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Trajectories Generated by Special Smarandache Curves According
to Positional Adapted Frame
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Özet. Diferansiyel geometride eğriler teorisi önemli bir yere sahiptir. Eğriler üzerinde tanımlanan hareketli çatı kavramı
bu teorinin önemli bir parçasıdır. Yakın geçmişte, Özen ve Tosun, 3 boyutlu Öklid uzayında sıfırlanmayan açısal mo-
mentuma sahip yörüngeler için yeni bir hareketli çatı tanıttı (J. Math. Sci. Model. 4(1), 2021). Bu çatı {T,M,Y}ile
gösterilir ve konumsal uyarlanmış çatı olarak adlandırılır. Bu çalışmada konumsal uyarlanmış çatıya göre TM, TY ve
MY−Smarandache eğrilerinin ürettiği özel yörüngeleri E3 de araştırdık ve bu yörüngelerin Serret-Frenet elemanlarını
hesapladık. Daha sonra, spesifik bir eğriyi ele aldık ve bu eğri için, daha önce belirtilen özel yörüngelerin parametrik
denklemlerini elde ettik. Son olarak elde edilen bu özel yörüngelerin Mathematica programıyla çizilmiş grafiklerini verdik.
Burada elde edilen sonuçlar alana yeni birer katkıdır. Bu sonuçların gelecekte diferansiyel geometri ve parçacık kine-
matiğinin bazı özel uygulamalarında faydalı olacağını umuyoruz.

Anahtar Kelimeler: Açısal momentum, parçacık kinematiği, hareketli çatı, Smarandache eğrileri.

Abstract.In differential geometry, the theory of curves has an important place. The concept of moving frame defined
on curves is an important part of this theory. Recently, Özen and Tosun have introduced a new moving frame for the
trajectories with non-vanishing angular momentum in 3-dimensional Euclidean space (J. Math. Sci. Model. 4(1), 2021).
This frame is denoted by {T,M,Y} and called as positional adapted frame. In the present study, we investigate the
special trajectories generated by TM, TY and MY−Smarandache curves according to positional adapted frame in E3

and we calculate the Serret-Frenet apparatus of these trajectories. Later, we consider a specific curve and obtain the
parametric equations of the aforesaid special trajectories for this curve. Finally, we give the graphics of these obtained
special trajectories which were drawn with the Mathematica program. The results obtained here are new contributions
to the field. We expect that these results will be useful in some specific applications of differential geometry and particle
kinematics in the future.

Keywords: Angular momentum, kinematics of a particle, moving frame, Smarandache curves.

1. Introduction and Preliminaries

The local theory of space curves plays an important role in differential geometry. The concept of
moving frames is one of the most important concepts in the local theory of space curves. Despite its
long history, it is still a field of interest. The discovery of the Serret-Frenet frame was a milestone for
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the researchers interested in this topic. Until now, many researchers have carried out many interesting
studies on the local theory of space curves by using Serret-Frenet frame. The readers are referred to
some of these studies [1, 2, 3, 4, 5, 6]. There is a very close relationship between the kinematics of
a moving particle and the differential geometry of the trajectory which is the oriented curve traced
out by this particle. As a result of this case, Serret-Frenet frame has been used to investigate the
kinematics of a moving particle, as well.

Assume that a point particle of constant mass m moves in the 3-dimensional Euclidean space E3

which is taken into account with the standard scalar product 〈G,H〉 = g1h1 + g2h2 + g3h3. Here

G = (g1, g2, g3), H = (h1, h2, h3) are any vectors in E3. The norm of G is given as ‖G‖ =
√
〈G,G〉.

If a differentiable curve α = α (s) : I ⊂ R → E3 satisfies
∥∥dα
ds

∥∥ = 1 for all s ∈ I, it is called a unit
speed curve. In that case, s is said to be arc-length parameter of α. A differentiable curve is called as
regular curve if its derivative is not equal to zero along the curve. An arbitrary regular curve can be
reparameterized by the arc-length of itself [7]. Throughout the paper, the differentiation with respect
to the arc-length parameter s will be shown with a prime.

Let the unit speed parameterization for the trajectory of the moving particle be denoted by α =

α(s). In that case, the vectors T (s) = α′(s), N (s) = α′′(s)
‖α′′(s)‖ and B (s) = T(s) ∧N(s) compose an

orthonormal moving frame for α = α (s) which is called Serret-Frenet frame. T (s), N (s) and B (s) are
called the unit tangent, unit principal normal and unit binormal vectors, respectively. Serret-Frenet
formulas are given as in the following:T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B


where κ (s) = ‖T ′ (s)‖ is the curvature function and τ (s) = −〈B ′ (s) ,N (s))〉 is the torsion function
[7].

