   𝒌-Type Helices in 𝔼𝟏
𝟒 

Definition 1. Let 𝛼 be a timelike curve in 𝔼1
4 with equiform Frenet frame  {𝐔1, 𝐔2, 𝐔3, 𝐔4}. If there exists a non-

zero constant vector field 𝐔 in 𝔼1
4 such that 〈𝐔𝑘 , 𝐔〉 = 𝐜𝑘 is a constant for 1≤ 𝑘 ≤ 4,  𝛼 is said to be a 𝑘 −type 

slant helix and  𝐔 is called the slope axis of 𝛼.  

Theorem 1. Let 𝛼 be a timelike curve with Frenet formulas in equiform geometry of the Minkowski space-time 

𝔼1
4. Then, if the curve 𝛼 is a 1-type helix (or general helix), then we have 

〈𝐔2, 𝐔〉 = −𝐾1𝑐,                                                                   

where 𝑐 is a constant.  

Proof. Assume that 𝛼 is a 1-type helix in 𝔼1
4, then for a constant field 𝐔, we can write  

〈𝐔1, 𝐔〉 = 𝑐               (4) 

is a constant and differentiating (4) with respect to 𝜎, we find as below:  

〈𝐔1
′ , 𝐔〉 = 0. 

Using the equiform Frenet equations in equiform geometry, we have the following equation:  

〈𝐾1𝐔1 + 𝐔2, 𝐔〉 = 0, 

and it follows that  

𝐾1〈𝐔1, 𝐔〉 + 〈𝐔2, 𝐔〉 = 0. 

Using (4), we obtain  

〈𝐔2, 𝐔〉 = −𝐾1𝑐. 

The proof is completed.  

Theorem 2. Let 𝛼 be a timelike curve with Frenet formulas in equiform geometry of the Minkowski space-time 

𝔼1
4. Then, if the curve 𝛼 is a 2-type helix, then we have 

〈𝐔1, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = −𝐾1𝑐1, 

where 𝑐1 is a constant.  

Proof. Let the curve 𝛼 be a 2-type helix in 𝔼1
4, then for a constant field 𝐔, in that case, the following equations 

can be obtained:  

〈𝐔2, 𝐔〉 = 𝑐1    (5) 

is a constant and differentiating this equation with respect to 𝜎, we get  

〈𝐔2
′ , 𝐔〉 = 0 

 from the equiform Frenet equations in equiform geometry, we find  

〈𝐔1 + 𝐾1𝐔2 + 𝐾2𝐔3, 𝐔〉 = 0, 

 and  

〈𝐔1, 𝐔〉 + 𝐾1〈𝐔2, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = 0. 

 Using (5), we obtain the following equation:  

〈𝐔1, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = −𝐾1𝑐1. 

The proof is completed.  

Theorem 3. Let 𝛼 be a timelike curve with Frenet formulas in equiform geometry of the Minkowski space-time 

𝔼1
4. In that case, if the curve 𝛼 is a 3-type helix, then we have 

−𝐾2〈𝐔2, 𝐔〉 + 𝐾3〈𝐔4, 𝐔〉 = −𝐾1𝑐2 
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where 𝑐2 is a constant.  

Proof. Let the curve 𝛼 be a 3-type helix. Thus, for a constant field 𝐔 such that  

〈𝐔3, 𝐔〉 = 𝑐2     (6) 

is a constant. Differentiating (6) with respect to 𝜎, we get  

〈𝐔3
′ , 𝐔〉 = 0, 

and using equiform Frenet equations, we have  

〈−𝐾2𝐔2 + 𝐾1𝐔3 + 𝐾3𝐔4, 𝐔〉 = 0, 

and it follows that  

−𝐾2〈𝐔2, 𝐔〉 + 𝐾1〈𝐔3, 𝐔〉 + 𝐾3〈𝐔4, 𝐔〉 = 0.      (7) 

By setting (6) in (7), we can write  

−𝐾2〈𝐔2, 𝐔〉 + 𝐾3〈𝐔4, 𝐔〉 = −𝐾1𝑐2. 

The proof is completed.  

Theorem 4. Let 𝛼 be a timelike curve with Frenet formulas in equiform geometry of the Minkowski space-time 

𝔼1
4. If the curve 𝛼 is a 4-type helix, then we have  

〈𝐔3, 𝐔〉 =
𝐾1

𝐾3
𝑐3,   

where 𝑐3 is a constant.  

