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Abstract
In this paper, first we give the complete classifications of perfect fluid spacetimes under
the Gray’s decomposition. Then we investigate the condition under which the Ricci tensor
is a conformal Killing tensor in a perfect fluid spacetime. Later, we study perfect fluid
spacetimes in f(R, T )-gravity theory. We find some relations between isotropic pressure
and energy density of the Ricci semisymmetric perfect fluid spacetimes satisfying f(R, T )-
gravity equation to represent dark matter era.
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1. Introduction
In Einstein’s general relativity theory, perfect fluids are of great importance for being

special solutions of the Einstein’s field equations having vanishing shear stresses, viscosity
and heat conduction compatible with Bianchi identities. In cosmology, they represent
the behaviour of the Hubble flow ranging from inflation to dark energy periods. Perfect
fluids model the matter content of the interior of a star or an isotropic universe. For these
reasons, the geometric studies of perfect fluids on modified gravity theories are very im-
portant areas of study that need to be explored. There are many different ways to modify
the general relativity; Einstein-Hilbert gravitational action in some manner or another,
specifically, f(R)-gravity [1, 7, 34, 40] which is the most straightforward generalization of
general relativity, Gauss-Bonnet gravity [9], f(G)-gravity [28], f(T ) theory [5], f(Q,T )-
gravity [44], the Weyl-type f(Q,T )-gravity [45] and f(R, T )-gravity [10,19,32,37,43], the
last is what we will discuss in this article.

An n-dimensional Lorentzian manifold (Mn, g) satisfying the Ricci condition
Ric = ag + bB ⊗B, (1.1)

where a, b are some scalar fields, U is a vector field such that B(X) = g(X,U), for all
X ∈ χ(M) and g(U,U) = −1 is said to be a perfect fluid spacetime. The timelike vector
field U is defined as the velocity vector field of the perfect fluid spacetime. In [7], the
compatibility of perfect fluid solutions on f(R)-gravity is investigated. In this paper,
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we consider perfect fluid spacetimes on the modified f(R, T )-gravity of general relativity,
where a generic function of the scalar curvature and the energy-momentum tensor is
considered in the Hilbert-Einstein action of gravitational field. Many studies have been
done on perfect fluids in recent years by De and Suh [12], Mallick and De [22], Özen Zengin
[30], Güler and Altay Demirbağ [17,18] with many different points of view.

On the other hand, the equation of state of the perfect fluids in an isotropic universe
describes the Robertson Walker spacetimes. That is, the Robertson Walker metric sat-
isfies the Einstein’s field equations and describes a homogeneous, isotropic, expanding or
contracting universe. Since the scaling factor of the universe is derived as a function of
time, the metric of the Robertson Walker spacetime can be expressed as a certain warped
product metric. Alias et al [2] has introduced the notion of generalized Robertson Walker
spacetime as a special kind of warped product as follows: A Lorentzian manifold (Mn, g)
is called a generalized Robertson Walker spacetime if its metric can be expressed of the
form

g = −dt2 ⊕ f(t)2g∗, (1.2)
where g∗ is the metric of the (n − 1)-dimensional Riemannian manifold M∗ and f : I →
(0,∞) is the smooth function. If g∗ is the metric of 3-dimensional Riemannian manifold
of constant curvature, the (M4, g) is called a Robertson Walker spacetime. From this
point, generalized Robertson Walker spacetime is a generalization of the Robertson Walker
spacetime. Also, these kind of spacetimes are widely used for the study of inhomogeneous
spacetimes having isotropic radiation, [3, 11,13,23–25].

Besides, every Robertson Walker spacetime is a perfect fluid spacetime but the converse
statement is not generally true. Also, a 4-dimensional generalized Robertson Walker
spacetime is a perfect fluid spacetime if and only if it is a Robertson Walker spacetime. In
f(R)-gravity, every conformally flat generalized Robertson Walker spacetime is a perfect
fluid [7]. Moreover, if the divergence of the Weyl tensor of both Robertson Walker and
generalized Robertson Walker spacetimes of dimensions greater than three vanishes, then
all higher order gravitational modifications of the Hilbert-Einstein Lagrangian density have
the perfect fluid distributions [8]. Thus the curvature properties of spacetimes containing
the dark energy fluids can be observed, which is another area of study for this article.

Perfect fluid spacetimes are described by the energy momentum tensor

T (X,Y ) = (σ + p)B(X)B(Y ) + pg(X,Y ), (1.3)

where g(X,U) = B(X), B(U) = −1, for all vector fields X,Y with σ the energy density
and p being the isotropic pressure. The unit timelike vector field U denotes the velocity
field [29]. The energy momentum tensor T points out the physical properties of spacetime
while Ricci tensor controls the geometry of spacetime. In general relativity, they are
associated to each other by the Einstein’s field equations [29]

Ric(X,Y ) − R

2
g(X,Y ) = κT (X,Y ) (1.4)

where Ric is the (0, 2)-type Ricci tensor, R is the scalar curvature and κ is the gravitational
constant. Also, from (1.4), the energy momentum tensor is of divergence-free and a
symmetric tensor [29].