From past to present, many researchers have developed new moving frames which have a common
base vector with the Serret-Frenet frame (see [8, 9, 10] for some examples). One of the newest of them

is the study [5] presented by Özen and Tosun. They introduced the Positional Adapted Frame (PAF)
for the trajectories with non-vanishing angular momentum in E3.

The most important thing for the construction of PAF is the angular momentum vector of the
moving particle about the origin. This vector has an important place in Newtonian mechanics. It
is determined by vector product of the position vector x = 〈α(s),T(s)〉T(s) + 〈α(s),N(s)〉N(s) +
〈α(s),B(s)〉B(s) and linear momentum vector p(t) = m

(
ds
dt

)
T(s) of the moving particle where t

indicates the time. It always lies on the instantaneous normal plane Sp {N(s),B(s)} of the trajectory
α = α (s) and it is expressed as HO = m 〈α(s),B(s)〉

(
ds
dt

)
N(s) −m 〈α(s),N(s)〉

(
ds
dt

)
B(s). Suppose

that this vector does not equal to zero vector along α = α (s). This assumption ensures that the
functions 〈α(s),N(s)〉 and 〈α(s),B(s)〉 do not equal to zero simultaneously during the motion of the
moving particle. So, it can be said that the tangent line of α = α(s) never passes through the origin.
Then, there exists PAF shown with {T(s),M(s),Y(s)} along α = α(s). Take into consideration the
vector whose starting point is the foot of the perpendicular (from origin to instantaneous rectifying
plane) and endpoint is the foot of the perpendicular (from origin to instantaneous osculating plane).
The equivalent of it at the point α (s) determines the vector Y(s). Thus, Y(s) is given as in the
following (see [5] for more details):

Y(s) =
〈−α(s),N(s)〉√

〈α(s),N(s)〉2 + 〈α(s),B(s)〉2
N(s) +

〈α(s),B(s)〉√
〈α(s),N(s)〉2 + 〈α(s),B(s)〉2

B(s).

On the other hand, the vector M(s) is obtained by vector product Y(s) ∧T (s) as follows:

M(s) =
〈α(s),B(s)〉√

〈α(s),N(s)〉2 + 〈α(s),B(s)〉2
N(s) +

〈α(s),N(s)〉√
〈α(s),N(s)〉2 + 〈α(s),B(s)〉2

B(s).

Because T(s) is mutual in both PAF and Serret-Frenet frame, N(s), B(s), M(s) and Y(s) lie on
the same plane. Therefore, there is a relation between the Serret-Frenet frame and PAF as in the
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following: T (s)
M(s)
Y(s)

 =

1 0 0
0 cos Ω(s) − sin Ω(s)
0 sin Ω(s) cos Ω(s)

T(s)
N(s)
B(s)


where Ω(s) is the angle between the vectors B(s) and Y(s) which is positively oriented from B(s) to
Y(s)(see Figure 1). Also, the derivative formulas of PAF are given as [5]:T′(s)

M′(s)
Y′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
M(s)
Y(s)


where

k1(s) = κ(s) cos Ω(s)

k2(s) = κ(s) sin Ω(s)

k3(s) = τ(s)− Ω′(s).
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Figure 1. An illustration for the Positional Adapted Frame (PAF)

The aforesaid angle Ω(s) is calculated as follows:

Ω(s) =



arctan
(
− 〈α(s),N(s)〉
〈α(s),B(s)〉

)
if 〈α(s), B(s)〉 > 0

arctan
(
− 〈α(s),N(s)〉
〈α(s),B(s)〉

)
+ π if 〈α(s), B(s)〉 < 0

−π
2 if 〈α(s), B(s)〉 = 0 , 〈α(s), N(s)〉 > 0

π
2 if 〈α(s), B(s)〉 = 0 , 〈α(s), N(s)〉 < 0.