Proof. Let the curve 𝛼 be a 4-type helix in 𝔼1
4, then for a constant field 𝐔, we can write the following equation:  

〈𝐔4, 𝐔〉 = 𝑐3   (8) 

is a constant. By differentiating (8) with respect to 𝜎, we get  

〈𝐔4
′ , 𝐔〉 = 0 

and using equiform Frenet equations, we find as below:  

〈−𝐾3𝐔3 + 𝐾1𝐔4, 𝐔〉 = 0 

and we can write  

−𝐾3〈𝐔3, 𝐔〉 + 𝐾1〈𝐔4, 𝐔〉 = 0. 

By setting equation (8) in the last equation is written as follows:  

〈𝐔3, 𝐔〉 =
𝐾1

𝐾3

𝑐3. 

The proof is completed. 
  

 5. (𝒌,𝒎)-Type Slant Helices for Equiform Differential Geometry in 𝔼𝟏
𝟒 

In this section, we will define (𝑘,𝑚)-type slant helices for timelike curve with equiform Frenet frame in 𝔼1
4 such 

as [6].  

Definition 2. Let 𝛼 be a timelike curve in 𝔼1
4 with equiform Frenet frame {𝐔1, 𝐔2, 𝐔3, 𝐔4}. We call 𝛼 is a (𝑘,𝑚)-

type slant helix if there exists a non-zero constant vector field 𝐔 ∈ 𝔼1
4 satisfies 〈𝐔𝑘 , 𝐔〉 = 𝐜𝑘 , 〈𝐔𝑚 , 𝐔〉 = 𝐜𝑚   are 

constants for  1 ≤ 𝑘,𝑚 ≤ 4, 𝑘 ≠ 𝑚. The constant vector 𝐔 is an axis of (𝑘,𝑚)-type slant helix.  

Theorem 5. If the curve 𝛼 is a (1,2)-type slant helix in 𝔼1
4, then we have  

〈𝐔3, 𝐔〉 =
𝑐2
2 − 𝑐1

2

𝑐1

1

𝐾2

, 



Bulut  / Cumhuriyet Sci. J., 42(4) (2021) 906-915 

 

911 

where  𝐾2 = −
𝑐2

𝑐1
  is a constant.  

Proof. Let the curve 𝛼 be a (1,2)-type slant helix in 𝔼1
4, then for a constant field 𝐔, we can write following 

equations:  

〈𝐔1, 𝐔〉 = 𝑐1   (9) 

is a constant, and  

〈𝐔2, 𝐔〉 = 𝑐2        (10) 

is a constant. Differentiating (9) and (10) with respect to 𝜎, we get  

〈𝐔1
′ , 𝐔〉 = 0 

and  

〈𝐔2
′ , 𝐔〉 = 0. 

Using equiform Frenet equations, we find the following equations:  

〈𝐾1𝐔1 + 𝐔2, 𝐔〉 = 0 

and it follows that  

〈𝐔1 + 𝐾1𝐔2 + 𝐾2𝐔3, 𝐔〉 = 0. 

In that case, we get  

𝐾1〈𝐔1, 𝐔〉 + 〈𝐔2, 𝐔〉 = 0,  (11) 

〈𝐔1, 𝐔〉 + 𝐾1〈𝐔2, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = 0.        (12) 

By setting  (9)  and  (10)  in (11), we find  

𝐾1𝑐1 + 𝑐2 = 0.   

Substituting (9) and (10) to (12), we obtain as below:  

𝑐1 + 𝐾1𝑐2 + 𝐾2〈𝐔3, 𝐔〉 = 0.                                                                                                                         (13)      

Finally, we get  

𝐾1 = −
𝑐2

𝑐1
,                                                                                                                                                      (14) 

and by setting (14) in (13), we get  

〈𝐔3, 𝐔〉 =
𝑐2
2 − 𝑐1

2

𝑐1

1

𝐾2

. 

The proof is completed.  

Theorem 6. If the curve 𝛼 is a (1,3)-type slant helix in 𝔼1
4, then there exists a constant such that  

〈𝐔4, 𝐔〉 = −
𝐾1𝐾2

𝐾3

𝑐1 −
𝐾1

𝐾3

𝑐3 

where  𝑐1, 𝑐3  are constants.  

