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This current investigation consists of the numerical solutions of the Generalized Rosenau-KdV equation by using 
the meshless kernel-based method of lines, which is a truly meshless method. The governing equation is a 
nonlinear partial differential equation but the use of the method of lines leads to an ordinary differential 
equation. Thus, the partial differential equation is replaced by the ordinary differential equation. The numerical 
efficiency of the used technique is tested by different numerical examples. Numerical values of error norms and 
physical invariants are compared with known values in the literature. Moreover, Multiquadric, Gaussian, and 
Wendland’s compactly supported functions are used in computations. It is seen that the used truly meshless 
method in computations is very effective with high accuracy and reliability. 
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Introduction 

The nonlinear evolution equation is one of the most 
considerable scientific research areas. Many scientists 
improved various mathematical models to designate 
wave behavior during the past several decades. One of 
these models is called the KdV equation. In order to 
describe wave propagation and spread interaction, this 
equation can be used in [1 − 3].  The equation indicates 
the long-time evolution of wave phenomena, in which the 
effect of the nonlinear terms 𝑈𝑈௫  is counterbalanced by 
the dispersion 𝑈௫௫௫ . There are a lot of works on this 
equation in the literature, see [4 − 9] and references 
therein. 

In this paper, we consider the Generalized Rosenau-
KdV equation which is a nonlinear partial differential 
equation. It is defined by the following form: 

𝑢௧+𝑢௫ + 𝑢௫௫௫ + 𝑢௫௫௫௫௧ + 𝛽(𝑢௣)௫ = 0                            (1) 

where 𝛽 > 0, 𝑝 ≥  2 is an integer. When 𝑝 = 2, the 
Rosenau-KdV equation is obtained. Rosenau equation was 
proposed to describe the dynamics of dense discrete 
systems in [10, 11].  In the search, numerical outcomes 
will be conducted for different values of 𝑝. In calculations 
following initial and boundary conditions will be used: 

𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0,    0 ≤ 𝑡 ≤ 𝑇, (2) 

𝑢(𝑥, 0) = 𝑓(𝑥)   (3) 
The solitary solution and invariants for the generalized 

Rosenau-KdV equation are given in [12, 13]. There are a 
large number of theoretical and numerical studies for 
equation (1) which are seen in references [12 − 21].  

The sech-ansätze method was used for the solitary 
solutions of the equation by Esfahani in [12]. Razborova 
et. al.  [13] studied dynamics of dispersive shallow water 
wave of the Rosenau–KdV equation with power law 
nonlinearity. Solitary and periodic solutions were derived 
by Zuo in [14]. The solitary wave ansatz method is used to 
obtain topological 1-soliton solution of the generalized 
Rosenau-KdV equation in [15]. Conservative linear 
difference scheme was used to obtain numerical solutions 
of Rosenau-KdV and generalized Rosenau-KdV in [16]. 
Also, Zheng and Zhou [17] presented an average linear 
finite difference scheme for the numerical solution of the 
initial-boundary value problem of the generalized 
Rosenau–KdV equation. In the study [18], authors used a 
conservative Crank–Nicolson finite difference scheme for 
the initial-boundary value problem of the generalized 
Rosenau–KdV equation. It can be seen that the difference 
scheme shows a discrete analog of the main conservation 
laws associated to the equation in this paper.  Karakoç et. 
al. [19] proposed the finite element method based on 
collocation. In the studies [20, 21], the authors solved the 
equation by using meshless method based on radial basis 
functions.  

One of the important issues is a computation with 
high-dimensional data in many areas of science and 
engineering. As known, many traditional methods such as 
finite elements, finite differences, finite volumes, and 
boundary elements method require a regular domain 
mesh generation to solve problems.  However,  the 
meshless methods require neither domain nor surface 
discretization because they are independent of a mesh. 
So, instead of generating the mesh, they use scattered 
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nodes, which can be randomly distributed, through the 
computational domain. This is a great advantage since 
mesh generation is one of the most time-consuming parts 
of any mesh-based numerical simulation. Thus, meshfree 
methods provide an attractive alternative for solving 
certain problems. Up to now, the generalized Rosenau 
KdV equation has not been solved by using the meshless 
kernel-based method of lines. This method depends upon 
the meshless solution technique and so there is no need 
to an extra discretization. It is a way of approximating 
partial differential equations by ordinary differential 
equations. Therefore, the problem of correct time-
stepping will be automatically solved by the ODE solver. 

Our main intention in this present paper is to indicate that 
the method is appropriate and reliable to obtain a 
numerical solution to partial differential equations.  That’s 
why, in this paper, we construct the proposed method to 
obtain the numerical results for the generalized Rosenau 
KdV equation.   
The design of this paper is as follows: In Sec. 2, we 
construct the implementation of the Meshless kernel-
based method of lines. In Sec. 3, numerical outcomes are 
illustrated. End the study with a short conclusion given in 
Sec. 4. 