Any element of the set {T(s),M(s),Y(s), k1(s), k2(s), k3(s)} is called PAF apparatus of α = α (s) [5].
This paper is organized as follows. In Section 2, we study the special trajectories generated by

TM, TY and MY−Smarandache curves according to PAF in three-dimensional Euclidean space and
we calculate the Serret-Frenet apparatus of them. In Section 3, we provide an example involving
illustrative figures for the obtained results.
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2. Some Special Trajectories Generated by Smarandache Curves According to
PAF

In the study [4], A. T. Ali defined special Smarandache curves in the Euclidean space. He took
into consideration a unit speed regular curve γ = γ(s) with its Serret-Frenet frame {T, N, B} and
expressed TN, NB, TNB− Smarandache curves as in the following:

β(s∗) =
1√
2

(T + N)

β(s∗) =
1√
2

(N + B)

β(s∗) =
1√
3

(T + N + B),

respectively. For this topic, the readers are referred to the studies [4, 6, 11, 12, 13, 14, 15] which can
be found in the literature.

In this section, we continue to consider any moving point particle satisfying the aforesaid assumption
and to denote the unit speed parameterization of the trajectory by α = α(s). We will investigate special
trajectories generated by Smarandache curves according to PAF in E3.

We must emphasize that {Tα(s), Mα(s), Yα(s), k1(s), k2(s), k3(s)} will show the PAF apparatus
of α = α (s) throughout the paper. Finally, note that we will follow similar steps given in [16] in this
section.

Definition 1. The special trajectories generated by TαMα−Smarandache curves may be defined as

σ1(s
∗) =

1√
2

(Tα + Mα) . (1)

For convenience, they are said to be TαMα−Smarandache trajectories.

Now, we investigate Serret-Frenet apparatus of TαMα−Smarandache trajectories. Differentiating
the equation (1) with respect to s, we obtain

σ1
′ =

dσ1
ds∗

ds∗

ds
= Tσ1

ds∗

ds
=

1√
2

(−k1Tα + k1Mα + (k2 + k3) Yα) . (2)

From the equation (2),

ds∗

ds
=

√
k1

2 +
(k2 + k3)

2

2
(3)

can be found. Therefore, the equation (2) can be rewritten as

Tσ1

√
k1

2 +
(k2 + k3)

2

2
=

1√
2

(−k1Tα + k1Mα + (k2 + k3) Yα) . (4)

The equation (4) yields the tangent vector of σ1:

Tσ1 =
1√

2k1
2 + (k2 + k3)

2
(−k1Tα + k1Mα + (k2 + k3) Yα) .

Differentiating the last equation with respect to s, we get

dTσ1

ds∗
ds∗

ds
=
(

2k1
2 + (k2 + k3)

2
)−3/2

(µ1Tα + µ2Mα + µ3Yα) (5)

where

µ1 = −2k1
4 +

[
k1k
′
2 + k1k

′
3 − k12k2 − k12k3 − k′1 (k2 + k3)− k2

(
2k1

2 + (k2 + k3)
2
)]

(k2 + k3)

µ2 = −2k1
4 −

[
k1k
′
2 + k1k

′
3 + k1

2k2 + k1
2k3 − k′1 (k2 + k3) + k3

(
2k1

2 + (k2 + k3)
2
)]

(k2 + k3)

µ3 = 2k1
2
[
k′2 + k′3 + k1k3 − k1k2

]
−
[
2k′1 + k2

2 − k32
]
k1 (k2 + k3) .

Taking into consideration the equation (3) in the equation (5), we obtain

dTσ1

ds∗
=
√

2
(

2k1
2 + (k2 + k3)

2
)−2

(µ1Tα + µ2Mα + µ3Yα) .
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In this case, the curvature and principal normal vector of σ1 are obtained as follows:

κσ1 =

∥∥∥∥dTσ1

ds∗

∥∥∥∥ =

√
2 (µ12 + µ22 + µ32)(

2k1
2 + (k2 + k3)

2
)2

and

Nσ1 =
1√

µ12 + µ22 + µ32
(µ1Tα + µ2Mα + µ3Yα) .

Finally, we can immediately find the binormal vector of σ1 as

Bσ1 =
(k1µ3 − k2µ2 − k3µ2)Tα + (k2µ1 + k3µ1 + k1µ3)Mα − (k1µ2 + k1µ1)Yα√(

2k1
2 + (k2 + k3)

2
)

(µ12 + µ22 + µ32)

by vector product Tσ1 ∧ Nσ1 . The torsion of σ1 can be obtained similarly. We leave that to the
readers.

Definition 2. The special trajectories generated by TαYα−Smarandache curves may be defined by

σ2(s
∗) =

1√
2

(Tα + Yα) .

For convenience, they are called as TαYα−Smarandache trajectories.

Definition 3. The special trajectories generated by MαYα−Smarandache curves can be given by

σ3(s
∗) =

1√
2

(Mα + Yα) .

