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Abstract 

 

The mathematical modeling of drug release systems has a significant potential to facilitate product development and to help 

understanding complex pharmaceutical dosage forms. The findings of the modeling studies can help control some of the parameters 

to obtain the desired release performance. In this article, we have introduced a Chebyshev collocation method, which is based on 

collocation method for solving initial-boundary value problem describing the Higuchi and power law.   

 

Keywords: Drug release systems, higuchi law, power law,  collocation method. 

 

 

İlaç Salım Sistemleri için Modifiye Epidemiyolojik Modelin Sayısal Çözümü 

 

Özet 

 

İlaç salım sistemlerinin matematiksel modellemesi ürün geliştirme ve karmaşık farmasötik dozaj formları anlama kolaylığı 

sağlamada önemli bir potansiyele sahiptir. Modelleme çalışmaları bulguları, bazı parametrelerin kontrolü, istenilen salım 

performanslarının elde edilmesine yardımcı olmaktadır. Bu makalede Chebyshev sıralama metodu ile taşıyıcı sistemlerden ilaç 

salım modeli Higuchi ve güç modeli için nümerik sonuçlar verilmiştir. 
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1.  Introduction 

In the last 100 years, drug delivery systems have enormously increased their performances, 

moving from simple pills to sustained/controlled release and sophisticated programmable delivery 

systems. Meanwhile, drug delivery has also become more specific from systemic to organ and cellular 

targeting [1]. A good mathematical model can help researchers reduce costs and production time by 

adding in silico experiments to their database (i.e., filling the gaps between laboratory experiments) and 

extrapolating to unexplored cases. The results of the mathematical modelings can contribute to the 

optimal designs of new pharmaceutical devices and treatment schedules to specific diseases and 

patients[2-4]. Hence, the development of new pharmaceutical products is highly facilitated because the 

desirable release kinetics can be predicted in advance and thus be better achieved. Despite the complexity 

of the phenomena involved in drug release mechanisms, the mathematical models commonly used to 

describe the kinetics of drug release from a large variety of devices are two simple expressions, the 

Higuchi law and the power law. 

The Higuchi law [1] states that 

tccDAM st )2( 0                                                         (1) 

 

where tM  is the cumulstive amount of drug released at time t , A  is the surface area of the controlled 

release device exposed to the release medium, D  is the drug diffusivity, 0c  and sc  are the initial drug 

concentration and the drug solubility, respectively. This law is valid for systems where the drug 

concentration is much higher than the drug solubility. 

The power law [5] states   

nt kt
M

M




                                                              (2) 

where tM  and M  are the amounts of drug released at times t  and infinity, respectively; k  is an 

experimentally determined parameter and n  is an exponent that depends on the geometry of the system: 

it can be related to the drug release mechanisms [6,7]. In addition to the above two equations, various 

approaches have been developed that are based on the geometry of the device and the physicochemical 

drug properties, and they provide a comprehensive, mechanistic interpretation of the drug release kinetics 

[8-10].  

The Weibull function is sporadically used in drug release studies in spite of its extensive empirical use in 

dissolution studies [11-12]: 

)exp(1 bt at
M

M




                                                    (3) 

where a  and b  are constant. This model has the form of a stretched exponential function. It describes 

experimental disolution data quite well, but put o now there is no physical reasoning for it or a physical 

meaning of t he constant a  and b . Ref.[13] is intented to provide such a physical meaning for the 

Eq.(3). 
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 In this article, Chebyshev collocation method [14-18] has been applied for the numerical solution of the 

mathematical model of drug release Eq.(2-3).   

 

2.  Chebyshev polynomials 

Definition 2.1 The Chebyshev polynomials )(tTn  of the first kind is a polynomials in x  of 

degree n , defined by relation [14 ve 20] 

ntTn cos)(  ,  when cost  

If the range of the variable x  is the interval ]1,1[ , the range the corresponding variables   can be 

taken ],0[  . We map the independent variable t   in ]1,0[  to the variable s  in ]1,1[  by 

transformation  

12  ts  or )1(
2

1
 st  

and this lead to the shifted Chebyshev polynomial of the first kind )(* tTn  of degree n  in x  on ]1,0[  

given by [20 ve 21] 

)12()()(*  tTsTtT nnn . 