In static universe, the gravitational constant can be acquired by introducing a cosmo-
logical constant depending on the principles of Einstein’s theory and it gives the model
of dark energy and the acceleration of the universe expansion. Moreover, σ and p are
bounded under the equation p = p(σ, T0), where the absolute temperature is indicated
by T0 in the perfect fluid. If p = p(σ), the perfect fluid is said to be isentropic, [20] and
if p = σ, the perfect fluid is said to be a stiff matter, [41]. Perfect fluids with equation
of state of the form p = ωσ for some constant ω attracts great attention because of the
symmetry properties of the transformations between the perfect fluids [14].
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Furthermore, the dark energy or dark matter theory has become active field of study
in the last century as it causes the acceleration of universe expansion. However, since this
theory still holds many secrets, modified gravity theories try to explain the acceleration
of the universe without using the concept of dark energy [32,43].

Gray [15] has proposed the O(n)-invariant orthogonal irreducible decomposition of the
space of all tensors of type-(0, 3) satisfying only the identities of the gradient of the Ricci
tensor ∇Ric. This decomposition introduced the seven classes of Einstein-like manifolds
whose Ricci tensors satisfy the defining condition of each subspace. In [27] Mantica et al
obtained the form of the Ricci tensor in all the O(n)-invariant subspaces in the general-
ized Robertson Walker spacetimes. According to this study, in all cases except one, the
spacetime reduces to an Einstein or has the matter content of perfect fluid.

Therefore, the present paper is organized as follows: In Section 2 we examine all seven
cases of the Gray’s decomposition and give more general classification for perfect fluid
spacetimes in each case. In Section 3, we investigate the condition under which the Ricci
tensor is a conformal Killing tensor in a perfect fluid spacetime. It is proved that the Ricci
tensor is conformal Killing in a perfect fluid spacetime provided that the velocity vector
field is Killing and one of the associated scalar is constant. In Section 4, we study perfect
fluid spacetimes in f(R, T )-gravity theory. Because according to the geometrical back-
grounds of the Robertson Walker spacetimes, the matter content of the universe consists
of perfect fluids. We find some relations between isotropic pressure and energy density
of the Ricci semisymmetric perfect fluid spacetimes satisfying f(R, T )-gravity equation to
represent dark matter era. We also observed that in f(R)-gravity a Ricci semisymmetric
perfect fluid spacetime represents either dark matter era or phantom energy.

2. Gray’s decompositions
In [15], Gray proposed that ∇Ric can be decomposed into O(n)-invariant terms, (for

more, we refer [4, 21]). This covariant derivative can be expressed as follows [27]:

(∇ZRic)(V,W ) = R̃(Z, V )W + α(Z)g(V,W ) + β(V )g(Z,W ) + β(W )g(V, Z), (2.1)
for all vector fields Z, V,W , where

α(Z) = n

(n− 1)(n+ 2)
∇ZR, β(Z) = n− 2

2(n− 1)(n+ 2)
∇ZR, (2.2)

with R̃(Z, V )W = R̃(Z,W )V being the trace-less tensor that can be written as a sum of
its orthogonal components

R̃(Z, V )W =1
3

[R̃(Z, V )W + R̃(V,W )Z + R̃(W,Z)V ] (2.3)

+1
3

[R̃(Z, V )W − R̃(V, Z)W ] + 1
3

[R̃(Z, V )W − R̃(W,Z)V ].

The decompositions (2.1) and (2.3) provide O(n)-invariant subspace, characterized by
invariant equations that are linear in (∇ZRic)(V,W ).

Therefore, the relation between ∇Ric and the divergence of the Weyl conformal curva-
ture tensor C can be given by the equation [27]

(div C)(Z,V)W = n − 3
n − 2

[R̃(Z,V)W − R̃(W,Z)V]. (2.4)

In Gray’s decomposition we have the following subspaces:
(i) The trivial subspace is characterized by ∇Ric = 0.

(ii) The subspace I is characterized by R̃(Z, V )W = 0, i.e.,
(∇ZRic)(V,W ) = α(Z)g(V,W ) + ω(V )g(Z,W ) + ω(W )g(V, Z). (2.5)

Such manifolds endowed the condition (2.5) are called Sinyukov manifolds [38,39].
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(iii) The orthogonal complements I′ (also named as the subspace A) is characterized
by

(∇ZRic)(V,W ) + (∇V Ric)(Z,W ) + (∇W Ric)(Z, V ) = 0, (2.6)

which also yields that the scalar curvature R is constant.
(iv) In the subspaces B and B′ the Ricci tensor is of Codazzi-type i.e.,

(∇ZRic)(V,W ) = (∇V Ric)(Z,W ). (2.7)

(v) In the subspace I ⊕ A, the Ricci tensor satisfies the following cyclic condition

(∇ZRic)(V,W ) + (∇V Ric)(Z,W ) + (∇W Ric)(Z, V ) (2.8)

=2dR(Z)
n+ 2

g(V,W ) + 2dR(V )
n+ 2

g(Z,W ) + 2dR(W )
n+ 2

g(Z, V ).

