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This paper investigates the dynamics of a discrete fractional prey-predator system. The prey-predator 
interaction is modelled using the square root functional response, which appropriately models systems in which 
the prey exhibits a strong herd structure, implying that the predator generally interacts with the prey along the 
herd's outer corridor. Some recent field experiments and studies show that predators affect prey by directly 
killing and inducing fear in prey, reducing prey species' reproduction rate. Considering these facts, we propose 
a mathematical model to study herd behaviour and fear effect in the prey-predator system. We show 
algebraically equilibrium points and their stability condition. Condition for Neimark-Sacker bifurcation, Flip 
bifurcation and Fold bifurcation are given. Phase portraits and bifurcation diagrams are portraits that depict the 
model's behaviour based on some hypothetical data. Numerical simulations reveal the model's rich dynamics as 
a result of fear and fractional order.  
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Introduction 

Because of their complex behaviour, population models 
have piqued the interest of researchers. Prey-predator models 
are an essential component of population models. Based on 
observed ecological interactions among individuals of the 
species at various trophic levels, mathematical modelling is a 
helpful tool for understanding and predicting the long-term 
survival of various species. There are different types of prey-
predator models, such as the continuous model [1-2], discrete 
model [3-5], fractional model[6-9], etc. Nowadays, the 
fractional-order system can explain more natural phenomena 
that were previously ignored by the classical theory of the 
integer-order dynamical system. Discrete-time population 
models become more realistic than continuous models when 
the population sizes are relatively small and in cases where 
births and deaths occur discrete times or within specific 
intervals. A discrete form of fractional-order model is now a 
popular mathematical tool [10]. In this article, we consider the 
discrete fractional order model. 

Din [11] discussed chaos control in a discrete-time prey-
predator system. Zhao and Du ([12]) investigated a discrete-
time prey-predator model with an Allee effect. Santra and 
Mahapatra [13] studied the dynamics of a discrete-time prey-
predator model under imprecise biological parameters. Santra 
et al. [14] investigated bifurcation and chaos of a discrete 
predator-prey model with Crowley-Martin functional 
response. For more dynamical investigations related to 
different versions of prey-predator models, we refer to 
Baydemir et al. [15], Santra et al. [16], Rech [17], Singh and 
Deolia [18], Khan and Khalique [19,21],  Rozikov and 
Shoyimardonov [20] and references therein. 

In reality, a class of prey population exhibits herd 
behaviour so that the capturing rate of prey by a predator will 
be different from usual models. Incorporate this herd 
behaviour of prey; we consider square root functional 
response [22-23] in our proposed model. The basic 
assumption in developing such functional interactions is that 
the predator hunts on the outskirts of a moving herd. If we 
assume that the herd has a square shape for simplicity, then 
the interaction between the predator and the prey will occur 
on the group's borders, which means that it will hunt one (or 
more) from four times the square root of the prey density. A 
similar assumption can be made for the prey population's 
circle herd shape. 

Furthermore, predation fear directly impacts prey 
reproduction; that's why we modify the prey reproduction 
term incorporating fear factor [24-25] in our proposed model. 
Two significant factors are limiting wild animal activity: energy 
and time constraints. To avoid predation, prey may shorten 
their activity periods and devote some of their foraging time to 
vigilance; however, prey must balance defence time and 
foraging intake. A high level of anti-predator behaviour over a 
long period causes ageing to be sped up and leads to 
starvation, impacting growth. As a result, there are costs and 
benefits for prey in prey defence. In this case, we include the 
cost as a type of prey growth reduction caused by predation 
fear. In this paper, we study the prey-predator with fear and 
herd behaviour using the discrete fractional-order model. The 
study's intention is: what is the effect of fractional order and 
fear on the proposed model system?  
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Mathematical Model 
 
Consider the following fractional-order prey-predator 

model with square root functional response and fear 
effect : 

1
1

1

x
D x rx by x

k y

D y cy x dy







 
   

 

 

 

 
with initial condition  
 

( ) 0, ( ) 0x t y t   

 

Where  x   and  y   denote the density of prey and 

predator populations respectively at any time  t.   The 
biological meaning of the system parameters are as 

follows:  r   is the intrinsic per capita growth rate of prey 

population,  k   is the environmental carrying capacity of 
prey population,     is the fear effect due to predation,  

b   is the maximal per capita consumption rate of 
predators,  c   is the efficiency with which predators 
convert consumed prey into new predators,  d    is the per 
capita death rate of predators, and     is the fractional-

order satisfying  (0,1]    and  d

dt
D





    is in the sense 

of Caputo derivative. 
Using the fractional-order discretization process, we 

get the following discrete fractional-order system 
 

1
1

(1 ) 1

(1 )

h x
x x rx by x

k y

h
y y cy x dy
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 
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  

 

 
where  h   is the step size and  , , , , ,r k b c d   are all 

positive constants. By the biological meaning of the model 
variables, we only consider the system in the region  

{( , ) : 0, 0}x y x y      in the  ( , )x y   plane. 

General Stability Analysis 
 
Equilibria 
Fixed points of the system (1) are determined by 

solving the following non-linear system of equations: 
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We get three non-negative fixed points by solving the 

above equations:  
 

 i     0 0,0P      

 ii     1 ,0P k   

( )iii     2 2 2,P x y    

here   
2

2
d

c
x    and  

2y   is a positive solution of  

2

2

2 (1 ) 0
y rd d

bc kc
y

 
      

 

Local Stability Analysis 
The discussion about the dynamical behavior of model 

(1) is carried out in this sub-section. The Jacobian Matrix  
J   for the system (1) is 
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The characteristic equation of the matrix  J   is  

2 0,T D      where 
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Hence the discrete-time system (1) is said to be: 

 

(i) a dissipative dynamical system if  1,D    

(ii) a conservative dynamical system if and only if  1,D    

(iii) an undissipated dynamical system otherwise. 
 