Proof. Let the curve 𝛼 be a (1,3)-type slant helix in 𝔼1
4, then for a constant field 𝐔, we can write as below:  

〈𝐔1, 𝐔〉 = 𝑐1  (15) 

 is a constant, and  

〈𝐔3, 𝐔〉 = 𝑐3  (16) 

is a constant. Differentiating (15) and (16) with respect to 𝜎, we get  
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〈𝐔1
′ , 𝐔〉 = 0 

 and  

〈𝐔3
′ , 𝐔〉 = 0. 

 Using equiform Frenet equations, we obtain the following equations:  

〈𝐾1𝐔1 + 𝐔2, 𝐔〉 = 0, 

 and we have that  

〈−𝐾2𝐔2 + 𝐾1𝐔3 + 𝐾3𝐔4, 𝐔〉 = 0. 

(We know that 𝐔 is a constant). Thus, we can write as below:  

𝐾1〈𝐔1, 𝐔〉 + 〈𝐔2, 𝐔〉 = 0,  (17) 

−𝐾2〈𝐔2, 𝐔〉 + 𝐾1〈𝐔3, 𝐔〉 + 𝐾3〈𝐔4, 𝐔〉 = 0.  (18) 

By setting equation (15) in equation (17), we get 

〈𝐔2, 𝐔〉 = −𝐾1𝑐1.       (19) 

Substituting (16) and (19) to (18), we find  

〈𝐔4, 𝐔〉 = −
𝐾1𝐾2

𝐾3
𝑐1 −

𝐾1

𝐾3
𝑐3.   

The proof is completed.  

Theorem 7. If the curve 𝛼 is a (1,4)-type slant helix in 𝔼1
4, then there exists a constant such that  

〈𝐔2, 𝐔〉 = −𝐾1𝑐1 

and  

〈𝐔3, 𝐔〉 =
𝐾1

𝐾3

𝑐4 

 where 𝑐1, 𝑐4 are constants.  

Proof. Let the curve 𝛼 be a (1,4)-type slant helix in 𝔼1
4, then for a constant field 𝐔, we can write the following 

equations:  

〈𝐔1, 𝐔〉 = 𝑐1  (20) 

is a constant and  

〈𝐔4, 𝐔〉 = 𝑐4  (21) 

is a constant. Differentiating (20) and (21) with respect to 𝜎, we get  

〈𝐔1
′ , 𝐔〉 = 0 

 and  

〈𝐔4
′ , 𝐔〉 = 0. 

 Using equiform Frenet equations, we find  

〈𝐾1𝐔1 + 𝐔2, 𝐔〉 = 0 

 and  

〈−𝐾3𝐔3 + 𝐾1𝐔4, 𝐔〉 = 0. 

So, the following equations can be obtained:  

𝐾1〈𝐔1, 𝐔〉 + 〈𝐔2, 𝐔〉 = 0,  (22) 
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−𝐾3〈𝐔3, 𝐔〉 + 𝐾1〈𝐔4, 𝐔〉 = 0.  (23) 

By setting (20) in (22), we have  

〈𝐔2, 𝐔〉 = −𝐾1𝑐1.   

Substituting (21) to (23), we get  

〈𝐔3, 𝐔〉 =
𝐾1

𝐾3
𝑐4.   

The proof is completed.  

Theorem 8.  If the curve 𝛼 is a (2,3)-type slant helix in 𝔼1
4, then there exists a constant such as  

〈𝐔1, 𝐔〉 = −𝐾1𝑐2 − 𝐾2𝑐3 

and  

〈𝐔4, 𝐔〉 =
𝐾2

𝐾3

𝑐2 −
𝐾1

𝐾3

𝑐3. 

Proof. Let the curve 𝛼 be a (2,3)-type slant helix in 𝔼1
4, then for a constant field 𝐔, we can write  

〈𝐔2, 𝐔〉 = 𝑐2   (24) 

is a constant and  

〈𝐔3, 𝐔〉 = 𝑐3   (25) 

is a constant. Differentiating (24) and (25) with respect to 𝜎, we find  

〈𝐔2
′ , 𝐔〉 = 0 

and  

〈𝐔3
′ , 𝐔〉 = 0. 