For convenience, they are said to be MαYα−Smarandache trajectories.

By following the similar steps given above, one can easily find

Tσ2 =
1√

2k2
2 + (k1 − k3)2

(−k2Tα + (k1 − k3) Mα + k2Yα)

κσ2 =

√
2 (υ12 + υ22 + υ32)(

2k2
2 + (k1 − k3)2

)2
Nσ2 =

1√
υ12 + υ22 + υ32

(υ1Tα + υ2Mα + υ3Yα)

Bσ2 =
(k1υ3 − k3υ3 − k2υ2)Tα + (k2υ1 + k2υ3)Mα − (k2υ2 − k3υ1 + k1υ1)Yα√(

2k2
2 + (k1 − k3)2

)
(υ12 + υ22 + υ32)

Tσ3 =
1√

2k3
2 + (k1 + k2)

2
((−k1 − k2) Tα − k3Mα + k3Yα)

κσ3 =

√
2
(
ξ1

2 + ξ2
2 + ξ3

2
)

(
2k3

2 + (k1 + k2)
2
)2

Nσ3 =
1√

ξ1
2 + ξ2

2 + ξ3
2

(ξ1Tα + ξ2Mα + ξ3Yα)

Bσ3 =
−(k3ξ3 + k3ξ2)Tα + (k3ξ1 + k2ξ3 + k1ξ3)Mα − (k1ξ2 + k2ξ2 − k3ξ1)Yα√(

2k3
2 + (k1 + k2)

2
) (
ξ1

2 + ξ2
2 + ξ3

2
)
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for σ2 and σ3 where

υ1 = −2k2
4 −

[
k2
(
k′1 − k′3

)
− 2k1k2

2 + k′2 (k3 − k1) + k2
2 (k3 − k1)− k1(k3 − k1)2

]
(k3 − k1)

υ2 = 2k2
2
[
k′1 − k′3 − k1k2 − k2k3

]
−
[
2k′2 + k1

2 − k32
]
k2 (k1 − k3)

υ3 = −2k2
4 +

[
−k2

(
k′1 − k′3

)
+ 2k3k2

2 − k′2 (k3 − k1) + k2
2 (k3 − k1) + k3(k3 − k1)2

]
(k1 − k3)

ξ1 = 2k3
2
[
k1k3 − k2k3 − k′1 − k′2

]
−
[
k2

2 − 2k′3 − k12
]
k3 (k1 + k2)

ξ2 = −2k3
4 −

[
2k1k3

2 − k3
(
k′1 + k′2

)
+ k′3 (k1 + k2) + k3

2 (k1 + k2) + k1(k1 + k2)
2
]

(k1 + k2)

ξ3 = −2k3
4 −

[
k3
(
k′1 + k′2

)
+ 2k2k3

2 − k′3 (k1 + k2) + k3
2 (k1 + k2) + k2(k1 + k2)

2
]

(k1 + k2) .

Finally, note that the obtained results here are in accordance with the results obtained in [16]. The
reason of that arises from the similarity between PAF derivative formulas and PAFORS derivative
formulas. To avoid misunderstanding, we recommend the readers to take into consideration the
differences between the PAF apparatus and PAFORS apparatus.

In the next section, we will consider a point particle P moving on a specific circular helix α = α (s)
and we will provide examples to TαMα-Smarandache trajectory, TαYα-Smarandache trajectory and
MαYα-Smarandache trajectory.

3. Applications

Example 1. In E3, suppose that a point particle P moves on the trajectory

α :
(

0, 15
√

50
)
→ E3, α (s) =

(
7 cos

s√
50
, 7 sin

s√
50
,
s√
50

)
which is a unit speed curve (see α = α(s) in Figure 2).

Figure 2. The trajectory of the moving point particle P

In the light of the information given in the first section, PAF apparatus of this trajectory are obtained
as

k1(s) =
7

50
cos

(
arctan

(
50

s

))
k2(s) =

7

50
sin

(
arctan

(
50

s

))
(6)

k3(s) =
1

50
+

50

2500 + s2
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Tα(s) =

(
−7√
50

sin
s√
50
,

7√
50

cos
s√
50
,

1√
50

)

Mα(s) =



− cos

(
arctan

(
50

s

))
cos

s√
50
− 1√

50
sin

(
arctan

(
50

s

))
sin

s√
50
,

− cos

(
arctan

(
50

s

))
sin

s√
50

+
1√
50

sin

(
arctan

(
50

s

))
cos

s√
50
,

− 7√
50

sin

(
arctan

(
50

s

))


(7)

Yα(s) =



− sin

(
arctan

(
50

s

))
cos

s√
50

+
1√
50

cos

(
arctan

(
50

s

))
sin

s√
50
,

− sin

(
arctan

(
50

s

))
sin

s√
50
− 1√

50
cos

(
arctan

(
50

s

))
cos

s√
50
,

7√
50

cos

(
arctan

(
50

s

))


.

