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ABSTRACT

In this paper, we study the sequential warped product manifolds, which are the natural
generalizations of singly warped products. Many spacetime models that characterize the universe
and the solutions of Einstein’s field equations are known to have this new structure. For this reason,
first, we investigate the geometry of sequential warped product manifold under some conditions
of concircular curvature tensor. We also study the conformal and gradient almost Ricci solitons on
the sequential warped product. These conditions allow us to obtain some interesting expressions
for the Riemann curvature and the Ricci tensors of its base and fiber from the geometrical and the
physical point of view. Then, we give two important applications of this concept in the Lorentzian
settings, which are sequential generalized Robertson-Walker spacetimes and sequential standard
static spacetimes and obtain the form of the warping functions. Also, by considering generalized
quasi Einsteinian conditions on these spacetimes, we find some specific formulas for the Ricci
tensors of the bases and fibers. Finally, we end this work with some examples for this structure.

Keywords: Sequential warped product, concircular curvature tensor, generalized Robertson-Walker spacetime, standard static spacetime, conformal soliton,
generalized quasi Einstein manifold.
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1. Introduction

In 1969, Bishop and O’Neill [5] have defined the warped product of two Riemannian manifolds (B, gB) and
(F, gF ) as the product B × F equipped with the metric gB ⊕ f2gF and denoted by B ×f F , where the smooth
function f : B → (0,∞) is called the warping function. Then in 1983, warped products of semi-Riemannian
(not necessarily Lorentzian) manifolds and their Riemannian and Ricci curvature tensors were given in [19].
Then it turned out that the standard spacetime models of the universe and many other fundamental examples
of relativistic spacetimes that are the solutions of Einstein’s field equations are such warped products. From
this reason, warped products play very important roles in differential geometry as well as in general relativity.
Two very well-known examples of this notion are four dimensional Schwarzchild and de Sitter solutions of
Einstein field equations.

Let R4 be given by the coordinates (t, r, θ, φ), where (r, θ, φ) are the usual spherical coordinates of R3. For
a positive constant m, the exterior Schwarzchild spacetime is defined on the subset r > 2m of R4 and for this
region the Schwarzchild metric is given by

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (1.1)

Thus, if S2 denotes the unit shpere, the exterior Schwarzchild spacetime is the Lorentzian warped product
N = P1 ×r S2, where P1 = {(t, r) ∈ R×R+ : r > 2m}.
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The de Sitter spacetime of constant positive sectional curvature 1
r2 covered by the global coordinates

(t, α, θ, φ) with −∞ < t <∞, 0 ≤ α, θ ≤ π and 0 ≤ φ ≤ 2π is given by

ds2 = −dt2 + r2 cosh2
( t
r

)
[dα2 + sin2 α(dθ2 + sin2 θdφ2)]. (1.2)

Thus, this also can be considered as the Lorentzian warped product Sn1 = R×f S3, where S3 denotes the
complete Riemannian manifold of constant sectional curvature and f(t) = r cosh

(
t
r

)
is the warping function.

Other examples apart from these may be listed as black hole, Kerr, Reissner–Nordström and the anti-de Sitter
metrics. As can be easily seen from the equations (1.1) and (1.2), in many warped product manifolds, their
bases, fibers or both of them can also have the warped product structure, [22]. Moreover, in string theory, for
the Calabi-Yau manifold (i.e. Ricci flat Riemannian manifold admitting a complex structure) F and the de Sitter
spacetime Sn1 , the warped product Sn1 × F has the same feature, [4]. Thus, a new concept of warped product
metric has been introduced in which its base or fiber or both also have the warped product structure and it is
called sequential warped product, [20, 11]. The formal definition of this notion is given as follows:

Definition 1.1. Let (Mi, gi) be three semi-Riemannian manifolds of dimensions mi (i = 1, 2, 3) respectively,
f : M1 → (0,∞) and h : M1 ×M2 → (0,∞) be two smooth functions. Then the sequential warped product is
the product manifold M̄ = (M1 ×f M2)×hM3 endowed with the metric

ḡ = (g1 ⊕ f2g2)⊕ h2g3. (1.3)

Both f and h are called the warping functions.

Notation 1. (i) Throughout the paper, we will use Einstein’s summation convention. All the objects will be
assumed to be smooth and all the manifolds are connected.

(ii) All objects having "bar" symbol represent the objects of the sequential warped product manifold and all
objects having the indices or powers i denote the objects of the manifold (Mi, gi), where i = 1, 2, 3.

(iii) The Riemannian curvature tensor is defined by R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, the Ricci tensor is
Ric(X,Y ) =

∑n
i=1R(ei, X, Y, ei) and the scalar curvature r =

∑n
i=1 Ric(ei, ei), where {ei : i = 1, . . . , n}

denotes orthonormal basis over the manifold.

(iv) For any X,Y ∈ χ(M), the Hessian of a smooth function φ is the second order covariant differentiation
defined by Hφ(X,Y ) = XY (φ)− (∇XY )φ = g(∇Xgradφ, Y ).

(v) On a sequential warped product M̄ = (M1 ×f M2)×hM3, every vector field X can be decomposed as the
sum

X = X1 +X2 +X3, where Xi ∈ χ(Mi), i = 1, 2, 3. (1.4)
This paper is organized as follows: After Introduction, first in Section 2 we give detailed preliminaries

about the geometry of sequential warped product manifolds and the concircular curvature tensor. Section 3
is devoted to the geometry of concircular curvature tensor and some gradient solitons on sequential warped
product manifolds. In Subsection 3.1, we give description of the concircular curvature on sequential warped
product and obtain necessary and sufficient conditions for concircular flatness. We also study the conformal
and gradient almost Ricci solitons on the sequential warped product. In Subsection 3.2, we investigate the
concircular symmetry and in Subsection 3.3, we analyse the harmonicity of concircular curvature on sequential
warped product. In Section 4, we study two important applications of this concept in the Lorentzian setting,
which are sequential generalized Robertson-Walker spacetimes and sequential standard static spacetimes. In
this way, we are able to obtain the form of the warping functions in some cases of sequential warped product
spacetimes. Also, by considering the generalized quasi Einsteinian condition on these spacetimes, we find some
specific formulas for the Ricci tensors of its base and fiber. Finally, we construct two examples for sequential
generalized Robertson-Walker spacetimes, which are also generalized quasi Einstein manifolds.