Using equiform Frenet formulas, the following equations can be obtained:  

〈𝐔1, 𝐔〉 + 𝐾1〈𝐔2, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = 0,  (26) 

−𝐾2〈𝐔2, 𝐔〉 + 𝐾1〈𝐔3, 𝐔〉 + 𝐾3〈𝐔4, 𝐔〉 = 0.  (27) 

By setting (24) and (25) in (26), we get  

〈𝐔1, 𝐔〉 = −𝐾1𝑐2 − 𝐾2𝑐3, 

and substituting (24) and (25) to (27), we have  

〈𝐔4, 𝐔〉 =
𝐾2

𝐾3

𝑐2 −
𝐾1

𝐾3

𝑐3. 

The proof is completed.  

Theorem 9. If the curve 𝛼 is a (2,4)-type slant helix in 𝔼1
4, then there exists a constant such as  

〈𝐔1, 𝐔〉 = −𝐾1𝑐2 − 𝐾2

𝐾1

𝐾3

𝑐4, 

where 𝑐2 , 𝑐4 are constants.  

Proof. Let the curve 𝛼 be a (2,4)-type slant helix in 𝔼1
4, then for a constant field 𝐔, we can write the following 

equations:  

〈𝐔2, 𝐔〉 = 𝑐2  (28) 

and  



Bulut  / Cumhuriyet Sci. J., 42(4) (2021) 906-915 

 

914 

〈𝐔4, 𝐔〉 = 𝑐4  (29) 

are constants. By differentiating (28) and (29) with respect to 𝜎, we get the following equations:  

〈𝐔2
′ , 𝐔〉 = 0 

and  

〈𝐔4
′ , 𝐔〉 = 0. 

Using equiform Frenet equations, we find  

〈𝐔1, 𝐔〉 + 𝐾1〈𝐔2, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = 0,  (30) 

−𝐾3〈𝐔3, 𝐔〉 + 𝐾1〈𝐔4, 𝐔〉 = 0.  (31) 

Substituting (28) to (30), we obtain as follows:  

〈𝐔1, 𝐔〉 + 𝐾2〈𝐔3, 𝐔〉 = −𝐾1𝑐2.  (32) 

By setting  (29) in (31), we have the following equation:  

〈𝐔3, 𝐔〉 =
𝐾1

𝐾3
𝑐4  (33) 

and by setting (33) in (32), we obtain  

〈𝐔1, 𝐔〉 = −𝐾1𝑐2 − 𝐾2

𝐾1

𝐾3

𝑐4. 

The proof is completed.  

Theorem 10. If the curve 𝛼 is a (3,4)-type slant helix in 𝔼1
4, then there exists a constant such as  

〈𝐔2, 𝐔〉 =
𝐾3

𝐾2

(
𝑐3
2

𝑐4
+ 𝑐4) 

where 𝑐3 , 𝑐4 are constants.  

Proof. Let the curve 𝛼 be a (3,4)-type slant helix in 𝔼1
4, then for a constant field 𝐔, we can write as follows:  

〈𝐔3, 𝐔〉 = 𝑐3  (34) 

is a constant and  

〈𝐔4, 𝐔〉 = 𝑐4  (35) 

is a constant. By differentiating (34) and (35) with respect to 𝜎, we have the following equations:  

〈𝐔3
′ , 𝐔〉 = 0 

and  

〈𝐔4
′ , 𝐔〉 = 0. 

Using equiform Frenet formulas, we find as below:  

−𝐾2〈𝐔2, 𝐔〉 + 𝐾1〈𝐔3, 𝐔〉 + 𝐾3〈𝐔4, 𝐔〉 = 0,  (36) 

and  

−𝐾3〈𝐔3, 𝐔〉 + 𝐾1〈𝐔4, 𝐔〉 = 0.  (37) 

Substituting (34) and (35) to (37), we can write  

𝐾1 = 𝐾3
𝑐3

𝑐4
,  (38) 

and by setting (34), (35) and (38) in (36), we obtain  
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〈𝐔2, 𝐔〉 =
𝐾3

𝐾2

𝑐3
2

𝑐4
+

𝐾3

𝐾2

𝑐4. 

The proof is completed.  

6. Conclusion  

In this study we investigate equiform differential geometry of timelike curves and 𝑘 − and (𝑘,𝑚) −type slant 

helices for equiform differential geometry of timelike curves in the Minkowski space-time. 
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