(vi) In the subspace I ⊕ B, the Ricci tensor satisfies the following Codazzi condition

∇Z

[
Ric(V,W ) − R

2(n− 1)
g(V,W )

]
= ∇V

[
Ric(Z,W ) − R

2(n− 1)
g(Z,W )

]
. (2.9)

which implies that the Weyl conformal curvature tensor C is of divergence-free.
(vii) In the subspace A ⊕ B, the scalar curvature is covariant constant.
For 4-dimensional perfect fluid spacetime (M, g), contracting (1.1) over X and Y , we

get
R = 4a− b. (2.10)

Hence R =constant implies that

4da(Z) = db(Z), ∀ Z ∈ χ(M). (2.11)

Taking the covariant derivative of (1.1), we get

(∇ZRic)(X,Y ) =da(Z)g(X,Y ) + db(Z)B(X)B(Y ) (2.12)
+b[(∇ZB)(X)B(Y ) +B(X)(∇ZB)(Y )],

for allX,Y, Z ∈ χ(M). Since g(U,U) = −1, we also have (∇ZB)(U) = 0, for all Z ∈ χ(M).
Now we will examine each of these seven cases:
Case (i): The condition ∇Ric = 0 implies the scalar curvature R is constant. (2.12)

gives

da(Z)g(X,Y ) + db(Z)B(X)B(Y ) + b[(∇ZB)(X)B(Y ) (2.13)
+B(X)(∇ZB)(Y )] = 0,

for all X,Y, Z ∈ χ(M). Putting X = Y = U in (2.13) infers that

− da(Z) + db(Z) = 0, ∀ Z ∈ χ(M). (2.14)

(2.11) and (2.14) together entail that da(Z) = 0, for all Z ∈ χ(M) which implies a is
constant and therefore (2.11) gives b is constant.

Combining (1.1) and (1.3) with (1.4), we get

a = κ(σ − p)
2

, and b = κ(p+ σ). (2.15)

Hence p− σ =constant and p+ σ =constant. Thus, both σ and p are constants.
It is known (p. 339 of [29]) that the energy and force equations for a perfect fluid are

as follows:
Uσ = g(grad σ, U) = −(σ + p)div U (2.16)
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and

(σ + p)(∇UU) = −grad⊥p = −grad p− g(grad p, U)U (2.17)
= −grad p− (Up)U

where the spatial pressure gradient grad⊥p is the component of gradp orthogonal to U .
Since σ is constant, it follows from (2.16) that either σ + p = 0 or divU = 0. Again,

since p is constant from (2.17) we get either σ + p = 0 or ∇UU = 0. (Since the scalar
field b is non-zero, we may take σ + p ̸= 0.) In this case, divU = 0 and ∇UU = 0. But
divU represents the expansion scalar and ∇UU represents the acceleration vector. Thus,
we have the following:

Theorem 2.1. If a perfect fluid spacetime belongs to the trivial subspace, then the expan-
sion scalar and the acceleration vector of the fluid vanish.

Remark 2.2. Since the velocity vector U is of divergence-free, it is irrotational and
therefore the vorticity the fluid vanishes.

Case (ii): In the subspace I, the Ricci tensor satisfies the condition R̃(Z, V )W = 0,
for all Z, V,W ∈ χ(M). Since the gradient of the Ricci tensor and the divergence of the
Weyl conformal tensor are connected by the relation (2.4), div C = 0. Moreover, it is
known from [36] that a 4-dimensional perfect fluid spacetime with divergence-free Weyl
conformal tensor with an equation of state p = p(µ) is conformally flat, and it is endowed
with the Robertson Walker metic, the flow is irrotational, geodesic and has no shear.

From the above discussion we conclude the following:

Theorem 2.3. If a perfect fluid spacetime satisfying the equation of state p = p(µ) belongs
to the class I, then it is conformally flat, and it becomes Robertson Walker spacetime; the
flow is irrotational, geodesic and has no shear.