2. Preliminaries

2.1. Sequential Warped Products

In this section, we give the basic formulas for the Levi-Civita connection, Riemannian, Ricci and the scalar
curvature of the sequential warped products that will be used in the proofs of our main theorems. We skip the
proofs that are long but straightforward, as is the case of warped product manifolds.
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Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕ h2g3

and let Xi, Yi, Zi ∈ χ(Mi), for i = 1, 2, 3. Then, we have:

Lemma 2.1. [11] The components of the Levi-Civita connection on (M̄, ḡ) are given by:

1. ∇̄X1
Y1 = ∇1

X1
Y1,

2. ∇̄X1
X2 = ∇̄X2

X1 = X1(ln f)X2,

3. ∇̄X2
Y2 = ∇2

X2
Y2 − fg2(X2, Y2)grad1f ,

4. ∇̄X3
X1 = ∇̄X1

X3 = X1(lnh)X3,

5. ∇̄X2
X3 = ∇̄X3

X2 = X2(lnh)X3,

6. ∇̄X3
Y3 = ∇3

X3
Y3 − hg3(X3, Y3)gradh.

Note that, Hf
1 and ∆1f denote the Hessian and Laplacian of f on M1 respectively, while Hh and ∆h denote

the Hessian and Laplacian of h on M̄ , respectively. In calculations of the next proposition (and its analogues in
Subsections 4.1 and 4.2), there is a difference of one minus sign with the results in paper [11]. The reason for
this is that we adhere to the Riemann curvature tensor and contruction rules given in Notations 1-(iii).

Lemma 2.2. [11] The non-zero components of the Riemannian curvature of (M̄, ḡ) are given by:

1. R̄(X1, Y1)Z1 = R1(X1, Y1)Z1,

2. R̄(X2, Y2)Z2 = R2(X2, Y2)Z2 − ||grad1f ||
2[g2(Y2, Z2)X2 − g2(X2, Z2)Y2],

3. R̄(X1, Y2)Z1 = 1
fH

f
1 (X1, Z1)Y2,

4. R̄(X1, Y2)Z2 = −fg2(Y2, Z2)∇1
X1

grad1f ,

5. R̄(Xi, Y3)Zj = 1
hH

h(Xi, Zj)Y3, for i, j = 1, 2,

6. R̄(Xi, Y3)Z3 = −hg3(Y3, Z3)∇̄Xigradh, i = 1, 2,

7. R̄(X3, Y3)Z3 = R3(X3, Y3)Z3 − ||gradh||2[g3(Y3, Z3)X3 − g3(X3, Z3)Y3].

Lemma 2.3. [11] The non-zero components of the Ricci curvature of (M̄, ḡ) are given by:

1. R̄ic(X1, Y1) = Ric1(X1,Y1)− m2

f Hf
1(X1,Y1)− m3

h Hh(X1,Y1),

2. R̄ic(X2, Y2) = Ric2(X2,Y2)− f]g2(X2,Y2)− m3

h Hh(X2,Y2),

3. R̄ic(X3, Y3) = Ric3(X3,Y3)− h]g3(X3,Y3),

where f ] = f∆1f + (m2 − 1)||grad1f ||
2 and h] = h∆h+ (m3 − 1)||gradh||2.

Lemma 2.4. [11] The relation between the scalar curvature r of (M̄, ḡ) and the scalar curvatures ri of (Mi, gi) is given
by:

r̄ = r1 +
r2

f2
+
r3

h2
− 2m2

f
∆1f −

2m3

h
∆h− m2(m2 − 1)

f2
||grad1f ||

2 − m3(m3 − 1)

h2
||gradh||2. (2.1)

2.2. Concircular Curvature Tensor

A transformation on a Riemannian manifold M , which transforms every geodesic circle of M into a
geodesic circle, is called a concircular transformation, [25] (for more [24, 6]). A tensor of type (1, 3) on an n-
dimensional Riemannian manifoldM denoted by Cwhich remains invariant under concircular transformations
is introduced by Yano and Kon and given by

C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], ∀ X,Y, Z ∈ χ(M). (2.2)

Equivalently, it can be expressed as
C = R− r

n(n− 1)
G, (2.3)

where G = 1
2 (g ∧ g) and ∧ denotes the Kulkarni-Nomizu product. A manifold whose concircular curvature

vanishes at every point is called concircularly flat. Thus, we have the following direct geometrical
consequences:
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• Every concircularly flat manifold is of constant curvature.
• A semi-Riemannian manifold is called concircular symmetric if the covariant derivative of C vanishes. By

(2.3), we have

∇C = ∇R− 1

n(n− 1)
(∇r)G. (2.4)

Thus, if M is concircular symmetric, then by (2.4) and the contracted second Bianchi identity, the scalar
curvature is constant and so∇R = 0, which means thatM is locally symmetric. The converse of this result
is also true.

• Again by (2.3), the divergence of the concircular curvature tensor is given by

divC = divR− dr

n(n− 1)
G. (2.5)

On the othe hand, the divergence of the Riemannian curvature tensor is given by

divR(X,Y)Z = (∇XRic)(Y,Z)− (∇YRic)(X,Z), ∀ X,Y,Z ∈ χ(M). (2.6)

Thus, by (2.5), (2.6) and the contracted second Bianchi identity, the scalar curvature is again constant and
so divR = 0, which means that the Ricci tensor is of Codazzi type.

The geometric and the relativistic significance of this tensor has been studied by De, Shenawy and Ünal [12]
and Ahsan and Siddiqui [1]. In [12], the concircular flatness, the concircular symmetry and the divergence-free
concircular curvature tensor on warped product manifolds have been investigated. Also, the effects of these
conditions on the base and the fiber of the warped product are the main fields of the study. Our aim in this
paper is to extend these results to the sequential warped product manifolds. In this case the calculations will
be much more heavy, but give more general results.

3. Concircular Geometry and Gradient Solitons on Sequential Warped Products

3.1. Concircular Flatness and Gradient Solitons

In this section, by using the Lemmas 2.2, 2.3 and 2.4, we first provide the description of the concircular
curvature tensor on the sequential warped product manifold.