 

Stability and dynamic behavior at  
1P  

The Jacobian matrix at the fixed point   1 ,0P k   is 

 

(1 ) (1 )

(1 )

1

0 1

b khrh

h
J
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The equilibrium point  

1P   is said to be: 

 

(i) Sink if  (1 )
1 1,rh

 
    and 

(1 )
1 1,h c k d


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   
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(ii) Source if  (1 )
1 1,rh
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    and  

(1 )
1 1,h c k d



 
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 
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(iii) Saddle if  
(1 )

1 1,rh

 
    and  

(1 )
1 1;h c k d



 
   
 

  

or  
(1 )
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
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(iv) Non-hyperbolic if  
(1 )

1 1rh

 
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(1 )
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
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   
 

  

 

Dynamic behavior around the interior fixed point 
From the Jacobian matrix at the interior fixed point  

 2 2 2, ,P x y   we get 
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If  1 0,T D     then interior equilibrium point  

 2 2 2,P x y   is: 

 
(i) Sink if  1 0T D     and  1D   ,  
(ii) Source if  1 0T D     and  1D   ,  
(iii) Saddle if  1 0T D    ,  

(iv) Non-hyperbolic if  1 0T D     and  0,2,T    

or  2 4 0T D    and  1D   . 
 

Bifurcation Analysis 
This section obtains the conditions for Neimark-Sacker 

bifurcation, flip bifurcation, and fold bifurcation for model 
(1). Neimark-Sacker bifurcation causes closed invariant 
curves into the system, which shows more complex 
behaviour. Another bifurcation, flip bifurcation, occurs 
when the system switches to a new limit cycle twice the 
period of the existing one. Fold bifurcation, in which two 
fixed points collide and disappear into the system. 
 

Neimark-Sacker Bifurcation 
Condition for the occurrence of Neimark-Sacker 

bifurcation (Elaydi [26]) at an interior fixed point  

 2 2 2,P x y   is  1D   . 
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Fold bifurcation 
Condition for the occurrence of Fold bifurcation 

(Elaydi [26]) at an interior fixed point   2 2 2,P x y   is  
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Numerical Simulations 
 
In this section, numerical simulations were run using a 

hypothetical set of parameter values as shown in table 1. 
These parameter values have biological and mathematical 
significance. This section numerically analyses the model 
to investigate more results on fractional-order and the 
fear effect on prey due to predation. In a specific range, 
bifurcation diagrams for prey and predator are created for 
the model. To better understand the system, phase 
portraits are drawn in a specific section of the bifurcation 
diagram. This section of the study's parameters are step 
size, fear effect, and fractional order. 
 
Table 1: Parameter values 

 r    k        b    c    d    h       

0.5 1.0   0.1  0.7  0.5  0.3  0.3  0.9 
 
To know the effect of step size in the system dynamics, 

we draw the bifurcation diagram in figure 1 for  
[0.1,1.0]h   and phase portraits in figure 2 for (A)  

0.3h   , (B)  0.36h    rest of the parameters from table 

1. Neimark-Sacker bifurcation occurs w.r.t. this parameter 
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and the system enter into an unstable zone when step size  
h   crosses the threshold value  0.3445  . 

 

 

Figure 1. The bifurcation diagram of the system 
concerning the step size  h  in the range [0.1,1] and 

remaining parameters are from Table 1.    

 

 

Figure 2. Phase portraits of the system for step size (A) 
0.3h  , (B) 0.36h   , and remaining parameters 

are from Table 1.       

 
Now, we are interested to know the effect of fear in 

the system dynamics, and we draw the bifurcation 
diagram in figure 3 for  [0.1,1.0]   and phase portraits 

in figure 4 for (A)  0.6   , (B)  0.9    rest of the 

parameters from table 1. Neimark-Sacker bifurcation 
occurs w.r.t. this parameter and the system enter into an 
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Figure 3. The bifurcation diagram of the system 
concerning the fear effect     in the range [0,1] and 

remaining parameters are from Table 1.   

 

Figure 4: Phase portraits of the system for fear effect 
(A) 0.6   , (B) 0.9    and remaining 

parameters are from Table 1.    

 
Lastly, we are interested to know the effect of 

fractional-order in the system dynamics. We draw the 
bifurcation diagram in figure 5 for  [0.1,1.0]   and 

phase portraits in figure 6 for (A)  0.8   , (B)  0.9    

the rest of the parameters from table 1. Neimark-Sacker 
bifurcation occurs w.r.t. this parameter and the system 
enter into a stable zone when fractional-order     crosses 
the threshold value  0.8556  . The low weight of     mean 
strong memory and high value of     mean weak memory. 

So faint memory can stabilize the model. 
 

 

Figure 5. The bifurcation diagram of the system for the 
fractional-order    in the range [0,1] and remaining 

parameters are from Table 1.    

 

Figure 6. Phase portraits of the system for fractional-
order (A) 0.8  , (B) 0.9    and remaining 

parameters are from Table 1.       
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Conclusion 

In this work, we investigated the dynamic behaviours 
of the discrete fractional-order predator-prey system. 
Fear effect on a prey-predator interaction is studied using 
the discrete fractional-order model. We established the 
conditions for a flip bifurcation, fold bifurcation, and a 
Neimark-Sacker bifurcation of the map at a unique 
positive fixed point. We have discussed the fear effects 
concerning the local stability of the interior equilibrium 
point. Finally, we conclude that fear destabilizes the 
model, and fear hurts the predator population. Fractional 
order has to stabilize effect on the model system. 
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