Let us show TαMα, TαYα, MαYα−Smarandache trajectories with σ1, σ2, σ3, respectively. In that
case, the parametric equation of σ1 can be easily given as follows:

σ1 =
1√
2



−7√
50

sin
s√
50
− cos

(
arctan

(
50

s

))
cos

s√
50
− 1√

50
sin

(
arctan

(
50

s

))
sin

s√
50
,

7√
50

cos
s√
50
− cos

(
arctan

(
50

s

))
sin

s√
50

+
1√
50

sin

(
arctan

(
50

s

))
cos

s√
50
,

1√
50
− 7√

50
sin

(
arctan

(
50

s

))


.

See σ1 in Figure 3.

Figure 3. TαMα-Smarandache trajectory

Similarly, the parametric equation of σ2 can be immediately given as

σ2 =
1√
2



−7√
50

sin
s√
50
− sin

(
arctan

(
50

s

))
cos

s√
50

+
1√
50

cos

(
arctan

(
50

s

))
sin

s√
50
,

7√
50

cos
s√
50
− sin

(
arctan

(
50

s

))
sin

s√
50
− 1√

50
cos

(
arctan

(
50

s

))
cos

s√
50
,

1√
50

+
7√
50

cos

(
arctan

(
50

s

))


.

See σ2 in Figure 4.
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Figure 4. TαYα-Smarandache trajectory

Finally, we obtain the parametric equation of σ3 as

σ3 =



cos
(
arctan

(
50
s

)) (
1√
50

sin s√
50
− cos s√

50

)
− sin

(
arctan

(
50
s

)) (
1√
50

sin s√
50

+ cos s√
50

)
√

2
,

sin
(
arctan

(
50
s

)) (
1√
50

cos s√
50
− sin s√
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See σ3 in Figure 5.

Figure 5. MαYα-Smarandache trajectory

In the light of the information given in the previous section, one can immediately see Tσi , Nσi , Bσi , κσi,
(i = 1, 2, 3) by using the equations (6) and (7).

4. Conclusion

For a particle moving in E3, there is a very close relationship between the kinematics of the particle
and the differential geometry of its trajectory. As a result of this case, the differential calculations for
the curves which are the trajectories of moving particles play an important role in particle kinematics.
Moving frames defined on these trajectories have been used as very useful tools in these differential
calculations. Positional Adapted Frame (PAF) has been recently developed for the trajectories having
non-zero angular momentum in three-dimensional Euclidean space by using the own position vector of
the moving particle in [5]. Due to the relations of PAF with the position vector and angular momentum
vector of the moving particle, we expect that PAF will enable more convenient observation environment
of the researchers studying on inverse kinematics and robotics. Also, it is expected that this frame
will be widely preferred to discuss many special topics in particle kinematics and differential geometry.
The present paper can be seen as the first step of these future studies.
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In this paper, the trajectories generated by TM, TY, MY−Smarandache curves are defined ac-
cording to positional adapted frame in three-dimensional Euclidean space and Serret-Frenet apparatus
of these trajectories are investigated. Also, illustrative examples are provided for these trajectories.

In the future study, we plan to investigate the T−magnetic, M−magnetic and Y−magnetic curves
according to positional adapted frame in Euclidean 3-space.
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[7] Shifrin T., Differential Geometry: A First Course in Curves and Surfaces, University of Georgia,
Preliminary Version (2008).

[8] Bishop R.L., There is more than one way to frame a curve, Am. Math. Mon., 82, 246-251, (1975).
[9] Yılmaz S., and Turgut M., A new version of Bishop frame and an application to spherical images,

J. Math. Anal. Appl., 371(2), 764-776, (2010).
[10] Soliman M.A., Abdel-All N.H., Hussien R.A., and Youssef T., Evolution of space curves using

Type-3 Bishop frame, Caspian J. Math. Sci., 8(1), 58-73, (2019).
[11] Turgut M., and Yılmaz S., Smarandache curves in Minkowski space-time, International J. Math.

Combin., 3, 51-55, (2008).
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