Case (iii): Assume that the Ricci tensor belongs to the subspace A. Then, the
condition (2.6) holds and also the scalar curvature R is constant. By taking the covariant
derivative of the Eistein’s field equtation (1.4) we get

(∇ZRic)(V,W ) − dR(Z)
2

g(V,W ) = κ(∇ZT )(V,W ), (2.18)

for all Z, V,W ∈ χ(M). Using R =constant in (2.18), we obtain

(∇ZT )(V,W ) + (∇V T )(Z,W ) + (∇WT )(Z, V ) = 0, (2.19)

for all Z, V,W ∈ χ(M). Hence the energy-momentum tensor is Killing.
Sharma and Ghosh [35] prove that:

Theorem A 1. Let (M, g) be a perfect fluid spacetime such that its energy-momentum
tensor is Killig. Then

(i) M is expansion-free and shear-free and its flow is geodesic, however not necessarily
vorticity-free,

(ii) its energy density and pressure are constant on M .

Thus, we can state that:

Theorem 2.4. Let the perfect fluid spacetime belongs to the class A. Then
(i) M is expansion-free and shear-free and its flow is geodesic, however not necessarily

vorticity-free,
(ii) its energy density and pressure are constant on M .
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Case (iv): If a perfect fluid spacetime belongs to B and B′, then the Ricci tensor is of
Codazzi-type and so the scalar curvature R is constant.

On a 4-dimensional Lorentzian manifold (M, g), if the Yang’s equation

(∇ZRic)(V,W ) = (∇V Ric)(Z,W ) (2.20)

holds, then it is called "Yang’s pure space". In [16], Guilfoyle and Nolan proved the
following:

Theorem A 2. A 4-dimensional perfect fluid spacetime (M, g) with σ + p ̸= 0 is a Yang
pure space if and only if (M, g) is a Robertson Walker spacetime.

Therefore we obtain:

Theorem 2.5. If a perfect fluid spacetime belongs to classes B and B′, then it becomes a
Robertson Walker spacetime.

Case (v): In this case, we have the relation (2.8), from which we infer the scalar
curvature R is constant. From (2.11), we get 4a − b =constant and so p = σ

3 +constant.
Hence we can state that:

Theorem 2.6. If a perfect fluid spacetime belongs to the subspace I⊕A, then the spacetime
satisfies the state eqution p = σ

3 +constant.

Remark 2.7. If the constant given in Theorem 2.6 is equal to zero, then the perfect fluid
spacetime represents radiation era. It may be mentioned that in a perfect fluid Yang pure
space, the equation of state is given by p = σ

3 +constant [16].

Case (vi): In this case div C = 0. Now, we can apply Theorem A 1 and state the
same result as in Theorem 2.3.

Case (vii): In the subspace A⊕B, the scalar curvature is covariant constant. Hence
from (2.10) and (2.11), again we have p = σ

3 +constant. Therefore, in this case also we get
Theorem 2.6.

3. Conformal Killing tensor in a perfect fluid spacetime
In [26], the authors characterize a perfect fluid spacetime whose Ricci tensor is conformal

Killing tensor and prove that the perfect fluid spacetime is a generalized Robertson Walker
spacetime subject to the condition the velocity vector field is irrotational. Also they obtain
a state equation p = p(µ), σ+p ̸= 0. In this section, we explore the condition under which
the Ricci tensor is a conformal Killing tensor in a perfect fluid spacetime (M, g).

Before going to the main result we define conformal Killing tensor.

Definition 3.1. [33] A symmetric tensor A(X,Y ) is named conformal Killing tensor if it
satisfies the condition

(∇XA)(Y, Z) + (∇Y A)(Z,X) + (∇ZA)(X,Y ) (3.1)
=dα(X)g(Y, Z) + dα(Y )g(Z,X) + dα(Z)g(X,Y ),

being α, a non-vanishing 1-form.

Conformal Killing tensors define first integrals for null geodesics. In [42], Walker and
Penrose proved that a conformal Killing tensor is the first integral of the null geodesic
equations of every type of {2,2} vacuum solutions of Einstein’s field equations in dimension
4. Conformal Killing tensors have also applications in Einstein-Weyl geometry.

Suppose the velocity vector field U of the perfect fluid spacetime is Killing, which gives

(∇XB)(Y ) + (∇Y B)(X) = 0, ∀ X,Y ∈ χ(M). (3.2)
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Using (2.12), we obtain
(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) (3.3)

=da(X)g(Y, Z) + da(Y )g(Z,X) + da(Z)g(X,Y )
+db(X)B(Y )B(Z) + db(Y )B(X)B(Z) + db(Z)B(X)B(Y )
=da(X)g(Y, Z) + da(Y )g(Z,X) + da(Z)g(X,Y ),

provided that b = κ(σ + p) =constant, which entails that the Ricci tensor is conformal
Killing.

Theorem 3.2. The Ricci tensor is conformal Killing in a perfect fluid spacetime provided
that the velocity vector field is Killing and the scalar b is constant.

Now, we present the following:

Lemma 3.3. In a spacetime satisfying the Einstein’s field equations, if the Ricci tensor
is Killing, then the energy-momentum tensor is Killing.