Governing of the Proposed Method to the Generalized Rosenau-KdV Equation 

Our main intention of this investigation is to solve the mentioned equation by applying the meshless kernel-based 
method of lines. This method leads to a system of ordinary differential equations. The advantages of the present method 
are that there will no time discretization at all, and there will be no unnatural linearization of the differential equation as 
in diversified other articles. The problem of correct time-stepping will be automatically solved by the ODE solver we call.  

Here, the approximate solution 𝑢 is considered by a linear combination as follows [22] : 

𝑢(𝑥, 𝑡) = ∑ 𝛼௝(𝑡)ே
௝ୀଵ 𝑣௝(𝑥) (4) 

where 𝛼௝(𝑡) is an unknown term and 𝑣௝(𝑥) is spatial term obtained by using different radial basis functions. The most 
commonly used RBFs are Gaussian (G), Multiquadric (MQ) and Wendland’s compactly supported functions which are listed 
in the following, respectively: 

1. 𝜙(𝑟) = exp (−𝑟ଶ/𝜀ଶ ),
2. 𝜙(𝑟) = ඥ(𝜀𝑟)ଶ + 1 , where 𝜀 is a shape parameter (see the details in [23]).
3. 𝜙௟,௞(𝑟) = (1 − 𝑟)ା

௞ ℎ(𝑟)

Wendland’s compactly supported functions (𝑊) (see the details in [24] ) which are defined as follows:

𝑊ସ,ଶ(𝑟) = (1 − 𝑟)ା
଺ (3 + 18𝑟 + 35𝑟ଶ), 

𝑊ହ,ଷ(𝑟) = (1 − 𝑟)ା
଼ (1 + 8𝑟 + 25𝑟ଶ + 32𝑟ଷ), 

𝑊଺,ସ(𝑟) = (1 − 𝑟)ା
ଵ଴(5 + 50𝑟 + 210𝑟ଶ + 450𝑟ଷ + 429𝑟ସ), 

𝑊଻,ହ(𝑟) = (1 − 𝑟)ା
ଵଶ(9 + 108𝑟 + 566𝑟ଶ + 1644𝑟ଷ + 2697𝑟ସ + 2048𝑟ହ) 

where 𝑟 denotes the Euclidean distance between two collocation points. It is seen that these base functions depend 
on space variables. For ease notation in the rest of the paper, 𝜙௟,௞will be used as 𝑊௟,௞. Partial derivatives of  𝑢(𝑥, 𝑡) easily 
evaluated as follows: 

𝑢௧(𝑥, 𝑡) = ∑ 𝛼௝
ᇱ(𝑡)ே

௝ୀଵ 𝑣௝(𝑥) (5) 

𝑢௫(𝑥, 𝑡) = ∑ 𝛼௝(𝑡)ே
௝ୀଵ 𝑣௝

ᇱ(𝑥) ) (6) 

By writing necessary derivative terms in the equation (1) we get 

∑ 𝛼௝
ᇱ(𝑡)ே

௝ୀଵ 𝑣௝(𝑥) + ∑ 𝛼௝(𝑡)ே
௝ୀଵ 𝑣௝

ᇱ(𝑥) + ∑ 𝛼௝(𝑡)ே
௝ୀଵ 𝑣௝

ᇱᇱᇱ(𝑥) + ∑ 𝛼௝
ᇱ(𝑡)ே

௝ୀଵ 𝑣௝
௜௩(𝑥) + 𝛽 ቀቀ∑ 𝛼௝(𝑡)ே

௝ୀଵ 𝑣௝(𝑥)ቁ
௣

ቁ
ᇱ

= 0  (7) 

where the last term is a nonlinear term. After taking a derivative of nonlinear term the equation (7) can be written as 
follows: 

∑ ቀ𝑣௝(𝑥) + 𝑣௝
௜௩(𝑥)ቁே

௝ୀଵ ∗ 𝛼௝
ᇱ(𝑡) = − ∑ 𝛼௝(𝑡)ே

௝ୀଵ 𝑣௝
ᇱ(𝑥) − ∑ 𝛼௝(𝑡)ே

௝ୀଵ 𝑣௝
ᇱᇱᇱ(𝑥) −

𝛽𝑝 ቀ∑ 𝛼௝(𝑡)ே
௝ୀଵ 𝑣௝(𝑥)ቁ

௣ିଵ
∑ 𝛼௝(𝑡)ே

௝ୀଵ 𝑣௝
ᇱ(𝑥) (8)
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This equality is written in the following symbolic form  
 