Proposition 3.1. Let M̄ = (M1 ×f M2)×hM3 be an n-dimensional sequential warped product endowed with the metric
ḡ = (g1 ⊕ f2g2)⊕ h2g3 and let Xi, Yi, Zi ∈ χ(Mi), for i = 1, 2, 3. Then, all non-zero components of the concircular
curvature tensor C on M̄ are given by:

C(X1, Y1)Z1 = R1(X1, Y1)Z1 −
r̄

n(n− 1)
[g1(Y1, Z1)X1 − g1(X1, Z1)Y1], (3.1)

C(X2, Y2)Z2 = R2(X2, Y2)Z2 −
(
||grad1f ||

2 +
r̄f2

n(n− 1)

)
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2],

C(X1, Y2)Z1 =
1

f
Hf

1 (X1, Z1)Y2 +
r̄

n(n− 1)
g1(X1, Z1)Y2,

C(X1, Y2)Z2 = −fg2(Y2, Z2)∇1
X1
grad1f −

r̄f2

n(n− 1)
g2(Y2, Z2)X1,

C(X1, Y3)Z1 =
1

h
Hh(X1, Z1)Y3 +

r̄

n(n− 1)
g1(X1, Z1)Y3,

C(X1, Y3)Z2 =
1

h
Hh(X1, Z2)Y3, C(X2, Y3)Z1 =

1

h
Hh(X2, Z1)Y3,

C(X2, Y3)Z2 =
1

h
Hh(X2, Z2)Y3 +

r̄f2

n(n− 1)
g2(X2, Z2)Y3,

C(X1, Y3)Z3 = −hg3(Y3, Z3)∇̄Xigradh−
r̄h2

n(n− 1)
g3(Y3, Z3)Xi, for i = 1, 2,

C(X3, Y3)Z3 = R3(X3, Y3)Z3 −
(
||gradh||2 +

r̄h2

n(n− 1)

)
[g3(Y3, Z3)X3 − g3(X3, Z3)Y3].
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As a consequence of Proposition 3.1, we state:

Theorem 3.1. Let M̄ = (M1 ×f M2)×hM3 be an n-dimensional (n = m1 +m2 +m3) sequential warped product
endowed with the metric ḡ = (g1 ⊕ f2g2)⊕ h2g3 and let Xi, Yi, Zi ∈ χ(Mi), for i = 1, 2, 3. Then (M̄, ḡ) is concircularly
flat if and only if the following statements hold:

1. (M1, g1) is of constant curvature κ1 = r̄
n(n−1) .

2. (M2, g2) is of constant curvature κ2 = ||grad1f ||
2 + r̄f2

n(n−1) .

3. For all X1, Z1 ∈ χ(M1), Hf
1 (X1, Z1) + r̄f

n(n−1)g1(X1, Z1) = 0.

4. For all X1 ∈ χ(M1) and Z2 ∈ χ(M2), Hh(X1, Z2) = 0.

5. For all X2, Z2 ∈ χ(M2), Hh(X2, Z2) + r̄hf2

n(n−1)g2(X2, Z2) = 0.

6. (M3, g3) is of constant curvature κ3 = ||gradh||2 + r̄h2

n(n−1) .

A Riemannian manifold (Mn, g) is called a conformal gradient soliton if there exists a non-constant smooth
function f , called potential of the soliton, such that

Hf = ϕg, (3.2)

for some function ϕ : Mn → R. Tashiro studied in [23] complete Riemannian manifolds admitting a vector
field∇f satisfying equation (3.2). Then, in [9] Cheeger and Colding gave the solutions of the equation (3.2) and
they obtained the characterization of warped product manifolds. Also, the equation (3.2) is the special case
of gradient Ricci soliton structure, that has been studied extensively on the warped product manifold in [21].
With the help of this definition and Theorem 3.1-(3), we express the following:

Theorem 3.2. Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕
h2g3. If (M̄, ḡ) is concircularly flat, then (M1, g1) is a conformal gradient soliton whose potential function is the warping
function f and ϕ = − r̄f

n(n−1) .

From Theorem 3.1-(4) and Lemma 2.1, we have f2X1(ln f)g2(gradh2, Z2) = 0, for all Z2 ∈ χ(M2), where
gradh = gradh1 + gradh2 and gradhi denotes the tangential and the normal parts of h on Mi (i = 1, 2),
respectively. Since f is non constant, positive function, the last equation yields that gradh2 = 0. Therefore,
we can state:

Corollary 3.1. Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕
h2g3. If (M̄, ḡ) is concircularly flat, then the warping function h depends only on M1.

From Theorem 3.1’s (3)-(5), we have

∆1f = −m1κ1f and ∆h = −(m1 +m2f
2)κ1h. (3.3)

If we additionally assume thatM1 andM1 ×f M2 are compact and r̄ ≤ 0 (or r̄ ≥ 0), then by (3.3) we get ∆1f and
∆h do not change the signs. Then it follows from Hopf’s Lemma that the warping functions f and h become
constants. Therefore we can state the following rigidity result:

Corollary 3.2. Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕
h2g3, where M1 and M2 are compact. If (M̄, ḡ) is concircularly flat such that r̄ ≤ 0 (or r̄ ≥ 0), then it reduces to a simply
direct product.

A smooth manifold (Mn, g) (n > 2) is said to be a generalized quasi Einstein manifold in the sense of Catino
[7] if there exist three smooth functions ϕ, α and λ such that

Ric + Hϕ − αdϕ⊗ dϕ = λg (3.4)

and it is denoted by (Mn, g, ϕ, α, λ). There are some different subclasses of this equation that define many
important manifolds:

(i) If α = 1
m , for positive integer 0 < m <∞ then M is called an m-generalized quasi Einstein manifold.
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(ii) If α = 0, thenM is called a gradient almost Ricci soliton, [3] and it is denoted by (M, g, ϕ, λ) and ϕ is called
the potential function.