Proof. Let us suppose that the Ricci tensor is Killing. Then
(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) = 0, (3.4)

for all X,Y, Z ∈ χ(M) which implies R is constant. Hence from the Einstein’s field
equations, we get

(∇XT )(Y, Z) + (∇Y T )(Z,X) + (∇ZT )(X,Y ) = 0, (3.5)
for all X,Y, Z which means that the energy-momentum tensor is Killing. �

The converse is also true. If we suppose that the energy-momentum tensor is Killing,
then Einstein’s field equations infer that

(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) (3.6)

=1
2

[
dr(X)g(Y, Z) + dr(Y )g(Z,X) + dr(Z)g(X,Y )

]
for all X,Y, Z ∈ χ(M), which implies after contraction R =constant. Hence the above
equation reduces to

(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) = 0. (3.7)
Moreover, if the energy-momentum tensor of a perfect fluid spacetime is Killig, then it

has vanishing expansion scalar and vanishing shear tensor but not necessarily vanishing
vorticity; also its flow is geodesic, it has constant energy density and pressure. Thus, from
Theorem A1 and the above Lemma, we conclude the following:

Proposition 3.4. In a perfect fluid spacetime (M, g) if the Ricci tensor is Killing, then
(i) M has vanishing expansion scalar and shear tensor and it has geodesic flow, but

its vorticity does not necessarily vanish,
(ii) the energy density and the pressure of M are constant.

4. Perfect fluids satisfying f(R, T )-gravity
In this section we study Ricci semisymmetric perfect fluid spacetimes satisfying f(R, T )-

gravity, represents the physical character of the matter distribution to get a theoretical
model. We choose

f(R, T ) = R + 2f(T ), (4.1)
where f(T ) is a function on the trace T of the energy-momentum tensor and the term
2f(T ) modifies the gravitational mutual effects between matter distribution and geometry
of the spacetime.
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In [19], Harko et al proposed the theory of f(R, T )-gravity which is the alteration of the
theory of general relativity. In this deviated theory, the gravitational Lagrangian consists
of an arbitrary function of the scalar curvature R and the trace T of the energy-momentum
tensor. In their approach, the stress-energy tensor is not considered conservative. In [37],
Singh et al have reconstructed a model of f(R, T )-gravity in which the scale factor evolve
exponentially. Later, in Chakraborty’s approach [10], the arbitrary function f(R, T ) is
obtained under the conservativeness of the energy momentum tensor, although the form
of the field equations remain similar.

The modified Einstein-Hilbert action term is defined by

H = 1
16π

∫
[f(R, T ) + Lm]

√
(−g)d4x, (4.2)

where f(R, T ) is an arbitrary function of the scalar curvature R and the trace T of the
energy-momentum tensor and Lm is the matter Lagrangian of the scalar field. The matter
distribution is described by the stress energy momentum tensor

Tab = −2δ(
√

−g)Lm√
−gδab

. (4.3)

Let us consider that the matter Lagrangian of the scalar field depends only on the metric
tensor g, and not on its derivatives.

By the variation of action (4.2) with respect to the metric tensor g, the field equations
of f(R, T )-gravity is given by

fR(R, T )Ric(X,Y )−1
2
f(R, T )g(X,Y ) + (g(X,Y )∇ei∇ei − ∇X∇Y )fR(R, T ) (4.4)

=8πT (X,Y ) − fT (R, T )T (X,Y ) − fT (R, T )ψ(X,Y ),

where fR and fT denote the partial derivatives of f(R, T ) with respect to R and T ,
respectively. Here, � ≡ ∇ei∇ei denotes the d’Alembert operator for the orthonormal
frame field {ei}i and ψ is defined by

ψ(X,Y ) = −2T (X,Y ) + g(X,Y )Lm − 2glk ∂2Lm

∂gab∂glk
. (4.5)

If f(R, T ) = f(R), then the equations (4.2) and (4.3) give the field equations of f(R)-
gravity.

It is known that the value of Lagrangian does not uniquely defined, so we may take
Lm = −p and using (1.3), we get

T (X,Y ) = −pg(X,Y ) + (σ + p)η(X)η(Y ), (4.6)

for all X,Y , where η(X) = g(X,U), g(U,U) = 1 and so (∇Xη)(U) = 0. By virtue of (4.6),
the variation of stress energy momentum tensor is given by

ψ(X,Y ) = −pg(X,Y ) − 2T (X,Y ). (4.7)

By using (4.1) and (4.4), we get

Ric(X,Y ) =1
2
g(X,Y ) − 2f ′(T )T (X,Y ) − 2f ′(T )ψ(X,Y ) (4.8)