(𝑉 + 𝑉௜௩) ∗ 𝛼ᇱ(𝑡) = −൫𝑉ᇱ ∗ 𝛼(𝑡)൯ − ൫𝑉ᇱᇱᇱ ∗ 𝛼(𝑡)൯ − 𝛽𝑝൫𝑉 ∗ 𝛼(𝑡)൯

௣ିଵ
∗ ൫𝑉ᇱ ∗ 𝛼(𝑡)൯   (9) 

 
where V is an invertible matrice and its entries are base functions and  𝛼(𝑡) is a vector. Therefore, the equation (9) can 

be written as; 
 
𝛼ᇱ(𝑡) = −(𝑉 + 𝑉௜௩)ିଵ ∗ [𝑉ᇱ ∗ 𝛼(𝑡) + 𝑉′′′ ∗ 𝛼(𝑡) +  𝛽𝑝൫𝑉 ∗ 𝛼(𝑡)൯

௣ିଵ
∗ ൫𝑉ᇱ ∗ 𝛼(𝑡)൯ቃ    (10) 

 
Finally, the governing equation is converted to an ordinary differential equation.  In our computations, the equation 

(10) is solved by using ode113 in MATLAB. The solver ode113 uses the Adams-Bashforth-Moulton predictor-corrector 
method. 

 
Numerical Results  
 
This section illustrates some numerical results of the governing equation by using the method described above. 

Numerical values of error norms and invariants are prominent to test the accuracy of the method. Error norms are defined 
as follows:  

 

𝐿ଶ = ටℎ ∑ ห𝑢௝
௘௫௔௖௧ − 𝑢௝

௡௨௠.ห
ଶே

௝ୀଵ           (11) 

 
𝐿ஶ = max

ଵஸ௝ஸே
ห𝑢௝

௘௫௔௖௧ − 𝑢௝
௡௨௠.ห          (12) 

 
For a numerical comparison of invariants following mass and energy conservations are used [12]: 

 
𝑄(𝑡) = ∫ 𝑢(𝑥, 𝑡) 𝑑𝑥

௕

௔
and           (13) 

 
𝐸(𝑡) = ‖𝑢‖ଶ + ‖𝑢௫௫‖ଶ           (14) 

 
In numerical treatments degree of a nonlinear term is taken as 𝑝 = 2,  𝑝 = 3, and 𝑝 = 5.  
Case 1: When 𝑝 = 2 and 𝛽 = 0.5, the solitary wave solution of the Rosenau-KdV equation is defined as follows [15]: 

 

𝑢(𝑥, 𝑡) = ቀ−
ଷହ

ଶସ
+

ଷହ

ଷଵଶ
√313ቁ × sechସ ଵ

ଶସ
ඥ−26 + 2√313 ቂ𝑥 − ቀ

ଵ

ଶ
+

√ଷଵଷ

ଶ଺
ቁ 𝑡ቃ     (15) 

 
Solution domain is taken as −70 ≤ 𝑥 ≤ 100 with ℎ =  1 up to time 𝑇 =  60 with Δ𝑡 =  0.1. Values of invariants are 

evaluated as 𝑄 = 5.498173 and 𝐸 = 1.9897829 at time 𝑡 = 0. Computed values of invariants are tabulated in Tables 1 
and 2. As seen in the tables, the values of invariants are preserved. At the end of running time analytical value of amplitude 
is evaluated as 0.5258 at the location 𝑥 = 71. For all numerical approximations same amplitude value and location data 
were evaluated. It is observed that solitary wave property is preserved by using different radial basis functions. Solitary 
wave simulations are plotted in Figure 1. 
 
 Table 1. Error norms and invariants for 𝑝 = 2 and 𝑇 = 40 

Method 𝑳𝟐   𝑳ஶ 𝑸 𝑬 
𝑊଻,ହ 5.195308e-6 1.024193e-6 5.4981736 1.9897829 
𝑊଺,ସ 5.049681e-6 1.736524e-6 5.4981736 1.9897828 

G 8.541866e-4 3.372133e-4 5.4981736 1.9897971 
MQ 2.025134e-4 4.563390e-5 5.4972047 1.9897816 
[20] 1.152193e-3 4.02987e-4 5.49816 1.98978 
[15] 5.297873e-3 1.878952e-3 5.49773 1.98470 

 
Table 1. Error norms and invariants for 𝑝 = 2 and 𝑇 = 40 

Method 𝑳𝟐   𝑳ஶ 𝑸 𝑬 
𝑊଻,ହ 5.656446e-6 9.697467e-7 5.4981690 1.9897829 
𝑊଺,ସ 8.161006e-6 2.783771e-6 5.4981692 1.9897828 

G 1.086041e-3 4.022695e-4 5.4981704 1.9897996 
MQ 3.503223e-4 7.847234e-5 5.4960065 1.9897815 
[19] 1.519562e-3 5.146861e-4 5.49815 1.98978 
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Figure 1. Solitary wave motion for 𝑝 = 2 