(iii) Another particular case of (3.4) can be written as

Ric + ψHϕ = λg. (3.5)

This structure is said to be a ψ-almost gradient Ricci soliton [26] and briefly denoted by (M, g, ϕ, ψ, λ).
Note that, for every smooth function ϕ, the following relation can be verified:

H lnϕ =
1

ϕ
Hϕ − 1

ϕ2
dϕ⊗ dϕ. (3.6)

By defining a function φ = e
−ϕ
m , we get mφ Hφ = −Hϕ + 1

mdϕ⊗ dϕ. Thus using (3.6), (3.4) can be written as

Ric− m

φ
Hφ = λg. (3.7)

Hence, any m-generalized quasi Einstein manifold is a (−mφ )-almost gradient Ricci soliton. In [15], the
author gave some classifications for half-conformally flat f -almost gradient Ricci solitons and physical
applications of them in standard static spacetimes.

Now, we prove the following result:

Theorem 3.3. Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕
h2g3. If (M̄, ḡ, ϕ, λ) is a gradient almost Ricci soliton, then

1. the potential function ϕ depends only on (M1, g1) and it satisfies

Ric1 −
m2

f
Hf

1 −
m3

h
Hh + Hϕ

1 = λg1. (3.8)

2. (M2, g2, ϕ̃, α̃, λ̃) is a generalized quasi Einstein manifold, where ϕ̃ = −m3 lnh, α̃ = −1/m3 and λ̃ = λf2 + f ] −
f∇ϕ(f).

3. (M3, g3, ϕ, λh
2 + h] − h∇ϕ(h)) is a gradient almost Ricci soliton.

Proof. Let (M̄, ḡ, ϕ, λ) be a gradient almost Ricci soliton. Then we have

R̄ic +Hϕ = λḡ. (3.9)

For a smooth function ϕ on a sequential warped product M̄ = (M1 ×f M2)×hM3, we define, Hϕ
i (Xi, Yi) =

XiYi(ϕ)− (∇iXi
Yi)(ϕ) for all Xi, Yi ∈ L(Mi), for i = 1, 2, 3. Then by using Lemma 2.1, the Hessian tensor Hϕ of

ϕ on a sequential warped product M̄ = (M1 ×f M2)×hM3 satisfies

(1) Hϕ(X1, Y1) = Hϕ
1 (X1, Y1), (3.10)

(2) Hϕ(X1, Y2) = X1(ln f)Y2(ϕ),

(3) Hϕ(X1, Y3) = X1(lnh)Y3(ϕ),

(4) Hϕ(X2, Y2) = f∇ϕ(f)g2(X2, Y2) +Hϕ
2 (X2, Y2),

(5) Hϕ(X2, Y3) = X2(lnh)Y3(ϕ),

(6) Hϕ(X3, Y3) = h∇ϕ(h)g3(X3, Y3) +Hϕ
3 (X3, Y3).

By using the fact that the warping functions f and h are defined on M1 and M1 ×f M2, respectively, and (2),(3)
and (5) of (3.10) into (3.9) we obtain Yi(ϕ) = 0, for all Yi ∈ χ(Mi), i = 2, 3. This gives us the potential function
ϕ is defined only on M1. Also combining Lemma 2.3-(1) and (3.10)-(1) with (3.9), we get (3.8). Then, by using
Lemma 2.3-(2) and (3.10)-(4) into (3.9), we get

Ric2 −
m3

h
Hh = (f] + λf2 − f∇ϕ(f))g2. (3.11)

By virtue of (3.6), (3.11) proves the second assertion. Finally, using Lemma 2.3-(3) and (3.10)-(6) into (3.9), we
get the third assertion.
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3.2. Concircular Symmetry

Now, we investigate some symmetries on sequential warped products. By (2.4), it is known that if the
manifold is concircular symmetric, then it is also locally symmetric with constant scalar curvature. Thus, by
using Lemma 2.2, we prove the following:

Theorem 3.4. Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕
h2g3. If (M̄, ḡ) is concircular symmetric, then the followings hold:

1. M1,M2 and M3 are locally symmetric manifolds.

2. F = 1
fH

f
1 and H = 1

hH
f are parallel.

3. R1(grad1f,X1)Z1 = F(X1, Z1)grad1f + Z1(ln f)∇1
X1
grad1f .

4. W1(ln f)R2(X2, Y2)Z2 −W1(||grad1f ||2)G2(X2, Y2)Z2 = −fg2(Y2, Z2)∇̄W1grad1f .

Proof. Since (M̄, ḡ) is concircular symmetric, for all Xi, Yi, Zi,Wi ∈ χ(Mi) (i = 1, 2, 3), (∇̄Wi
C)(Xi, Yi)Zi = 0. By

using all components of the Riemannian curvature tensor given in Lemma 2.2, we get:

(∇̄Wi
Ri)(Xi, Yi)Zi = 0, for all Xi, Yi, Zi,Wi ∈ χ(Mi), (3.12)

which proves (1). Also, by (∇̄W1
Ri)(X1, Y2)Z1 = 0 and (∇̄W1

Ri)(Xi, Y3)Zi = 0, (i = 1, 2), we get

(∇̄W1

1

f
Hf

1 )(X1, Y1) = 0, for all X1, Y1 ∈ χ(M1) (3.13)

and

(∇̄Wi

1

h
Hh)(Xi, Yi) = 0, for all Xi, Yi ∈ χ(Mi), i = 1, 2. (3.14)

respectively. Thus the last two equations prove the assertion (2). Using the definitions of F and H and Lemma
2.1’s third item into (∇̄W2

R̄)(X1, Y2)Z1 = 0 and (∇̄W1
R̄)(X2, Y2)Z2 = 0, we get (3) and (4), respectively. Hence

the proof is completed.

3.3. Divergence-Free Concircular Curvature Tensor

First let Ci be the concircular curvature tensor on Mi, for i = 1, 2. If the concircular curvature tensor C of a
sequential warped product M̄ = (M1 ×f M2)×hM3 is divergence-free, then divR̄ = 0 so the Ricci tensor is of
Codazzi type. Thus, the tensor T defined by

T (X,Y, Z) = (∇XR̄ic)(Y,Z)− (∇Y R̄ic)(X,Z), ∀ X,Y, Z ∈ χ(M̄) (3.15)

vanishes identically.
Now, under this construction, we need to analyse the following cases:
(i) Let X1, Y1, Z1 ∈ χ(M1). As T (X1, Y1, Z1) = 0, it follows from Lemma 2.3 that divC1 = 0 if and only if the

following equation holds:

m2

f
[R1(X1, Y1, Z1, grad1f) + Y1(f)F(X1, Z1)−X1(f)F(Y1, Z1)] (3.16)

=
m3

h
[R1(X1, Y1, gradh, Z1)− Y1(h)H(X1, Z1) +X1(h)H(Y1, Z1)].