+f(T )g(X,Y ) + 8πT (X,Y )

for all X,Y .
To derive the field equations Harko et al [19] have not considered conservation of the

energy-momentum tensor. However Chakraborty assumed the conservation of the energy
momentum tensor in his paper [10]. In this section, we consider perfect fluid spacetime
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solution of f(R, T )-gravity equation assuming the conservation of the energy momentum
tensor. Then we have

Ric(X,Y ) =
[1
2
R + f(T ) − 8pπ

]
g(X,Y ) + [(σ + p)(8π + 2f ′(T ))]η(X)η(Y ). (4.9)

The above equation implies that in f(R, T )-gravity theory the Ricci tensor of the perfect
fluid spacetime is of the above form. We present (4.9) as

Ric(X,Y ) = αg(X,Y ) + βη(X)η(Y ), (4.10)
where α = 1

2R+ f(T ) − 8pπ and β = (σ+p)(8π+ 2f ′(T )). The contraction of (4.10) gives

R = 4
[1
2
R + f(T ) − 8pπ

]
+ (σ + p)(8π + 2f ′(T )), (4.11)

which yields
α = −[f(T ) − 8pπ] − (σ + p)[4π + f ′(T )]. (4.12)

Now, we assume that the perfect fluid spacetime in f(R, T )-gravity is Ricci semisym-
metric (i.e. R · Ric = 0). From (4.10), we infer

[WZ(α) − ZW (α)]g(X,Y ) + [WZ(β) − ZW (β)]η(X)η(Y ) (4.13)
β[{(∇W ∇Zη)(X) − (∇Z∇W η)(X)}η(Y ) + {(∇W ∇Zη)(Y )

− (∇Z∇W η)(Y )}η(X)] = 0, ∀ X,Y, Z,W ∈ χ(M).
Since α and β are scalars, the above equation entails that

β[R(U,X,Z,W )η(Y ) +R(U, Y, Z,W )η(X)] = 0, ∀ X,Y, Z,W ∈ χ(M), (4.14)

which implies either β = 0 or R(U,X,Z,W )η(Y ) +R(U, Y, Z,W )η(X) = 0.

Case (i) If β = 0, then either p + σ = 0 or 8π + 2f ′(T ) = 0. Thus p + σ = 0 which
represents dark matter area, provided 8π + 2f ′(T ) ̸= 0.

Case (ii) If R(U,X,Z,W )η(Y ) + R(U, Y, Z,W )η(X) = 0, for all X,Y, Z,W ∈ χ(M),
then R(U, Y, Z,W ) = 0 since η(U) = 1. Contracting the last equation over Y, Z, we get
Ric(U,W ) = 0, for all W ∈ χ(M). Hence (4.10) gives (α − β)η(W ) = 0 so α = β.
Moreover, α = β implies

−[f(T ) − 8pπ] = 3(σ + p)[4π + f ′(T )]. (4.15)

Hence we have σ + p = 8pπ−f(T )
3(4π+f ′(T )) , provided 8π + 2f ′(T ) ̸= 0.

Therefore, we can state:

Theorem 4.1. In f(R, T )-gravity theory satisfying (4.1), a Ricci semisymmetric perfect
fluid spacetime represents either dark matter era or σ + p = 8pπ−f(T )

3(4π+f ′(T )) , provided 8π +
2f ′(T ) ̸= 0.

Remark 4.2. If 8π+ 2f ′(T ) = 0, then we provide f(T ) = −4πT + c, for some constant c.

Remark 4.3. If f(T ) = 0, then f(R, T )-gravity becomes f(R)-gravity. Then by Theorem
4.1, in f(R)-gravity a Ricci semisymmetric perfect fluid spacetime represents either dark
matter era or 3σ+p = 0. The equation of state is defined as the ratio of isotropic pressure
to energy density, ω = p

σ = −3 < −1. Hence it represents the phantom energy, [6, 14].
It definitely has some interesting features. For instance, the energy density of phantom
energy increases with time. It also violates the dominant energy condition.

A Lorentzian manifold is said to be Ricci recurrent [31] if the Ricci tensor Ric satisfies
the condition

(∇XRic)(Y, Z) = A(X)Ric(Y, Z), (4.16)
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where A is a non-zero 1-form. If A = 0, then the manifold reduces to a Ricci symmetric
manifold. It is known that a Ricci recurrent manifold is Ricci semisymmetric.

Hence we obtain the following:

Corollary 4.4. In f(R, T )-gravity theory satisfying (4.1), a Ricci recurrent perfect fluid
spacetime represents dark matter era or σ + p = 8pπ−f(T )

3(4π+f ′(T )) .