It is of course possible to defined )(* tTn , like )(tTn , directly by a trigonometric relation. Indeed, we 

obtained  

ntTn 2cos)(*   when 2cost . 

The leading coefficient of 
nt  in )(* tTn  to be 

122 n
.These polynomials have the following properties 

[21]: 

 i) )(1
* tT n   has exactly 1n  real zeroes on the interval ]1,0[ . The i -th zero it  is   
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1
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
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ii) It is well known that the relation between the powers 
nt  and the second kind Chebyshev polynomials 

)(* tTn  is  
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n
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
  , 10  x                                       (5) 

where  '  denotes a sum whose first term is halved. 

 

3.  Fundamental relations 

In the begining, let assume that Eq.(2-3) has the approximate solution of the truncated 

Chebyshev polynomial series as: 

     



N

n

nn tTaty
0

* )()( , )cos()(* ntTn  , cos12 t                   (6) 
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Let us consider Eq. (2-3) and find the matrix forms of the equation. First we can convert the solution 

)(ty   defined by a truncated shifted Chebyshev series (3) and its derivative )()( ty k
 to matrix forms 

[14-18] 

                      AT )()( * tty  ,    AT
'

)()(' * tty                                          (7) 

where 
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1
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Naaa ]...[ 10A
 

By using the expression (5) and taking n=0,1,…,N we find the corresponding matrix relation as follows
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Then, by taking into account (7) we obtain 

                                                    
Ttt ))(()( 1*  DXT                                                     (9) 

and  

T)( tt ))(())(( 11)1(*  DXT  

To obtain the matrix )(t(k)
X  in terms of the matrix )(tX , we can use the following relation: 
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Consequently, by substituting the matrix forms (8) and (9) into (5) we have the matrix relation 

                               ADBX
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4.  Method of solution 

Using Eq.(11), we obtain the matrix relation of Eqs.(2) and (3) 

nT ktt
M
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Then, we substitute the collocation points are defined by 

N

i
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into Eqs.(12) and (13) . Then, we have  
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Thus, we have the fundamental matrix equation of Eqs. (2) and (3) 
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and where  
nkttf )( , )exp(1)( battg  . 

Briefly, Eqs.(16) and (17) can be written in the form[14-19] 

FAW 11  or  ][ 1 F;W                                           (16) 

GAW 22  or  ][ 2 G;W                                          (17) 

To obtain the solution of Eq. (1)  under condition 
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by replacing the row matrices (19-20) by the last 1 rows of the matrix (21-22) respectively, we have the 

new augmented matrix, 
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which corresponds to a system of )1( N  algebraic equations for the )1( N  unknown Chebyshev 

coefficients 1A , 2A . If 1
~

1  Nrank W , 1
~

2  Nrank W , we obtain the coefficient matrix 1A , 

2A  
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The coefficients matrix 1A , 2A  substituting in Eq.(6), we obtain the approximate solutions for Eqs.(2) 

and (3).  

We can easily check the accuracy of the method. Since the truncated shifted Chebyshev series (6) is an 

approximate solution of Eqs.(2) and (3), when the solution )(ty  and its derivatives are substituted in 

Eq.(2) and (3), the resulting equation must be satisfied approximately; that is[14-20], for   
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5.  Numerical results  

We take the values of  4k , 5,0n  in Eq.(2) and 049.0a , 72,0b  in Eq.(3).  

Using in Section (3) and Section (4), we obtain the numerical results for Eqs.(2)-(3) and the numerical 

results is plotted in Figs. (2) and (3), respectively.  

 

Fig.1. Numerical solutions of Eq.(2) for various N. 

 
Fig.2. Numerical solutions of Eq.(3) for various N. 

 

 

6.  Conclusion 

Mathematical modelling, whose development requires the comprehension of all the phenomena 

affecting drug release kinetics [10], has a very important value in controlled drug release systems 

optimisation. The model can be simply thought as a “mathematical metaphor of some aspects of reality 

[11] that, in this case, identifies with the ensemble of phenomena ruling release kinetics. For this 

generality, mathematical modelling is widely employed in different disciplines such as genetics, 

medicine, psychology, biology, economy and obviously engineering. 
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