(ii) Let X2, Y2, Z2 ∈ χ(M2). As T (X2, Y2, Z2) = 0, it follows from Lemma 2.3 and the Ricci identity that
divC2 = 0 if and only if the following equation holds:

R2(X2, Y2, gradh, Z2) = Y2(lnh)H(X2, Z2)−X2(lnh)H(Y2, Z2). (3.17)

(iii) Let X3, Y3, Z3 ∈ χ(M3). As T (X3, Y3, Z3) = 0 and h ∈ C∞(M1 ×M2), by Lemma 2.3, we always have
divC3 = 0.
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(iv) As T (X1, Y2, Z2) = 0, by virtue of Lemma 2.3, (as f is non-constant, X1(ln f) 6= 0) we have

Ric2(Y2,Z2)−m3

h

(
1 +

X1(lnh)

2X1(ln f)

)
Hh(Y2, Z2)− m3f

2

h
Hh

2 (Y2, Z2) (3.18)

=−
[ X1(f ])

2X1(ln f)
− m3

2hX1(ln f)
X1(gradh(f))

]
g2(Y2, Z2).

(v) As T (X1, Y3, Z3) = 0, by virtue of Lemma 2.3, (as h is non-constant) we have

Ric3(Y3,Z3) = − X1(h])

2X1(ln h)
g3(Y3,Z3), (3.19)

provided that X1(h) 6= 0.
(vi) As T (X2, Y1, Z1) = 0, by virtue of Lemma 2.3 and X1(h) 6= 0, we obtain X2(h) = 0, for all X2 ∈ χ(M2).

That is, h depends only on M1. Combining this result with the equation (3.18), we get

Ric2(Y2,Z2) + ψHh(Y2,Z2) = λg2(Y2,Z2), (3.20)

which is the fundamental equation of the ψ-almost gradient Ricci soliton defined in (3.5), where

ψ = −m3

h

(
1 +

X1(lnh)

2X1(ln f)

)
, and λ = − X1(f ])

2X1(ln f)
− m3

2hX1(ln f)
X1(gradh(f)). (3.21)

Moreover, all the other rest cases of the components of T vanish directly. Hence we get the following:

Theorem 3.5. Let M̄ = (M1 ×f M2)×hM3 be a sequential warped product endowed with the metric ḡ = (g1 ⊕ f2g2)⊕
h2g3. If (M̄, ḡ) has divergence-free concircular curvature tensor, then:

1. M1 has divergence-free concircular curvature tensor if and only if (3.16) holds.

2. M2 has divergence-free concircular curvature tensor if and only if (3.17) holds.

3. M3 is Einstein manifold and so it always has divergence-free concircular curvature tensor.

4. The warping function h depends only on M1.

5. (M2, g2, h, ψ, λ) is a ψ-almost gradient Ricci soliton, where ψ and λ are given by (3.21).

4. Some Applications of Sequential Warped Product Spacetimes

Generalized Robertson-Walker spacetime is a warped product spacetime whose base is an open interval I
of R with its usual metric reversed (I,−dt2), the fiber is an m-dimensional connected Riemannian manifold
(M, g) and the warping function is any positive smooth fuction f > 0 on I , [19]. More precisely, the generalized
Robertson-Walker spacetime is the product manifold M̄ = I ×f M endowed with the Lorentzian metric ḡ =
−dt2 + f2(t)g, f ∈ C∞>0(I). They have been studied by many authors, such as Mantica, Molinari and De [17],
Mantica , Suh, and De [18], Chen [10] and others.

Standard static spacetime which can be actually considered as a Lorentzian warped product where the
warping function defined on the fiber which is a Riemannian manifold and acts on the negative definite metric
on the base which is an open interval of real numbers. These type of metrics also play an important role to find
the solutions of the Einstein field equations so they have been previously studied by many authors, such as
Dobarro and Ünal [13] and Allison [2]. Moreover, first in [11], these two structures have been studied on the
sequential warped product structure and then in [11] and [16] the necessary and sufficient conditions are given
for the existence of Einstein and quasi Einstein manifolds on the sequential warped products, respectively.

4.1. Sequential Generalized Robertson-Walker Spacetimes

Let M̄ = (I ×f M2)×hM3 be a sequential generalized Robertson-Walker warped product spacetime
endowed with the metric ḡ = (−dt2 ⊕ f2g2)⊕ h2g3 and let Xi, Yi, Zi ∈ χ(Mi), for i = 2, 3. Then, by direct
applications of Lemmas presented in Subsection 2.1, we obtain the followings:
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Lemma 4.1. [11] The non-zero components of the Levi-Civita connection on (M̄, ḡ) are given by:

1. ∇̄∂tXi = ∇̄Xi
∂t = ḟ

fXi, i = 2, 3,

2. ∇̄X2Y2 = ∇2
X2
Y2 − fḟg2(X2, Y2)∂t,

3. ∇̄X2
X3 = ∇̄X3

X2 = X2(lnh)X3,

4. ∇̄X3Y3 = ∇3
X3
Y3 − hg3(X3, Y3)gradh.