Now, we suppose that the Ricci tensor is of Codazzi type. Then we have
(∇XRic)(Y, Z) = (∇Y Ric)(X,Z) (4.17)

for all X,Y, Z ∈ χ(M). With the help of (4.10), the above equation gives
(Xα)g(Y, Z) + (Xβ)η(Y )η(Z) + β[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )] (4.18)

= (Y α)g(X,Z) + (Y β)η(X)η(Z) + β[(∇Y η)(X)η(Z) + (∇Y η)(Z)η(X)],

where η(X) = g(U,X), for all X and g(U,U) = 1. Putting Y = Z = U in (4.18), we get
(Xα) + (Xβ) = [(Uα) + (Uβ)]η(X) + β(∇Uη)(X). (4.19)

(4.17) implies the scalar curvature R is constant. Therefore, from (4.10) we get (XR) =
4(Xα) + (Xβ) and so

4(Xα) = −(Xβ). (4.20)
Let us suppose that the perfect fluid spacetime represents dark matter era, that is, p+σ = 0
which means that β = 0 and hence we get α =constant. Hence we get from (4.12),

f(T ) = 8πp+ λ, λ = constant (4.21)

so p = f(T )
8π + constant. Thus we can state that:

Theorem 4.5. In f(R, T )-gravity theory satisfying (4.1), if a perfect fluid spacetime whose
Ricci tensor is of Codazzi type has dark matter era, then its pressure is p = f(T )

8π +constant.

If f(T ) = 0, by (4.21) we get p = 0 and hence from σ + p = 0 we refer σ = 0. Thus we
get:

Corollary 4.6. In f(R)-gravity theory satisfying f(R, T ) = R, a dark matter perfect fluid
spacetime having Codazzi type of Ricci tensor is vacuum.

Acknowledgment. The authors would like to thank the referee for reviewing the paper
carefully and her or his useful remarks.

References
[1] G. Abbas, M. S. Khan, Z. Ahmad and M. Zubair, Higher-dimensional inhomogeneous

perfect fluid collapse in f(R)-gravity, Eur. Phys. J. C. 77, Article No: 443, 2017.
[2] L.J. Alias, A. Romero and M. Sanchez, Uniqueness of complete spacelike hypersurfaces

of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativ.
Gravit. 27 (1), 71–84, 1995.

[3] K. Arslan, R. Deszcz, R. Ezentas, M. Hotlos and C. Murathan, On generalized
Robertson-Walker spacetimes satisfying some curvature condition, Turk. J. Math. 38,
353-373, 2014.

[4] A.L. Besse, Einstein Manifolds. Springer-Verlag, Berlin, 2008.
[5] Y.F. Cai, S. Capozziello, M.D. Laurentis and E.N. Sridakis, f(T ) teleparallel gravity

and cosmology, Rept. Prog. Phys. 79, 106901, 2016.
[6] R.R. Caldwell, A phantom menace? Cosmological consequences of a dark energy

component with super-negative equation of state, Phys. Letter B 545, 23–29, 2002.
[7] S. Capozziello, C.A. Mantica and L.G. Molinari, Cosmological perfect uids in f(R)-

gravity, Int. J. Geom. Methods Mod. Phys. 16, 1950008, 2019.



Perfect fluid spacetimes, Gray’s decomposition and f(R, T )-gravity 111

[8] S. Capozziello, C.A. Mantica and L.G. Molinari, Cosmological perfect fluids in higher-
order gravity, Gen. Relativ. Gravit. 52, Article No: 36, 2020.

[9] S.M. Carroll, A. De Felice, V. Duvvuri, D.A. Easson, M. Trodden and M.S. Turner,
The cosmology of generalized modified gravity models, Physics Rev. D 71, 063513,
2015.

[10] S. Chakraborty, An alternative f(R, T )-gravity theory and the dark energy problem,
Gen. Relativ. Gravit. 45, 2039–2052, 2013.

[11] S.K. Chaubey, Y.J. Suh and U.C. De, Characterizations of the Lorentzian manifolds
admitting a type of semi-symmetric metric connection, Anal.Math.Phys. 10, Article
No: 61, 2020.

[12] U.C. De and Y.J. Suh, Some characterizations of Lorentzian manifolds, Int. J. Geom.
Methods Mod. Phys. 16, 1950016, 2019.

[13] K.L. Duggal, Generalized Robertson-Walker spacetimes admitting evolving null hori-
zons related to a Black Hole event horizon, Hindawi, International Scholarly Research
Notices, 9312525, 2016.

[14] S. Dussault and V.A. Faraoni, A new symmetry of the spatially flat EinsteinFried-
mann equations, Eur. Phys. J. C 80, Article No: 1002, 2020.

[15] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7, 259–280,
1978.

[16] B.S. Guilfoyle and B.C. Nolan, Yang’s gravitational theory, Gen. Relativ. Gravitation
30 (3), 473–495, 1998.

[17] S. Güler and S. Altay Demirbağ, On Ricci symmetric generalized quasi Einstein space-
times, Miskolc Math. Notes 16, 859-868, 2015.