 
Case 2: For 𝑝 = 3 and 𝛽 = 1, the soliton solution is given as follows [12,13]: 
 

𝑢(𝑥, 𝑡) =
ଵ

ସ
ඥ−15 + 3√41   × sechଶ ଵ

ସ
ටିହା√ସଵ

ଶ
ቂ−

ଵ

ଵ଴
൫+√41൯𝑡ቃ      (16)

   
Calculations are done in the domain  −60 ≤ 𝑥 ≤ 100 with ℎ =  1 up to time 𝑇 =  40 for  Δ𝑡 =  0.1 to make detailed 

comparisons with references. Comparison of evaluated numerical values is given in Table 3. It has been seen that very 
sensitive numerical values are computed. At the initial time, invariants are found as 𝑄 = 4.8989794 and 𝐸 = 1.6825477. 
Numerical values of invariants are almost the same as the initial values. Therefore, it is seen that the performance of the 
method is very high and reliable. The simulation of progressive waves keeping original forms are seen in Figure 2. In 
computations, it is seen that amplitude values are equal to the exact value 0.5096 at the position 𝑥 = 46 for all radial basis 
functions. 

 

 

Figure 2. Solitary wave motion for 𝑝 = 3 
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Table 3. Error norms and invariants for 𝑝 = 3. 
Method 𝑳𝟐   𝑳ஶ 𝑸 𝑬 

𝑊଻,ହ 1.0290e-06 3.0720e-07 4.8989794 1.6825477 
𝑊଺,ସ 6.1124e-06 2.3119e-06 4.8989795 1.6825477 

G 1.8629e-06 5.7893e-07 4.8989797 1.6825477 
MQ 3.0026e-04 6.4671e-05 4.8975866 1.6825450 
[20] 1.7880e-03 6.3620e-04 4.8989794 1.682539 
[15] 1.3498e-02    
[16]  7.5394e-03  1.6825466 

 
Case 3: When  𝑝 =  5 and 𝛽 = 1 the soliton solution is defined as [16]: 
 

𝑢(𝑥, 𝑡) = ට
ସ

ଵହ
൫−5 + √34൯

ర
× 𝑠𝑒𝑐ℎ

ଵ

ଷ
ඥ−5 + √34 ቂ𝑥 −

ଵ

ଵ଴
(5 + ඥ34)𝑡ቃ     (17) 

 
where the solution domain  −60 ≤ 𝑥 ≤ 100 and time 𝑇 =  40. In computations mesh step and the time step is taken as 
ℎ =  1 and Δ𝑡 =  0.1. Comparison of numerical results with the results of some other papers is presented in Table 4. 
Numerical values of invariants at the beginning of the solitary wave are calculated as 𝑄 =  7.0936431 and 𝐸 =
 3.1107123. The single solitary wave profile is illustrated in Figure 3.  It can be observed that solitary wave keeps its 
original form during computing time. This situation implies that the energy is conservative. Solitary wave has 
amplitude= 0.6828 at 𝑥 = 43. As seen is computed results, the present numerical method by using different radial 
basis functions is slightly better than other referenced works. 
 

 

Figure 2. Solitary wave motion for 𝑝 = 5 

 
Table 4. Error norms and invariants for 𝑝 = 5. 

Method 𝑳𝟐   𝑳ஶ 𝑸 𝑬 
𝑊଻,ହ 2.2926e-06 8.1216e-07 7.0936430 3.1107122 
𝑊଺,ସ 1.6895e-05 6.0986e-06 7.0936431 3.1107119 

G 3.8193e-05 2.2361e-05 7.0936631 3.1107123 
MQ 4.8448e-04 1.2184e-04 7.0909712 3.1107111 
[20] 3.3217e-03 1.1897e-03 7.0936431 3.205919 
[16] 1.7998e-02    
[17]  1.2020e-02  3.1107099 

 
Conclusions 

 
In this paper, the meshless kernel-based method of 

lines is applied successfully to get the numerical solution 
of the Generalized-Rosenau–KdV equation for different 

nonlinear cases. In computations degree of the nonlinear 
term is used as 2,3 and 5. It is seen that the used proposed 
method is a very suitable technique solving for the given 
nonlinear partial differential equation and similar 
nonlinear equations. The method can be applied easily 
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because there is no need an extra linearization. Therefore, 
the governing equation is replaced by an ordinary 
differential equation and it is solved easily by using 
MATLAB ode-solver code. When we compare the studied 
in the literature with our numerical results, it can be seen 
that the results are obtained with high accuracy. It is said 
that the used meshless technique is a powerful solution 
method, and we believe that the current method can be 
applied to construct new solutions for these types of 
equations in future studies. 
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