Lemma 4.2. [11] The non-zero components of the Riemannian curvature of (M̄, ḡ) are given by:

1. R̄(X2, Y2)Z2 = R2(X2, Y2)Z2 + (ḟ)2[g2(Y2, Z2)X2 − g2(X2, Z2)Y2],

2. R̄(∂t, Y2)∂t = − f̈f Y2,

3. R̄(∂t, Y3)∂t = − 1
h
∂2h
∂t2 Y3,

4. R̄(∂t, Y2)Z2 = −ff̈g2(Y2, Z2)∂t,

5. R̄(X2, Y3)Z2 = 1
hH

h(X2, Z2)Y3,

6. R̄(∂t, Y3)Z3 = −hg3(Y3, Z3)∇̄∂tgradh,

7. R̄(X2, Y3)Z3 = −hg3(Y3, Z3)∇̄X2
gradh,

8. R̄(X3, Y3)Z3 = R3(X3, Y3)Z3 − ||gradh||2[g3(Y3, Z3)X3 − g3(X3, Z3)Y3].

Lemma 4.3. [11] The non-zero components of the Ricci curvature of (M̄, ḡ) are given by:

1. R̄ic(∂t, ∂t) = m2

f f̈ + m3

h
∂2h
∂t2 ,

2. R̄ic(X2, Y2) = Ric2(X2,Y2)− f]g2(X2,Y2)− m3

h Hh(X2,Y2),

3. R̄ic(X3, Y3) = Ric3(X3,Y3)− h]g3(X3,Y3),

where f ] = −ff̈ − (m2 − 1)(ḟ)2 and h] = h∆h+ (m3 − 1)||gradh||2.

Lemma 4.4. [11] The relation between the scalar curvature r of (M̄, ḡ) and the scalar curvatures ri of (Mi, gi) is given
by:

r̄ =
r2

f2
+
r3

h2
+

2m2

f
f̈ − 2m3

h
∆h− m2(m2 − 1)

f2
(ḟ)2 − m3(m3 − 1)

h2
||gradh||2. (4.1)

By virtue of the Lemmas 4.2, 4.3 and 4.4, now we provide the description of the concircular curvature tensor
on the sequential generalized Robertson-Walker spacetime:

Proposition 4.1. Let M̄ = (I ×f M2)×hM3 be an n(= m2 +m3 + 1)-dimensional sequential generalized Robertson-
Walker spacetime endowed with the metric ḡ = (−dt2 ⊕ f2g2)⊕ h2g3 and let Xi, Yi, Zi ∈ χ(Mi), for i = 2, 3. Then, all
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non-zero components of the concircular curvature tensor C on M̄ are given by:

C(X2, Y2)Z2 = R2(X2, Y2)Z2 +
(

(ḟ)2 − r̄f2

n(n− 1)

)
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2], (4.2)

C(∂t, Y2)∂t = −
( f̈
f

+
r̄

n(n− 1)

)
Y2,

C(∂t, Y2)Z2 = −
(
ff̈ +

r̄f2

n(n− 1)

)
g2(Y2, Z2)∂t,

C(∂t, Y3)∂t = −
( 1

h

∂2h

∂t2
+

r̄

n(n− 1)

)
Y3, C(∂t, Y3)Z2 = fḟZ2(lnh),

C(X2, Y3)Z2 =
1

h
Hh(X2, Z2)Y3 +

r̄f2

n(n− 1)
g2(X2, Z2)Y3,

C(∂t, Y3)Z3 = −hf̈g3(Y3, Z3)∂t −
r̄h2

n(n− 1)
g3(Y3, Z3)∂t,

C(X2, Y3)Z3 = −hg3(Y3, Z3)∇̄X2gradh−
r̄h2

n(n− 1)
g3(Y3, Z3)X2,

C(X3, Y3)Z3 = R3(X3, Y3)Z3 −
(
||gradh||2 +

r̄h2

n(n− 1)

)
[g3(Y3, Z3)X3 − g3(X3, Z3)Y3].

Considering the vanishing components of the concircular curvature tensor, the result of Proposition 4.1 is
expressed as follows:

Theorem 4.1. Let M̄ = (I ×f M2)×hM3 be an n(= m2 +m3 + 1)-dimensional sequential generalized Robertson-
Walker spacetime endowed with the metric ḡ = (−dt2 ⊕ f2g2)⊕ h2g3 and let Xi, Yi, Zi ∈ χ(Mi), for i = 2, 3. Then,
(M̄, ḡ) is concircularly flat if and only if the following statements hold:

1. (M2, g2) is of constant curvature κ2 = r̄f2

n(n−1) − (ḟ)2.

2. (M3, g3) is of constant curvature κ3 = ||gradh||2 + r̄h2

n(n−1) .

3. h = f and so the warping function h depends only on M1.

4. f̈ + r̄f
n(n−1) = 0 and ḟ + r̄f

n(n−1) = 0 holds.

Theorem 4.2. Let M̄ = (I ×f M2)×hM3 be an n(= m2 +m3 + 1)-dimensional sequential generalized Robertson-
Walker spacetime endowed with the metric ḡ = (−dt2 ⊕ f2g2)⊕ h2g3. If (M̄, ḡ) is concircularly flat, then the warping
functions are equal and defined by

f(t) = h(t) = c1e
t + c2, c1, c2 ∈ R. (4.3)

Proof. From the forth assertion of Theorem 4.1, the warping f satisfies the second order linear differential
equation f̈ − ḟ = 0, which has the solution (4.3). Also, from the third assertion of Theorem 4.1, h has the same
form with f .

4.2. Sequential Standard Static Spacetimes

Let M̄ = (M1 ×f M2)×h I be a sequential standard static spacetime endowed with the metric ḡ = (g1 ⊕
f2g2)⊕ h2(−dt2) and let Xi, Yi, Zi ∈ χ(Mi), for i = 1, 2. Then, by direct applications of Lemmas presented in
Subsection 2.1, we obtain the followings:

Lemma 4.5. [11] The non-zero components of the Levi-Civita connection on (M̄, ḡ) are given by:

1. ∇̄X1Y1 = ∇1
X1
Y1,

2. ∇̄X1
Y2 = ∇̄Y2

X1 = X1(ln f)Y2,

3. ∇̄X2
Y2 = ∇2

X2
Y2 − fg2(X2, Y2)grad1f ,

4. ∇̄∂tXi = ∇̄Xi
∂t = Xi(lnh)∂t, i = 1, 2,
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5. ∇̄∂t∂t = hgradh.