[18] S. Güler and S. Altay Demirbağ, A study of generalized quasi Einstein spacetimes
with applications in general relativity, Int. J. Theo. Phys. 55, 548-562, 2016.

[19] T. Harko, F.S.N. Lobo, S. Nojiri and S.D. Odintsov, f(R, T )-gravity, Phys. Rev. D
84, 024020, 2011.

[20] S.W. Hawking and G.F.R. Ellis, The Large-Scale Structure of Spacetimes, Cambridge
University Press, Cambridge, 1973.

[21] D. Krupka, The trace decomposition problem, Beitrage Algebra Geom. 36, 303–315,
1995.

[22] S. Mallick and U.C. De, On Pseudo Q-symmetric spacetimes, Anal.Math.Phys. 9,
13331345, 2019.

[23] C.A. Mantica, Y.J. Suh, and U.C. De, A note on generalized Robertson-Walker space-
times, Int. J. Geom. Meth. Mod. Phys. 13, 1650079, 2016.

[24] C.A. Mantica and L.G. Molinari, On the Weyl and the Ricci tensors of Generalized
Robertson-Walker space-times, J. Math. Phys. 57 (10), 102502, 2016.

[25] C.A. Mantica, L.G. Molinari and U.C. De, A condition for a perfect fluid spacetime
to be a generalized RobertsonWalker spacetime, J. Math. Phys. 57 (2), 022508, 2016,
Erratum 57, 049901, 2016.

[26] C.A. Mantica and L.G. Molinari, Generalized RobertsonWalker spacetimes - A survey,
Int. J. Geom. Methods Mod. Phys. 14 (3), 1730001, 2017.

[27] C.A. Mantica, L.G. Molinari, Y.J. Suh and S. Shenawy, Perfect-fluid, generalized
Robertson-Walker spacetime, and Gray’s decomposition, J. Math. Phys. 60, 052506,
2019.

[28] S. Nojiri and S.D. Odintsov, Modified Gauss-Bonnet theory as gravitational alternative
for dark energy, Phys. Lett. B 631 (1-2), 1-6, 2005.

[29] B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity, New York:
Academic Press, 1983.

[30] F. Özen Zengin, m-projectively flat spacetimes, Math. Reports, 14 (64), 363-378,
2012.



112 S. Güler, U.C. De

[31] E.M. Patterson, Some theorems on Ricci-recurrent spaces, J. Lond. Math. Soc. 27,
287–295, 1952.

[32] F. Rajabi and K. Nozari, Energy condition in unimodular f(R, T )-gravity, Eur. Phys.
J. C 81, Article No: 247, 2021.

[33] R. Rani, B. Edgar and A. Barnes, Killing tensors and conformal Killing tensors from
conformal Killing vectors, Class. Quantum Grav. 20 (11), 1929–1942, 2003.

[34] A. Restuccia and F. Tello-Ortiz, A new class of f(R)-gravity model with wormhole
solutions and cosmological properties, Eur. Phys. J. C 80, Article No: 580, 2020.

[35] R. Sharma and A. Ghosh, Perfect fluid space-times whose energy-momentum tensor
is conformal Killing, J. Math. Physics 51, 022504, 2010.

[36] L.C. Shepley and A.H. Taub, Spacetimes containing perfect fluids and having a van-
ishing conformal divergence, Commun. Math. Phys. 5, 237–256, 1967.

[37] V. Singh and C.P. Singh, Modified f(R, T )-gravity theory and scalar field cosmology,
Astrophys. Space Sci. 356, 153–162, 2015.

[38] N.S. Sinyukov, Geodesic mappings of Riemannian spaces, Nauka, Moscow (in Rus-
sian), 1979.

[39] N.S. Sinyukov, Geodesic mappings of L2 spaces, Izv. Vyssh. Ucheb. Zaved. Mat. 3,
57-61, (in Russian), 1982,

[40] T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82, 451–497,
2010.

[41] H. Stephani, D. Kramer, M. MacCallum, C. Oenselaers and E. Herlt, Exact Solu-
tions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics,
Cambridge University Press, Cambridge, 2003.

[42] M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for
{2, 2} spacetimes, Commun. Math. Phys. 18, 265274, 1970.

[43] M.X. Xu, T. Harko and S.D. Liang, Quantum cosmology of f(R, T )-gravity, Eur.
Phys. J. C 76, Article No: 449, 2016.

[44] Y. Xu, G. Li and T. Harko, f(Q,T )-gravity, Eur. Phys. J. C 79, Article No: 708,
2019.

[45] J.Z. Yang, S. Shahidi and T. Harko, Geodesic deviation, Raychaudhuri equation,
Newtonian limit, and tidal forces in Weyl-type f(Q,T )-gravity, Eur. Phys. J. C 81,
Article No: 111, 2021.