Lemma 4.6. [11] The non-zero components of the Riemannian curvature of (M̄, ḡ) are given by:

1. R̄(X1, Y1)Z1 = R1(X1, Y1)Z1,

2. R̄(X2, Y2)Z2 = R2(X2, Y2)Z2 − ||grad1f ||2[g2(Y2, Z2)X2 − g2(X2, Z2)Y2],

3. R̄(X1, Y2)Z1 = 1
fH

f
1 (X1, Z1)Y2,

4. R̄(X1, Y2)Z2 = −fg2(Y2, Z2)∇1
X1
grad1f ,

5. R̄(Xi, ∂t)Zj = 1
hH

h(Xi, Zj)∂t, (i, j = 1, 2),

6. R̄(Xi, ∂t)∂t = h∇̄Xigradh, (i = 1, 2).

Lemma 4.7. [11] The non-zero components of the Ricci curvature of (M̄, ḡ) are given by:

1. R̄ic(X1, Y1) = Ric1(X1,Y1)− m2

f Hf
1(X1,Y1)− 1

hHh(X1,Y1),

2. R̄ic(X2, Y2) = Ric2(X2,Y2)− f]g2(X2,Y2)− 1
hHh(X2,Y2),

3. R̄ic(∂t, ∂t) = h],

where f ] = f∆1f + (m2 − 1)||grad1f ||
2 and h] = h∆h.

Analogous with Subsection 4.1, by virtue of the Lemmas 4.6 and 4.7, finally we provide the description of
the concircular curvature tensor on the sequential standard static spacetime:

Proposition 4.2. Let M̄ = (M1 ×f M2)×h I be an n(= m1 +m2 + 1)-dimensional sequential standard static
spacetime endowed with the metric ḡ = (g1 ⊕ f2g2)⊕ h2(−dt2) and let Xi, Yi, Zi ∈ χ(Mi), for i = 1, 2. Then, all non-
zero components of the concircular curvature tensor C on M̄ are given by:

C(X1, Y1)Z1 = R1(X1, Y1)Z1 −
r̄

n(n− 1)
[g1(Y1, Z1)X1 − g1(X1, Z1)Y1], (4.4)

C(X2, Y2)Z2 = R2(X2, Y2)Z2 −
(
||grad1f ||

2 +
r̄f2

n(n− 1)

)
[g2(Y2, Z2)X2 − g2(X2, Z2)Y2],

C(X1, Y2)Z1 =
1

f
Hf

1 (X1, Z1)Y2 +
r̄

n(n− 1)
g1(X1, Z1)Y2,

C(X1, Y2)Z2 = −fg2(Y2, Z2)∇1
X1
grad1f −

r̄f2

n(n− 1)
g2(Y2, Z2)X1,

C(X1, ∂t)Z1 =
1

h
Hh(X1, Z1)∂t +

r̄

n(n− 1)
g1(X1, Z1)∂t,

C(X2, ∂t)Z2 =
1

h
Hh(X2, Z2)∂t +

r̄f2

n(n− 1)
g2(X2, Z2)∂t,

C(X1, ∂t)Z2 =
1

h
Hh(X1, Z2)∂t, C(Xi, ∂t)∂t = h∇̄Xi

gradh+
r̄h2

n(n− 1)
Xi, (i = 1, 2).

As a consequence of Proposition 4.2, we obtain:

Theorem 4.3. Let M̄ = (M1 ×f M2)×h I be an n(= m1 +m2 + 1)-dimensional sequential standard static spacetime
endowed with the metric ḡ = g1 ⊕ f2g2)⊕ h2(−dt2). Then, (M̄, ḡ) is concircularly flat if and only if the following
statements hold:

1. (M1, g1) is of constant curvature κ1 = r̄
n(n−1) .

2. (M2, g2) is of constant curvature κ2 = r̄f2

n(n−1) + ||grad1f ||
2.

3. Hf
1 + r̄f

n(n−1)g1 = 0 and Hh + r̄h
n(n−1)g1 = 0 on M1.

4. Hh + r̄hf2

n(n−1)g2 = 0 on M2.
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5. Hh(X1, Z2) = 0, for all X1 ∈ χ(M1) and Z2 ∈ χ(M2).

Theorem 4.4. Let M̄ = (M1 ×f M2)×h I be an n(= m1 +m2 + 1)-dimensional sequential standard static spacetime
endowed with the metric ḡ = g1 ⊕ f2g2)⊕ h2(−dt2). Then, (M̄, ḡ) is concircularly flat, then:

1. the warping function h depends only on M1,

2. the warping function f satisfies the equation X1(ln f) + r̄hf2

n(n−1) = 0,

3. (M1, g1) is the conformal gradient soliton with potential function h.

Proof. Since the warping function h is expressed as h = h1 + h2, for each hi ∈ C∞(Mi), (i = 1, 2), from the last
assertion of Theorem 4.3, we get X1(ln f)gradh2 = 0, which yields h depends only on M1. In this case, from the
forth assertion of Theorem 4.3, we get (2). Also, from the third assertion of Theorem 4.3, similar condition with
(3.2), which yields (3).

4.3. Generalized Quasi Einsteinian Conditions on Sequential Warped Product Spacetimes

In this section, we investigate generalized quasi Einstein condition on the sequential generalized Robertson-
Walker spacetime. Of course, similar examination can be made on sequential standard static spacetimes. Since
the results will be analogous, we will only present the results on the first mentioned class.

A Riemannian manifold (M̄n, ḡ) (n > 2) is called a generalized quasi Einstein manifold in the sense of Chaki
[8], briefly G(QE)n, if its Ricci tensor of type (0, 2) is non-zero and satisfies the following condition

R̄ic = aḡ + bA⊗A+ c[A⊗B +B ⊗A], (4.5)

where a, b, c are real valued, non-zero scalar functions on (Mn, g) of which b 6= 0, c 6= 0 and A and B are two
non-zero 1-forms such that they are dual of the orthonormal vector fields U and V , respectively. That is,

ḡ(U, ·) = A , ḡ(V, ·) = B , ḡ(U, V ) = 0 and ḡ(U,U) = ḡ(V, V ) = 1. (4.6)

Note that, Catino [7] and Chaki [8] have introduced two different manifolds with different geometrical
properties with the same name "generalized quasi Einstein". While the definition used in Subsection 3.1 is that
of Catino, here we used the definition of Chaki.

In Lorentzian setting, the generalized quasi Einstein spacetime is a manifold whose Ricci tensor satisfies (4.5)
and generators are given by (4.6), but in this case, U is defined to be time-like, i.e., ḡ(U,U) = −1. From Notation
1-(v), these generator vector U and V can be also decomposed as:

U = k∂t + U2 + U3, V = l∂t + V2 + V3, where Ui, Vi ∈ χ(Mi), i = 2, 3 and k, l ∈ R. (4.7)

Let M̄ = (I ×f M2)×hM3 be a G(QE)n sequential generalized Robertson-Walker spacetime endowed with
the metric ḡ = (−dt2 ⊕ f2g2)⊕ h2g3, and let Xi, Yi ∈ χ(Mi), for i = 2, 3.

Computing both sides of (4.5) at ∂t ∈ χ(I) and using Lemma 4.3 and equation (4.7), we obtain

m2
f̈

f
+
m3

h

∂2h

∂t2
= −a+ bk2 + 2ckl. (4.8)

Similarly, computing both sides of (4.5) on M2 and using Lemma 4.3 and equation (4.7), we obtain

Ric2 = (a + f])g2 +
m3

h
Hh + bA⊗A + c[A⊗ B + B⊗A] (4.9)

and, computing both sides of (4.5) on M3 and using Lemma 4.3 and equation (4.7), we obtain

Ric3 = (a + h])g3 + bA⊗A + c[A⊗ B + B⊗A]. (4.10)

Since the generator U is time-like and U and V are orthonormal, by assuming the conditions g2(U2, U2) = (k2 + h2 − 1)/f2,
g2(V2, V2) = (l2 − h2 + 1)/f2,
g2(U2, V2) = kl/f2,

(4.11)
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we arrive that the components U3 and V3 are orthonormal on M3. Combining this result with (4.10), we reach
the generalized quasi Einstein structure on M3.

On the other hand, if we assume that h is defined only on M1, then we get Hh = gradh(ln f)f2g2. If we use
this into (4.9) and assume that the conditions g3(U3, U3) = (k2 − f2 − 1)/h2,

g3(V3, V3) = (l2 − f2 + 1)/h2,
g3(U3, V3) = kl/h2,

(4.12)

hold, then the components U2 and V2 become orthonormal on M2. Combining this result with (4.10), we reach
the generalized quasi Einstein structure on M2.

Hence, we summarize these results as in follows:

Proposition 4.3. Let M̄ = (I ×f M2)×hM3 be aG(QE)n sequential generalized Robertson-Walker spacetime endowed
with the metric ḡ = (−dt2 ⊕ f2g2)⊕ h2g3. Then:

1. the warping functions f, h and the associated scalar functions a, b, c are related by (4.8).

2. if the system (4.11) holds, then (M3, g3) is a G(QE)m3 .

3. if the system (4.12) holds and h is defined only on M1, then (M2, g2) is a G(QE)m2 .

We finish this work with some examples of the sequential generalized Robertson-Walker spacetime, which
is also a G(QE)n.

Example 4.1. Let (R4, ḡ) be a Lorentzian manifold endowed with the metric ḡ given by

ds2 = −(dt)2 + t2(dx)2 + (e2t)[(dy)2 + (dz)2] (4.13)

where 1
2 < t < 1 and (x1, x2, x3, x4) = (t, x, y, z) are the standard coordinates of R4. Then, in [14], we proved

that (R4, ḡ) is a generalized quasi Einstein spacetime satisfying (4.5) with non zero and non constant scalar
curvature r = −2[ 2

t + 3], whose associated scalar functions are defined by

a = −2− 1

t
, b = −2, c =

√
2t− 1

t
(4.14)

and the associated 1-forms are defined by

Ai =


t
√

2t−1
2(1−t) , if i = 2

0 , if i = 3, 4
−1√

2(1−t)
, if i = 1

(4.15)

Bi =


t√

2(1−t)
, if i = 2

0 , if i = 3, 4

−
√

2t−1
2(1−t) , if i = 1

(4.16)

Moreover, the metric (4.13) is also a sequential generalized Robertson-Walker spacetime metric, whose warping
functions f(t) = t and h(t) = et.

Example 4.2. If we consider the spatially homogeneous and isotropic Bianchi type-V metric g̃ on R4 by

ds2 = −(dt)2 + t2(dx)2 + e2(x+t)[(dy)2 + (dz)2] (4.17)

where −1 < t < 1 and (x1, x2, x3, x4) = (x, y, z, t) are the standard coordinates of R4. Then the only non
vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor are

Γxtx =
1

t
, Γxyy = Γxzz = −e

2(x+t)

t2
, Γtxx = t, (4.18)

Γyxy = Γzxz = Γyyt = Γzzt = 1, Γtyy = Γtzz = e2(x+t), (4.19)
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Rxyyx = Rxzzx = (1− t)e2(x+t), Ryzzy =
( 1

t2
− 1
)
e4(x+t), (4.20)

Rytty = Rzttz = e2(x+t), Rxyyt = Rxzzt =
(

1− 1

t

)
e2(x+t), (4.21)

Ricxx = 2(1− t), Rictt = 2, Ricxt = 2− 2

t
(4.22)

Ricyy = Riczz =
( 2

t2
− 1

t
− 2
)

e3(x+t) (4.23)

and the components which can be obtained from these by symmetry properties. Also it can be shown that the
scalar curvature is

r =
6

t2
− 4

t
− 6 (4.24)

which is non zero and non constant. Let us now define associated scalar functions as

a =
2

t2
− 1

t
− 2, b =

2

t2
− 2, c =

( 2

t2
− 2

t

) 1

cosh(2t)
(4.25)

and the components of the associated 1-forms as

Ai =
(
t sinh(t), 0, 0,− cosh(t)

)
(4.26)

and
Bi =

(cosh(t)

t
, 0, 0, sinh(t)

)
, (4.27)

where i = {1, 2, 3, 4} respectively. Then, under these constructions it can be shown that the generators are
orthonormal such that the first one is time-like and g̃ satisfies (4.5). Thus, (R4, g̃) is a a generalized quasi
Einstein spacetime. Moreover, the metric (4.17) is also a sequential generalized Robertson-Walker spacetime
metric, whose warping functions f(t) = t and h(t) = e(x+t).
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